
Towards an Automated Test Bench Environment
for Prolog Systems
Ricardo Gonçalves, Miguel Areias and Ricardo Rocha

CRACS & INESC TEC and Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
{rgoncalves,miguel-areias,ricroc}@dcc.fc.up.pt

Abstract
Software testing and benchmarking is a key component of the software development process.
Nowadays, a good practice in big software projects is the Continuous Integration (CI) software
development technique. The key idea of CI is to let developers integrate their work as they
produce it, instead of doing the integration at the end of each software module. In this paper, we
extend a previous work on a benchmark suite for the Yap Prolog system and we propose a fully
automated test bench environment for Prolog systems, named Yet Another Prolog Test Bench
Environment (YAPTBE), aimed to assist developers in the development and CI of Prolog systems.
YAPTBE is based on a cloud computing architecture and relies on the Jenkins framework and
in a set of new Jenkins plugins to manage the underneath infrastructure. We present the key
design and implementation aspects of YAPTBE and show its most important features, such as
its graphical user interface and the automated process that builds and runs Prolog systems and
benchmarks.

1998 ACM Subject Classification D.2.5 Testing and Debugging, D.1.6 Logic Programming

Keywords and phrases Software Engineering, Program Correctness, Benchmarking, Prolog

Digital Object Identifier 10.4230/OASIcs.xxx.yyy.p

1 Introduction

In the early years of software development, it was a well-known rule of thumb that in
a typical software project approximately 50 percent of the elapsed time and more than
50 percent of the total cost were spent in benchmarking the components of the software under
development. Nowadays, despite the new development systems and languages with built-
in tools, benchmarking still plays an important role in any software development project.
Software benchmarking is a process, or a series of processes, designed to make sure that
computer code does what it was designed to do and, conversely, that it does not do anything
unintended [15]. Software benchmarking techniques can be broadly classified into white-box
benchmarking and black-box benchmarking. The former refers to the structural benchmarking
technique that designs test cases based on the information derived from source code. The
latter, also called data-driven or input/output driven benchmarking, views the program as
a black box, and its goal is to be completely unconcerned about the internal behavior and
structure of the program and, instead, it concentrates on finding circumstances in which the
program does not behave according to the specifications [15]. Nowadays, a good practice in
big software projects is the Continuous Integration (CI) software development technique [9].
The key idea of CI is to let developers integrate their work as they produce it, instead of
doing the integration at the end of each software module. Each integration is then verified
by an automated benchmark environment which ensures the correctness of the integration or

© R. Gonçalves, M. Areias and R. Rocha;
licensed under Creative Commons License CC-BY

Conference/workshop/symposium title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 Towards an Automated Test Bench Environment for Prolog Systems

detect the integration errors. One of the greatest advantages of the CI is an earlier detection
of errors, leading to smaller and less complex error corrections.

Prolog is a language with a long history whose community has seen a large number of
implementations which evolved independently. This situation is totally different from more
recent languages, such as, Java, Python or Perl, that either have a single implementation
(Python, Perl) or are controlled centrally (Java implementations can only be called Java if
they satisfy certain standards). The international standard for Prolog ISO/IEC 13211 [11]
was created to standardize Prolog implementations. However, due to the different sources
of development, the standard is not completely implemented in most Prolog systems. The
Prolog community knows that different Prolog systems have different dialects with differ-
ent syntax and different semantics for common features. A good example is Wielemaker’s
recent work on dictionaries and new string extensions to Prolog [22], which are not part of
the ISO/IEC 13211. A different direction is the one followed by Wielemaker and Santos
Costa [20, 21], where they studied the status of the standardization of Prolog systems and
gave a first step towards a new era of Prolog, where all systems are fully compliant with
each other. While this new era is not reached yet, every publicly available significant piece
of Prolog code must be carefully examined for portability issues before it can be used in any
Prolog system. This creates a significant obstacle, if one wants to compare Prolog systems
in performance and/or correctness measurements.

Benchmark suite frameworks for Prolog have been around for some time [6, 10] and
several still exist that are specially aimed to evaluate Prolog systems. Two good examples
are China [5] and OpenRuleBench [12]. China is a data-flow analyzer for constraint logic
programming languages written in C++ which performs bottom-up analysis deriving in-
formation on both call-patterns and success-patterns by means of program transformations
and optimized fix-point computation techniques. OpenRuleBench is an open community
resource designed to analyze the performance and scalability of different rule engines in a
set of semantic web information benchmarks.

In previous work, we have also developed a first benchmark suite framework based in
the CI and black-box approaches to support the development of the Yap Prolog system [17].
This framework was very important for our work [1, 2], mainly to ensure Yap’s correctness
in the context of several improvements and new features added to its tabling engine. The
framework handles the comparison of outputs obtained through the run of benchmarks
for general Prolog queries and for the answers stored in the table space if using tabled
evaluation. It also supports the different Prolog dialects of the XSB Prolog [16] and B-
Prolog [23] systems. However, the framework still lacks important user productive features
such as automation and a powerful graphical user interface.

In this paper, we extend such a previous work and we propose a fully automated test
bench environment for Prolog systems, named Yet Another Prolog Test Bench Environment
(YAPTBE), aimed to assist developers in the development and integration of Prolog systems.
YAPTBE is based in a cloud computing architecture and relies in Jenkins [18] and in a set
of new Jenkins plugins to manage the underneath infrastructure. Arguably, Jenkins is one
of the most successful open source automation tools to manage a CI infrastructure. Jenkins,
originally called Hudson, is written in Java, provides hundreds of plugins to support building,
deploying and automating any project, and is used by software teams of all sizes, for projects
in a wide variety of languages and technologies.

YAPTBE includes the following features: (i) a graphical user interface which coordinates
all the interactions with the test bench environment; (ii) the definition of a cloud computing
environment including different computing nodes running different operating systems; (iii)

R. Gonçalves, M. Areias and R. Rocha 3

an automated process to synchronize, compile and run Prolog systems against sets of bench-
marks; (iv) an automated process to handle the comparison of output results and store them
for future reference; (v) a smooth integration with state-of-the-art version control systems
such as GIT; (vi) a publicly available online version that allows anonymous users to inter-
act with the environment to follow the state of the several Prolog systems. To be best of
our knowledge, YAPTBE is the first environment specially aimed for Prolog systems that
supports all such features. For simplicity of presentation, we will focus our description in
the Yap Prolog system, but YAPTBE can be used with any other system.

The remainder of the paper is organized as follows. First, we briefly introduce some
background about Prolog and tabled evaluation. Next, we discuss the key ideas of YAPTBE
and how it can be used to support the development and evaluation of Prolog systems. Then,
we present the key design and implementation details and we show a small test-drive over
YAPTBE. Finally, we outline some conclusions and indicate further working directions.

2 Background

Arguably, one of the most popular logic programming languages is the Prolog language.
Prolog has its origins in a software tool proposed by Colmerauer in 1972 at Université de
Aix-Marseille which was named PROgramation en LOGic [8]. In 1977, David H. D. Warren
made Prolog a viable language by developing the first compiler for Prolog. This helped to
attract a wider following to Prolog and made the syntax used in this implementation the
de facto Prolog standard. In 1983, Warren proposed a new abstract machine for executing
compiled Prolog code that has come to be known as the Warren Abstract Machine, or simply
WAM [19]. The WAM became the most popular way of implementing Prolog and almost
all current Prolog systems are based on WAM’s technology.

A logic program consists of a collection of Horn clauses. Using Prolog’s notation, each
clause may be a rule of the form:

a(~X0) :− b1(~X1), b2(~X2), ..., bn(~Xn).

where a(~X) is the head of the rule, bi(~Xi) are the body subgoals and ~Xi are the subgoals’
arguments, or it may be a fact (without body subgoals) and simply written as:

a(~X0).

The symbol :− represents the logic implication and the comma (,) between subgoals
represents logic conjunction, i.e., rules define the expression:

b1(~X1) ∧ b2(~X2) ∧ ... ∧ bn(~Xn)⇒ a(~X0)

while facts assert a(~X0) as true.
Information from a logic program is retrieved through query execution. Execution of

a query Q with respect to a program P proceeds by reducing the initial conjunction of
subgoals in Q to subsequent conjunctions of subgoals according to a refutation procedure
called SLD resolution [13]. Figure 1 shows a pure and sequential SLD evaluation in Pro-
log, which consists in traversing a search space in a depth-first left-to-right form. Non-leaf
nodes of the search space represent stages of computation (choice points) where alternative
branches (clauses) can be explored to satisfy the program’s query, while leaf nodes represent
solution or failed paths. When the computation reaches a failed path, Prolog starts the
backtracking mechanism, which consists in restoring the computation up to the previous
non-leaf node and schedule an alternative unexplored branch.

4 Towards an Automated Test Bench Environment for Prolog Systems

entry point

Figure 1 Depth-first left-to-right search with
backtracking in Prolog

SLD resolution allows for efficient im-
plementations but suffers from some fun-
damental limitations in dealing with re-
cursion and redundant sub-computations.
Tabling [7] is a refinement of Prolog’s SLD
resolution that overcomes some of those lim-
itations. Tabling is a kind of dynamic pro-
gramming implementation technique that
stems from one simple idea: save interme-
diate answers for current computations in
an appropriate data area, called the table
space, so that they can be reused when
a similar computation appears during the
resolution process. With tabling, similar
calls to tabled subgoals are not re-evaluated
against the program clauses, instead they
are resolved by consuming the answers al-
ready stored in the corresponding table en-
tries. During this process, as further new
answers are found, they are stored in their tables and later returned to all similar calls.
Figure 2 shows the evaluation of a tabled program.

:- table path/2.

path(X,Z) :- path(X,Y), edge(Y,Z).
path(X,Z) :- edge(X,Z).

edge(a,b).
edge(b,a).

0. path(a,Z)

1. path(a,Y), edge(Y,Z) 2. edge(a,Z)

3. Z=b

subgoals answers

0. path(a,Z)
3. Z=b
5. Z=a

Table

4. edge(b,Z) 6. edge(a,Z)

5. Z=a 7. Z=b
(fail)

Figure 2 An example of a tabled evaluation

The top left corner of the figure shows the program code and the top right corner shows
the final state of the table space. The program defines a small directed graph, represented
by two edge/2 facts, with a relation of reachability, defined by a path/2 tabled predicate.
The bottom of the figure shows the evaluation sequence for the query goal path(a,Z). Note
that traditional Prolog would immediately enter an infinite loop because the first clause of
path/2 leads to a similar call (path(a,Y) at step 1).

First calls to tabled subgoals correspond to generator nodes (depicted by white oval

R. Gonçalves, M. Areias and R. Rocha 5

boxes) and, for first calls, a new entry representing the subgoal is added to the table space
(step 0). Next, path(a,Z) is resolved against the first path/2 clause calling, in the continua-
tion, path(a,Y). Since path(a,Y) is a similar call to path(a,Z), the engine does not evaluate
the subgoal against the program clauses, instead it consumes answers from the table space.
Such nodes are called consumer nodes (depicted by black oval boxes). However, at this point,
the table does not have answers for this call, so the computation is suspended (step 1). The
only possible move after suspending is to backtrack and try the second clause for path/2
(step 2). This originates the answer {Z=b}, which is then stored in the table space (step 3).
At this point, the computation at node 1 can be resumed with the newly found answer
(step 4), giving rise to one more answer, {Z=a} (step 5). This second answer is then also
inserted in the table space and propagated to the consumer node (step 6), which originates
the answer {Z=b} (step 7). This answer had already been found at step 3. Tabling does not
store duplicate answers in the table space and, instead, repeated answers fail. This is how
tabling avoids unnecessary computations, and even looping in some cases. Since there are
no more answers to consume nor more clauses left to try, the evaluation ends and the table
entry for path(a,Z) can be marked as completed.

For our test bench environment, tabling plays an important role because, with tabling,
we might want to handle not only the comparison of outputs obtained through the run of
general Prolog queries, but also the comparison of the structure/configuration of the tables
stored during such executions. Moreover, if we table all predicates involved in a computation,
we can use tabling as a way to keep track of all intermediate subcomputations that are done
for a particular top query goal. Tabling can thus be used as a built-in powerful tool to check
and ensure the correctness of the Prolog engine internals. To take advantage of tabling,
we thus need to design our test bench environment to take into account the kind of output
given by tabling.

3 Yet Another Prolog Test Bench Environment

In this section, we introduce the key concepts about YAPTBE’s design.

3.1 Cloud-Based Architecture
In the early years of software development, a piece of software was designed having in
mind a specific operating system and hardware architecture. As time passed by, operating
systems and hardware architectures became more sophisticated and branched out into a
multiplicity of platforms and versions, which are often variations of the same software or
hardware component. In order to go along with this new reality, nowadays, whenever a
new piece of software is designed, developers must ensure that it will work correctly in
different operating systems and hardware architectures. Fortunately, cloud computing has
emerged as an excellent alternative for software development. Cloud computing is very
powerful because it provides ubiquitous access to multiple operating systems, heterogeneous
and non-heterogeneous hardware architectures, which can be seen and manipulated as being
similar resources. In what follows, we explain how we tried to bring the advantages of cloud
computing into YAPTBE’s design.

Figure 3 shows a general perspective of YAPTBE’s cloud-based architecture. At the
entry point, a master node with a Graphical User Interface (GUI) allows users to interact
with YAPTBE’s cloud-based infrastructure. The master node is then connected, through
an intranet connection, to a storage device (shown at right in Fig. 3), which stores and
backups all relevant information, and to several computing nodes (or slave nodes) which

6 Towards an Automated Test Bench Environment for Prolog Systems

Figure 3 The cloud-based architecture of YAPTBE

can be connected through an intranet or internet connection, depending if they are or not
close enough to the master node. Each computing node has its own version of an operating
system. In Fig. 3, we can see four computing nodes running the CentOS 7, MacOS Sierra,
Solaris and Windows 7 operating systems. Each computing node is then organized in a
working space specially aimed to store the resources available in the node and to store the
files generated by the users during the usage of the node. Figure 4 shows an example of a
tree hierarchy for the working space of a computing node.

Figure 4 Working space of a computing node

At the top of the hierarchy, we
have the root folder named ‘Com-
puting Node’. The root folder is
divided in two sub-folders, the De-
velopers and the Resources folders.

The Resources folder is then
used to store the sources of the
Prolog systems and the sources of
the test bench suites available in
the computing node. Figure 4
shows two Prolog systems (rep-
resented by the ‘Swi Prolog’ and
the ‘Yap Prolog’ folders) and two
test bench suits (represented by
the ‘LogTalk Tests’ and the ‘Old
Bench Suite’ folders) available in
the computing node. The folder
structure under each particular re-
source is then independent from
YAPTBE. Figure 4 shows the spe-
cific structure for the ‘Old Bench
Suite’ resource. The ‘Old Bench Suite’ resource corresponds to the benchmark suite we
have developed in previous work to ensure Yap’s correctness in the context of several im-

R. Gonçalves, M. Areias and R. Rocha 7

provements and new features added to its tabling engine [1, 2]. It contains two sub-folders,
one named ‘Auxiliary Files’ and another Benchmarks. The Benchmarks folder stores the
Prolog files for the benchmarks (such as table_path_left_recursion.pl representing the exam-
ple in Fig. 2). The ‘Auxiliary Files’ folder holds the files related with the dialects specificities
of each Prolog system and with the running of the benchmarks (used to launch/terminate a
run; obtain the running time; print outputs; print internal statistics about the run; or print
the results stored in the tables, if using tabling).

The Developers folder stores the information for the builds and the jobs of each developer
(Fig. 4 shows the folder structure for Developer2). The first level sub-folders represent
the developer’s builds and the second level sub-folders represent the developer’s jobs for
a particular build. Prolog sources can be configured and/or compiled in different fashions.
Each build folder corresponds to such a configuration and holds all the files required to launch
the Prolog system. In Fig. 4, we can see that Developer2 has two builds, one named ‘Yap
Standard’, holding the binaries required to run Yap compiled with the default compilation
flags, and another named ‘Yap Tabling with Debug Support’, holding the binaries required
to run Yap compiled with tabling and debugging support. Finally, each job folder stores
the outputs obtained in a particular run of a build. In Fig. 4, we can see that the ‘Yap
Tabling with Debug Support’ build has two jobs (by default, jobs are named with the time
when they were created). The folder structure under each particular job is then independent
from YAPTBE. For the job named ‘02-03-2017 12:00:00’, we can see a report.txt file with a
summary of the run and two folders used to stored auxiliary error and output information
about the run, in this case, the query output, the structure of the table space and the
execution time.

3.2 Services
YAPTBE is designed to provide different services to different types of users. We consider
three different types of users: (i) the system administrators; (ii) the developers; and (iii) the
guest users. Figure 5 shows the key services provided to each user.

Figure 5 Users and services provided

The system administrators will manage the infrastructure and configure the several as-

8 Towards an Automated Test Bench Environment for Prolog Systems

pects of the test bench environment. They can manage the infrastructure by adding/re-
moving computing nodes, manage the accounts and access permissions for developers and
guests, and manage the available resources by setting up the source repositories for the
Prolog systems and for the test bench suites.

The developers will use the environment for performance measurements and for ensur-
ing the correctness of the integration of the code being developed. They can manage all
features related with the source repositories, such as merging, branching, pulling, configure
and compile, run benchmarks and compare the running times obtained in different dates
with different Prolog systems, test the correctness of the Prolog systems and check specific
features, such as tabling or multithreading.

The guest users can use the environment to check and follow the state of the several
Prolog systems. They can view the resources, navigate in the existent reports from previous
runs, and download the available benchmarks.

Since YAPTBE’s main target users are the developers, they will have a special access
to the infrastructure. They will be allowed to include their machines into the cloud in
such a way that they can develop and deploy their work in an computing node where they
can control the environment of the run. This special feature is important because, often,
developers want to quickly access what went wrong with their integration. As expected,
the machine of the developer will be protected against abusive workloads by other users.
We allow developers to define if their computing nodes are private or public and, in the
latter case, we also allow them to define the resources that they want to share with other
developers. The public resources that can be defined vary from the maximum disk space to
be used, to the maximum number of cores to be used and to the maximum number of jobs
to be accepted.

4 Implementation Details

In this section, we introduce some extra details about YAPTBE’s implementation, which
relies on the Jenkins framework [18] to manage the cloud-based architecture. Jenkins has
some important advantages: (i) the user interface is simple, intuitive, visually appealing,
and with a very low learning curve; (ii) it is extremely flexible and easy to adapt to multiple
purposes; and (iii) has several open source plugins available, which cover a wide range of
features, such as, version control systems, build tools, code quality metrics, build notifiers,
integration with external systems, and user interface customization.

In a nutshell, we use Jenkins to manage the GUI, the computing nodes and the scheduling
of jobs. The master node has a main Jenkins agent that runs the GUI and connects the
master node with the computing nodes. Jobs are deployed by the master node to the
computing nodes and, to run a job, each computing node has a Jenkins slave agent that
manages the run. At the end of a run, the slave agent sends back a minor report with the
results obtained to the main agent. The full details of the run are stored locally in the
computing node. If a storage device is available, it can be used to backup the results. Next,
we give more details about the scheduling of a job.

4.1 Job Scheduling
Job scheduling is one of the most important features of YAPTBE. We consider a job to
be any automated service that can be provided by the environment. Jobs can vary from
downloading and installing a Prolog system in a computing node to executing a run order
from a developer. Figure 6 shows the pipeline for running a job request made by a developer.

R. Gonçalves, M. Areias and R. Rocha 9

Figure 6 Pipeline of a job request to test the correctness of a Prolog system build

For the sake of simplicity, we will assume that a developer has all the permissions necessary
to run the job and wants to run the latest committed version in the repository of the Prolog
system.

On the initial stage of the pipeline, the developer creates an order for a job through
the GUI of the master node. The order defines the computing node, the Prolog system
build and the (set of) benchmark(s) to be run. The scheduling of the order is managed by
Jenkins, which will insert the order in the computing node pool. When the computing node
is ready to execute the order, the pipeline moves to the next stage to setup the execution
environment. In this stage, Jenkins activates a set of internal scripts that will deploy the
configurations of the order to the computing node. These scripts will synchronize the Prolog
system with its repository, configure and compile the corresponding build in the computing
node.

On the next stage of the pipeline, the Run Benchmark(s) stage, the Prolog build is
launched and the (set of) benchmark(s) is ran. This can include selecting the Prolog dialect,
which will activate a set of compatibility predicates that will be used to run the benchmark,
and selecting specific running predicates to obtain specific outputs, such as the structure
of the table space, if using tabling. Afterwards, the results are stored temporarily within a
folder structure similar to the one described in Fig. 4, which can be used to store auxiliary
error and/or output information, such as output answers, tabled answers, execution time,
the structure of the table space, or internal Prolog statistics.

On the last stage, to validate the results, YAPTBE searches for execution failures, such as
segmentation fault errors, and if no failures exist, it checks the correctness of the results. We
assume that results are correct if at least two Prolog system give the same solutions. For our
old bench suite, we are using the Yap Prolog and the SWI Prolog for standard benchmarks
and the Yap Prolog and the XSB Prolog for tabled benchmarks (in this case, we store the
output results and the answers stored in the tables). Thus, at this stage, we compare the
results obtained in the run with the results pre-stored and assumed to be correct. If the
results match, then the run is considered to be correct, otherwise the run is considered to
be a error. Finally, the results are stored in an permanent and unique location, and a report
with information is sent to the Jenkins master agent. The report has the status of the run,
the execution times and the folder locations for the full output and error details.

4.2 Test-Driving YAPTBE
In this section, we show a small test-drive of YAPTBE. Jenkins is already packed with a
huge amount of tools and has also several highly valued plugins that can be easily installed

10 Towards an Automated Test Bench Environment for Prolog Systems

(a) Adding Yap Prolog as a resource (b) Installing Yap Prolog in a computing node

Figure 7 Resource management GUI for administrators

on demand. Even so, to allow administrators, developers and guests to use YAPTBE in an
easier fashion, we have developed a new custom made plugin that was integrated in Jenkins.
The following figures illustrate a scenario where a developer wants to use the Yap Prolog
system and a computing node running the CentOS 7 operating system.

Figure 7 shows the resource management GUI for administrators for adding Yap Prolog as
a resource (Fig. 7a) and to install it in the computing node running the CentOS 7 operating
system (Fig. 7b). In both cases, the GUI is quite simple. To add a new resource (Fig. 7a),
the administrator has to define the name of the resource, the link to the repository with
the source code, and a template with the commands to build the binary for the resource.
The template can include optional arguments to be defined by the developers. For example,
in Fig. 7a, the build template starts with a configure command which includes optional
arguments (‘Configure Options’) to be later defined by the developers when building a
specific build of this resource. To install a resource in a specific computing node (Fig. 7b),
the administrator defines the desired computing node and resource and then presses the
Install button. If the resource installs correctly, it becomes immediately available in the
computing node.

Figure 8 then shows the job management GUI for developers for creating a new build
for the Yap Prolog system in the CentOS 7 computing node (Fig. 8a) and to deploy a job
using such build (Fig. 8b). Again, in both cases, the GUI is quite simple. To create a
new build (Fig. 8a), the developer has to define the name of the build, the resource and
computing node to be used and, if the administrator has defined optional arguments in the
build template commands, then such optional commands can be included here. This is the
case of the ‘Configure Options’ entry as previously defined in Fig. 7a. In this particular
example, the developer is building Yap with tabling and debug support. After the build be
saved, it becomes available for the developer to use it in future orders for a job. To deploy a
job (Fig. 8b), the developer sets a name for the job and defines the build to be used (up on
the definition, the computing node and resource will automatically appear in a non-editable
fashion, thus that the developer can see if it is using the correct build settings). At the end,

R. Gonçalves, M. Areias and R. Rocha 11

(a) Creating a new build for the Yap Prolog system (b) Running a job with a previously defined build

Figure 8 Job management GUI for developers

the developer defines the benchmark or set of benchmarks to be run and presses the Run
button to launch the corresponding job. The job will enter in the job scheduler and follow
the pipeline described in the previous subsection.

Although we have already implemented all the features shown, there are still many other
important features that are undergoing, such as: (i) implementation of a storage node to
backup all important data; (ii) design and implement a GUI for guest users; (iii) implement
a set of strict security policies for all users; (iv) increase significantly the number of tests
and benchmarks available. We expect to conclude these features soon and to have the first
version of YAPTBE available online in the near future.

5 Conclusions and Further Work

Software testing and benchmarking is a key component of the software development process.
In this paper, we extended a previous work on a benchmark suite for the Yap Prolog sys-
tem and we proposed a fully automated test bench environment for Prolog systems, named
Yet Another Prolog Test Bench Environment (YAPTBE), aimed to assist developers in the
development and integration of Prolog systems. YAPTBE is based in a cloud computing
architecture and relies in Jenkins and in a set of new Jenkins plugins to manage the under-
neath infrastructure. We presented the key design and implementation aspects of YAPTBE
and showed several of its most important features, such as its graphical user interface and
the automated process that builds and runs Prolog systems and benchmarks.

Besides assisting in the development of Prolog systems, we hope that YAPTBE may, in
the future, contribute to reduce the gap between different Prolog dialects and to create a
salutary competition between Prolog systems in different benchmarks.

In the recent past, multiple features have been added to Prolog’s world. One such
feature is the ISO Prolog multithreading standardization proposal [14], which currently
is implemented in several Prolog systems including Ciao, SWI Prolog, XSB Prolog and
Yap Prolog, providing a highly portable solution given the number of operating systems

12 Towards an Automated Test Bench Environment for Prolog Systems

supported by these systems. Arguably, one of the features that promises to have a significant
impact is the combination of multithreading with tabling [3, 4], since Prolog users will be able
to exploit the combination of higher procedural control with higher declarative semantics.
Future work plans include the extension of YAPTBE to support the execution and output
analysis of standard and tabled multithreaded Prolog runs.

Acknowledgments

This work was funded by the ERDF (European Regional Development Fund) through
Project 9471 – Reforçar a Investigação, o Desenvolvimento Tecnológico e a Inovação (Pro-
jeto 9471-RIDTI) – and through the COMPETE 2020 Programme within project POCI-
01-0145-FEDER-006961, and by National Funds through the FCT (Portuguese Foundation
for Science and Technology) as part of project UID/EEA/50014/2013. Miguel Areias was
funded by the FCT grant SFRH/BPD/108018/2015.

References
1 M. Areias and R. Rocha. On Combining Linear-Based Strategies for Tabled Evaluation

of Logic Programs. Journal of Theory and Practice of Logic Programming, International
Conference on Logic Programming, Special Issue, 11(4–5):681–696, 2011.

2 M. Areias and R. Rocha. On Extending a Linear Tabling Framework to Support Batched
Scheduling. In A. Simões, R. Queirós, and D. Cruz, editors, Proceedings of the Symposium
on Languages, Applications and Technologies (SLATE 2012), pages 9–24, Braga, Portugal,
June 2012.

3 M. Areias and R. Rocha. Towards Multi-Threaded Local Tabling Using a Common Table
Space. Journal of Theory and Practice of Logic Programming, International Conference on
Logic Programming, Special Issue, 12(4 & 5):427–443, 2012.

4 M. Areias and R. Rocha. On Scaling Dynamic Programming Problems with a Multithreaded
Tabling System. Journal of Systems and Software, 125:417–426, 2017. (First online: June
2016).

5 Roberto Bagnara. China - A Data-Flow Analyzer for CLP Languages. Available:
http://www.cs.unipr.it/China/.

6 K. Bothe. A prolog space benchmark suite: A new tool to compare prolog implementations.
SIGPLAN Not., 25(12):54–60, 1990.

7 W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic Programs.
Journal of the ACM, 43(1):20–74, 1996.

8 A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel. Un système de communication
homme–machine en francais. Technical report cri 72-18, Groupe Intelligence Artificielle,
Université Aix-Marseille II, 1973.

9 Paul Duvall, Stephen M. Matyas, and Andrew Glover. Continuous Integration: Improving
Software Quality and Reducing Risk (The Addison-Wesley Signature Series). Addison-
Wesley Professional, 2007.

10 Ralph Haygood. A prolog benchmark suite for aquarius. Technical report, Berkeley, CA,
USA, 1989.

11 ISO. ISO/IEC 13211-1:1995: Information technology — Programming languages — Prolog
— Part 1: General core. 1995.

12 S. Liang, P.Fodor, H. Wan, and M.Kifer. OpenRuleBench: An Analysis of the Performance
of Rule Engines. In Internacional World Wide Web Conference, pages 601–610. ACM, 2009.

13 J. W. Lloyd. Foundations of Logic Programming. Springer, 1987.
14 P. Moura. ISO/IEC DTR 13211–5:2007 Prolog Multi-threading Predicates, 2008.

R. Gonçalves, M. Areias and R. Rocha 13

15 Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software Testing. Wiley
Publishing, 3rd edition, 2011.

16 K. Sagonas and T. Swift. An Abstract Machine for Tabled Execution of Fixed-Order
Stratified Logic Programs. ACM Transactions on Programming Languages and Systems,
20(3):586–634, 1998.

17 V. Santos Costa, R. Rocha, and L. Damas. The YAP Prolog System. Journal of Theory
and Practice of Logic Programming, 12(1 & 2):5–34, 2012.

18 John Ferguson Smart. Jenkins: The Definitive Guide. O’Reilly Media, Inc., 2011.
19 D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI Interna-

tional, 1983.
20 Jan Wielemaker and Vítor Santos Costa. Portability of prolog programs: theory and case-

studies. CoRR, abs/1009.3796, 2010.
21 Jan Wielemaker and Vítor Santos Costa. On the Portability of Prolog Applications, pages

69–83. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
22 Jan Wielemakers. Swi-prolog version 7 extensions. In International Joint Workshop on

Implementation of Constraint and Logic Programming Systems and Logic-based Methods in
Programming Environments, pages 109–123, 2014.

23 Neng-Fa Zhou, Yi-Dong Shen, Li-Yan Yuan, and Jia-Huai You. Implementation of a Linear
Tabling Mechanism. In Practical Aspects of Declarative Languages, number 1753 in LNCS,
pages 109–123. Springer, 2000.

	Introduction
	Background
	Yet Another Prolog Test Bench Environment
	Cloud-Based Architecture
	Services

	Implementation Details
	Job Scheduling
	Test-Driving YAPTBE

	Conclusions and Further Work

