
Improving Candidate Quality of Probabilistic Logic1

Models2

Joana Côrte-Real1
3

CRACS & INESC TEC and Faculty of Sciences, University of Porto4

Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal5

jcr@dcc.fc.up.pt6

https://orcid.org/0000-0002-1085-32647

Anton Dries8

KU Leuven, Department of Computer Science9

Celestijnenlaan 200A bus 2402, 3001 Leuven, Belgium10

anton.dries@cs.kuleuven.be11

https://orcid.org/0000-0003-2944-206712

Inês Dutra13

CINTESIS and Faculty of Sciences, University of Porto14

Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal15

ines@dcc.fc.up.pt16

https://orcid.org/0000-0002-3578-776917

Ricardo Rocha18

CRACS & INESC TEC and Faculty of Sciences, University of Porto19

Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal20

ricroc@dcc.fc.up.pt21

https://orcid.org/0000-0003-4502-883522

Abstract23

Many real-world phenomena exhibit both relational structure and uncertainty. Probabilistic24

Inductive Logic Programming (PILP) uses Inductive Logic Programming (ILP) extended with25

probabilistic facts to produce meaningful and interpretable models for real-world phenomena.26

This merge between First Order Logic (FOL) theories and uncertainty makes PILP a very ade-27

quate tool for knowledge representation and extraction. However, this flexibility is coupled with28

a problem (inherited from ILP) of exponential search space growth and so, often, only a subset29

of all possible models is explored due to limited resources. Furthermore, the probabilistic eval-30

uation of FOL theories, coming from the underlying probabilistic logic language and its solver,31

is also computationally demanding. This work introduces a prediction-based pruning strategy,32

which can reduce the search space based on the probabilistic evaluation of models, and a safe33

pruning criterion, which guarantees that the optimal model is not pruned away, as well as two34

alternative more aggressive criteria that do not provide this guarantee. Experiments performed35

using three benchmarks from different areas show that prediction pruning is effective in (i) main-36

taining predictive accuracy for all criteria and experimental settings; (ii) reducing the execution37

time when using some of the more aggressive criteria, compared to using no pruning; and (iii)38

selecting better candidate models in limited resource settings, also when compared to using no39

pruning.40

2012 ACM Subject Classification Computing methodologies → Machine learning → Machine41

learning approaches → Logical and relational learning → Inductive logic learning, Computing42

methodologies→ Artificial intelligence→ Knowledge representation and reasoning→ Probabilis-43

tic reasoning.44
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1 Introduction53

The ability to take uncertainty into account when building a declarative model of a real-54

world phenomena can result in a closer representation of reality. The Probabilistic Logic55

Programming (PLP) paradigm addresses this issue by encoding knowledge as facts or rules,56

which are believed to be true to some degree or with a given frequency, instead of using57

crisp true or false statements. There are several Prolog-based probabilistic logic languages58

in the literature that can represent and manipulate uncertainty, such as SLP [15], ICL [17],59

Prism [20], BLP [12], CLP(BN ) [19], MLN [18], ProbLog [13], among others. Please see the60

work by [8] for a recent survey of PLP.61

Performing structure learning over PLP produces models which are understandable by62

humans whilst still taking uncertainty into account. Probabilistic Inductive Logic Program-63

ming (PILP) is a subset of Statistical Relational Learning (SRL) that uses a probabilistic64

First Order Logic (FOL) language to represent data and their induced models. PILP differs65

from traditional Inductive Logic Programming (ILP) in that facts and rules have success66

probabilities ranging between 0 and 1, as opposed to being either 0 or 1 (false or true,67

respectively). In this setting, there are no longer positive and negative examples, but only68

target probabilities for each example. The aim of a PILP model is to predict probability values69

which are as close as possible to the target probabilities of each example. PILP algorithms70

use (i) a set of Probabilistic Examples (PE), and (ii) logical information pertaining complex71

relations expressed as logic facts and rules, the Probabilistic Background Knowledge (or72

PBK), to find a FOL model that explains the PE. PILP focuses on structure learning – the73

logic rules compose a theory that models the structure of the PE w.r.t PBK – but parameter74

learning can also be incorporated by tuning the probabilistic output of the rules which are75

learned [7].76

A number of PILP systems exist in the literature: ProbFOIL [9, 7], SLIPCOVER [1, 2],77

and SkILL [5, 4]. Additionally, there are other ILP-based structure learning methods such as78

CLP(BN ) [19] and MLN [14]. One of the limitations of the available PILP systems is that79

they inherit the exponential search space from ILP, and must in addition evaluate the fitness80

of each candidate model by computing, for each example, the likelihood of that example given81

the model. This can be very time consuming, since the evaluation process must consider all82

possible worlds where the theory in the model may be true. For a small number of facts and83

rules in the PBK this is not a problem, but computation grows exponentially as the size of84

the PBK is increased [10].85

To address this problem, this work introduces prediction pruning. Prediction pruning86

prunes the PILP search space based on previously evaluated theories by taking into account87

the logical operation (conjunction or disjunction) that will be performed next. Prediction88

pruning can be effective in reducing the execution time, compared to using no pruning.89

http://dx.doi.org/10.4230/OASIcs.ICLP.2018.6
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Additionally, the quality of the explored candidate models is improved when prediction90

pruning is used in conjunction with beam search. Unlike other pruning approaches, such as91

beam search as used in [7, 2, 5], or estimation pruning as used in [4], prediction pruning can92

guarantee safety such that when the safe criterion is used the optimal model is never pruned93

away. This work thus also investigates three possible criteria for prediction pruning: a safe94

criterion and two other more aggressive pruning criteria. Experiments using three benchmarks95

and two PILP systems show that all three criteria are effective in maintaining (or increasing)96

predictive accuracy for all experimental settings. Furthermore, the more aggressive criteria97

reduce execution time compared to using no pruning, without loss of predictive accuracy.98

Finally, in limited resource settings, better candidate models are generated when compared99

to using no pruning.100

This paper is organized as follows. Section 2 briefly introduces the main concepts of PILP.101

Next, Section 3 presents the proposed pruning strategy and the proposed pruning criteria.102

Section 4 evaluates the proposed approach and discusses the results. Finally, conclusions103

and perspectives of future work are put forward in Section 5.104

2 Background105

Traditional ILP generates sets of FOL rules (or theories) trying to describe a problem, given106

as a target predicate, in terms of the clauses contained in a given background knowledge.107

The theory’s fitness to describe the problem is assessed according to a loss function. The aim108

of ILP is to find a theory that explains all given positive examples and does not explain any109

of the given negative examples, but in practice it is common to relax these criteria and allow110

for some noise (misclassified examples). It is also common to define a declarative language111

bias using mode declarations in order to specify which rules are valid within the search space.112

PILP extends the ILP setting by introducing a Probabilistic Background Knowledge113

(or PBK), where FOL data descriptions can be annotated with a probability value ranging114

from 0 to 1, and by introducing a set of Probabilistic Examples (PE), no longer positive or115

negative, also with a value ranging between 0 and 1. Facts and rules in the PBK and PE116

can represent either statistical information or the degree of belief in a statement, using type117

I or type II probability structures, respectively [11]. Non-annotated data is assumed to have118

a probabilistic value of 1. Because PILP theories are still generated based on the logical119

information of the data, the ILP language bias translates directly to PILP. The process of120

generating theories also mimics ILP, since they are based on the logical clauses in the PBK.121

Good theories are the ones which most closely predict the values of the PE or rather that122

minimize the error between predictions and the PE values.123

In this work, probabilities are annotated according to ProbLog’s syntax, using possible124

world semantics [8]. In ProbLog, each fact pj :: cj in the PBK represents an independent125

binary random variable, meaning that it can either be true with probability pj or false with126

probability 1−pj . This means that each probabilistic fact introduces a probabilistic choice in127

the model. Each set of possible choices over all facts of the PBK represents a possible world128

ωi, where ω+
i is the set of facts that are true in that particular world, and ω−i = ωi \ ω+

i is129

the set of facts that are false. Since these facts have a probabilistic value, a ProbLog program130

defining a probabilistic distribution over the possible worlds can be formalized as shown in131

Eq. 1.132

P (ωi) =
∏

cj∈ω+
i

pj

∏
cj∈ω−

i

(1− pj) (1)133

ICLP 2018



6:4 Improving Candidate Quality of Probabilistic Logic Models

A ProbLog query q is said to be true in all worlds wq where wq |= q, and false in all other134

worlds. As such, the success probability of a query is given by the sum of the probabilities of135

all worlds where it is found to be true, as denoted in Eq. 2.136

P (q) =
∑

ωi|=q

P (wi) (2)137

Even though the prediction (success probability) of a rule changes according to the138

literals contained in its body, the probabilistic model generated from the PBK is not altered139

throughout the execution of the program. The search for the best model in PILP thus140

consists of finding the theory whose success probabilities (for all examples) have the best141

fitness w.r.t. the PE values (according to some loss function), given a PBK. This allows for142

defining standard scoring metrics such as probabilistic accuracy (or PAcc), as introduced by143

De Raedt et al. in [9]. PAcc can also be represented in terms of the mean absolute error144

(MAE) between predictions and example values as used by Chen et al. in [3]. These two145

formulations are equivalent.146

3 Prediction Pruning147

The PILP search space can be split in two separate dimensions w.r.t. the operation that148

is being used to traverse it, i.e., there is a dimension for rules (or theories of length one),149

which uses the AND operation to generate new rules, and a dimension for theories (of length150

greater than one), which in turn uses the OR operation to generate new theories. Fully151

exploring the PILP search space is equivalent to evaluating each theory in the theory lattice152

in order to determine the best theory according to a given metric.153

The theories used to explain examples in PILP are built from the literals that are present154

in the program’s PBK. The rule (AND) search space is composed by all rules whose body155

contains one or more of those literals. Rules can be combined using logical conjunction to156

form longer, more specific rules. The theory (OR) search space can be defined in a similar157

way. Theories are formed by combining a set of distinct rules using logical disjunction. In158

the same way that literals are the building blocks of rules, rules are the building blocks of159

theories. Adding a rule to a theory makes it more general.160

The procedure to explore the PILP search space can thus be done in two steps: (i) explore161

the AND search space, and (ii) explore the OR search space. An exhaustive search strategy162

would be very time-consuming leading to a scenario where good theories might never have a163

chance to be evaluated due to the complexity of the probabilistic evaluation. When resources164

are limited, it is thus preferable to focus on good candidate theories and avoid candidate165

theories which are below a threshold of quality to transition to the next iteration. Prediction166

pruning is thus applied over previously evaluated theories which are determined to be useless167

for further combination. Prediction pruning excludes theories whose predictions suggest168

that the theory is already too specific, for the AND operation, or too general, for the OR169

operation. Algorithm 1 presents this procedure.170

Algorithm 1 starts by exploring the AND search space in a direction of increasing171

specificity. It starts out by generating rules containing only one literal (line 3) and then uses172

these rules to generate combinations for the next iteration (lines 5–8). In order to prevent173

rules which are determined to be too specific from being considered for combination in the174

next iteration, prediction pruning is applied according to a given CriterionAND (procedure175

AND_pred_pruning on line 7). Rules that are pruned by this criterion are still included176



J. Côrte-Real, A. Dries, I. Dutra and R. Rocha 6:5

Algorithm 1 PILP_algorithm(PBK, PE, CriterionAND, CriterionOR)
1: Tall = ∅
2: Rall = ∅
3: R1 = generate_rules_one_literal(PBK, PE)
4: Rnew = R1
5: while Rnew 6= ∅ do
6: Rall = Rall ∪Rnew

7: Rpru = AND_pred_pruning(Rnew, CriterionAND)
8: Rnew = {r1 ∧ rpru | (r1, rpru) ∈ R1 ×Rpru}
9: T1 = Rall

10: Tnew = T1
11: while Tnew 6= ∅ do
12: Tall = Tall ∪ Tnew

13: Tpru = OR_pred_pruning(Tnew, CriterionOR)
14: Tnew = {t1 ∨ tpru | (t1, tpru) ∈ T1 × Tpru}
15: return Tall

in Rall but they are not further specialized in Rnew (line 8). The combination process is177

repeated until it yields no new rules. The set of initial theories T1 is then populated with178

all rules in Rall (line 9). Similarly to the AND search space, T1 is used to generate new179

theories Tnew through combination using logical disjunction (lines 11-14). This process is180

analogous to the exploration of the AND search space, except that the pruning criterion181

CriterionOR, used in procedure OR_pred_pruning (line 13), is based on generality as182

opposed to specificity.183

The decision on whether a candidate theory should be further explored is made based on184

the theory’s individual prediction values for each example. Depending on which search space185

is being explored, the criterion to exclude theories will differ. When two rules ra and rb are186

combined using logical conjunction, a more specific rule ra,b = ra ∧ rb will result. This is due187

to the fact that more literals in the body of the rule must succeed simultaneously so that the188

rule can be verified.189

In the probabilistic setting, a rule r is composed of a logical part l(r) and a prediction190

value p(r) ranging from 0 to 1. The prediction value of rule r for a given example i, pi(r)191

is equal to the sum of the probabilities P (ωn) of each world ωn in the program in which192

ωn |= li(r) for that same example i. This means that for the more specific rule ra,b to be193

true, both ra and rb must be true simultaneously, i.e. only the worlds where both ra and194

rb are true can be considered. This is equivalent to the intersection of the set of worlds195

which entail l(ra) and l(rb), taking also into account the variable groundings for ra and rb.196

Therefore, the prediction value of a specific rule for an example i can be defined in terms of197

the prediction values of less specific rules which compose it.198

pi(ra,b) =
∑

ωn|=li(ra,b)

P (ωn) =
∑

ωn|=li(ra)∩
ωn|=li(rb)

P (ωn) (3)199

From Eq. 3, it follows that, for an example i, the prediction value of a more specific200

rule pi(ra,b) will always be less than or equal to the prediction value of pi(ra) and pi(rb).201

Therefore, the prediction value of rule pi(r) will be monotonically decreasing with the202

application of the AND operation, since in each iteration the rules become more specific.203

ICLP 2018



6:6 Improving Candidate Quality of Probabilistic Logic Models

Table 1 Expressions for the soft, hard and safe criteria

Criterion Search Space
AND OR

Soft
∑

i

(
pi(t)− ei

)
< 0

∑
i

(
pi(t)− ei

)
> 0

Hard ∃i : pi(t) < ei ∃i : pi(t) > ei

Safe ∀i : pi(t) < ei ∀i : pi(t) > ei

Having established this ordering allows prediction pruning to be applied over previously204

evaluated rules to determine whether they are useless for further combination, given some205

criterion. For a given example i, if the prediction value of a rule pi(r) is less than the example206

value ei, then continuing to apply the AND operation can only result in distancing pi(r)207

from ei further, since pi(r) can only decrease from the application of the AND operation. As208

such, prediction pruning excludes rules whose prediction values for all examples suggest that209

the theory is already too specific when compared to the example values. A similar argument210

can be made for the OR operation and the generality of theories.211

To determine whether theories will be pruned away or not, several criteria are possible.212

This work proposes three criteria for deciding if a theory is too specify/general: a soft213

criterion, a hard criterion and a safe criterion. These three criteria take into account214

the predictions of a theory pi(t) for the given examples, as well as the example values ei215

themselves. Table 1 presents the expressions for the pruning criteria when applied to the216

AND and OR search spaces. The soft pruning criterion takes into account the theory’s217

predictions for every example, and only prunes the theory away if it is overall more specific218

(for the AND operation) or more general (for the OR operation) than the values of the219

examples. The hard pruning criterion prunes a theory away if, in any example, the theory220

made a prediction that was more specific (for the AND operation) or more general (for the221

OR operation) than the annotated value for that example. The soft criterion differs from222

the hard criterion in that it takes into account the aggregate value of all examples, whilst223

the hard pruning criterion can discard theories based on one example value only. On the224

other hand, the safe pruning criterion excludes theories only when all of their predictions are225

found to be too specific (for the AND operation) or too general (for the OR operation), and226

no prediction can be improved by continuing with the search in that search space. Therefore,227

it is safe to prune away these candidate theories, since they can never perform better with228

more specialisation/generalisation, respectively.229

Figure 1 illustrates these concepts for a PILP setting with three examples and three230

theories. For each example i, the example value ei (squares in black) and three predictions of231

theories pi(t1), pi(t2) and pi(t3) are plotted. The ground truth model would predict exactly232

ei for every example. If a prediction value pi(t) is plotted below the example value ei, then233

that theory is too specific for that example. Conversely, if pi(t) is plotted above ei, the theory234

is more general for that example.235

In Fig. 1, for the AND operation, the safe pruning criterion would prune away theory t1
236

because, for every example, its prediction values are lower than the example values. The soft237

pruning criterion would prune away theories t1 and t2 because their prediction values are238

overall lower than the example values. Finally, the hard pruning criterion would prune away239

all theories. For example, theory t3 is pruned away because its prediction for e = 1 is lower240
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than the example value. An analogous reasoning can be made for the OR operation and241

higher prediction values. In summary, the theories pruned away by the safe criterion are a242

subset of the theories pruned away by the soft criterion, and similarly the theories pruned243

away by the soft criterion are a subset of those pruned away by the hard criterion.244

4 Experiments245

e1 e2 e3
0

0.2

0.4

0.6

0.8

1

Examples

Pr
ob

ab
ili
ty

ei pi(t1) pi(t2) pi(t3)

Figure 1 PILP setting with three examples
and three theories. For each example, the example
values (squares in black) and three predictions of
theories (green circles for pi(t1), brown diamonds
for pi(t2) and red triangles for pi(t3)) are plotted.

The experiments presented in this section are246

aimed at answering the following three ques-247

tions: (i) how much does prediction pruning248

reduce the exhaustive PILP search space?249

(ii) can prediction pruning maintain predic-250

tive quality of models? (iii) how does pre-251

diction pruning impact the quality of the252

candidate models explored in a limited re-253

source setting?254

Prediction pruning was implemented and255

evaluated in two state-of-the-art PILP sys-256

tems: SkILL [5] and ProbFOIL+ [7]. SkILL257

runs on top of the Yap Prolog system [6],258

uses TopLog [16] as the basis for rule gen-259

eration and the ProbLog Yap library as its260

probabilistic inference engine. The experi-261

ments using the SkILL system were run on262

a machine containing 4 AMD Opteron 6300263

processors with 16 cores each and a total of264

250GB of RAM. ProbFOIL+ is based on Python and it uses the Yap Prolog system for logical265

inference of theories. In these experiments, ProbFOIL+ uses only the examples provided in266

the training data (without generation of additional negative examples as used in the original267

paper) and it uses negated literals in the theories. The experiments using ProbFOIL+ were268

run on a machine containing an Intel Core i7 processor with 4 cores and a total of 16GB269

of RAM. All experiments use five-fold stratified cross validation and results presented are270

the average values for all folds. The evaluation was performed using three different datasets:271

metabolism, athletes and breast cancer.272

The metabolism dataset consists of an adaptation of the dataset originally from the 2001273

KDD Cup Challenge2. It is composed of 230 examples (half positive and half negative)274

and approximately 7000 BK facts. To obtain probabilistic facts for the PBK, the predicate275

interaction(gene1,gene2,type,strength) was adapted from the original metabolism dataset.276

The fourth argument of this predicate indicates the strength of the interaction between a pair277

of genes. This fact was converted to the probabilistic fact p_strength::interaction(gene1,gene2,type),278

where p_strength was calculated from strength interactions as follows:279

p_strength = strength−minstrength

maxstrength −minstrength
280

This resulted in about 3200 probabilistic facts in the PBK. 5 folds were generated from281

2 http://www.cs.wisc.edu/~dpage/kddcup2001
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this dataset, and each one of them is composed of 46 test examples selected randomly from282

the main dataset (but keeping the same positive/negative ratio) and, for each fold, the 184283

remaining examples are used for training.284

The athletes dataset consists of a subset of facts regarding athletes and the sports they285

play collected by the never-ending language learner NELL3. NELL iteratively reads the web,286

gathering knowledge, and for each fact that it comes across it assigns a weight that can be287

used as a probability. As NELL iterates, the weights of the facts in its database are updated,288

and the dataset used for this experiment contains the facts and weights from iteration 850.289

The dataset is composed of 720 probabilistic examples of athletes that play for a team, and290

4294 probabilistic facts in the PBK pertaining to the origin of the player, his/her gender, the291

city where a team plays, and so on. 5 folds were generated from this dataset, and each one292

of them is composed of 144 test examples selected randomly from the main dataset and the293

576 remaining examples are used for training. Because in this case examples do not clearly294

belong to one of two classes, the test examples were randomly selected from the dataset295

without taking their expected value into account.296

The breast cancer dataset contains data from 130 biopsies dating from January 2006297

to December 2011, which were prospectively given a non-definitive diagnosis at radiologic-298

histologic correlation conferences. Twenty-one cases were determined to be malignant after299

surgery, and the remaining 109 proved to be benign. The probabilities assigned to the300

examples represent the chance of malignancy for each patient. A high probability indicates301

the team of physicians thinks the case is most likely malignant, and conversely a low302

probability indicates the case is most likely benign. Five folds were generated from this303

dataset, and each one of them is composed of 26 test examples selected randomly from the304

main dataset (but keeping the same positive/negative ratio) and the 104 remaining examples305

are used for training.306

4.1 Probabilistic Accuracy and Search Space Reduction307

Baseline Because exploring the search space exhaustively is computationally taxing, the308

quality of candidate theories was assessed in a limited resource setting. Resources can be309

limited in two ways: either a timeout is imposed or a maximum number of evaluations310

is defined, which corresponds to using beam search (or the fitness pruning setting in the311

case of the SkILL system). To this effect, the impact of prediction pruning was assessed by312

comparing the AND and OR search spaces that are evaluated without pruning with those313

which are evaluated in a pruning setting, given the same limitation of resources. In these314

experiments, the default fitness pruning / beam search settings of both systems are used315

(that is, for SkILL, primary and secondary population sizes of 25/20 for both AND and OR316

space, and for ProbFOIL+, a beam size of 5 for the AND space and greedy search in the OR317

space, as ProbFOIL+ only supports greedy search there).318

Prediction Pruning The use of prediction pruning enables PILP systems to focus their319

(limited) resources on more promising candidates, when traversing the search space. Table 2320

presents the results of applying prediction pruning in the AND search space in combination321

with fitness pruning / beam search. It shows the execution time (in seconds), the number of322

theories evaluated probabilistically and the probabilistic accuracy of the best theory found323

3 http://rtw.ml.cmu.edu

http://rtw.ml.cmu.edu
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Table 2 Execution time in seconds, number of probabilistic evaluations performed and probabilistic
accuracy for datasets metabolism, athletes and breast cancer using the SkILL and ProbFOIL+
systems with prediction pruning for the AND search space. Standard deviation is presented in
brackets. Execution times between systems are not comparable.

(a) SkILL

Baseline Safe Soft Hard

Execution Time (s)
metabolism 3353 (204) 2286 (185) 3216 (472) 1791 (37)

athletes 4610 (79) 4230 (582) 2322 (164) 2358 (73)
breast cancer 1449 (63) 616 (50) 636 (26) 353 (42)

No. Evaluations
metabolism 2151 (44) 2150 (44) 3234 (90) 2103 (37)

athletes 1852 (25) 1896 (18) 994 (3) 994 (3)
breast cancer 1235 (68) 1234 (67) 1306 (43) 941 (70)

Probabilistic Accuracy
metabolism 0.67 (0.05) 0.67 (0.05) 0.67 (0.05) 0.67 (0.05)

athletes 0.95 (0.01) 0.95 (0.01) 0.95 (0.01) 0.95 (0.01)
breast cancer 0.86 (0.04) 0.86 (0.04) 0.84 (0.08) 0.86 (0.03)

(b) ProbFOIL+

Baseline Safe Soft Hard

Execution Time (s)
metabolism 2008 (2016) 1999 (2019) 752 (215) 464 (71)

athletes 57 (5) 57 (5) 55 (4) 14 (0)
breast cancer 3890 (339) 3828 (302) 8093 (2101) 725 (38)

No. Evaluations
metabolism 3734 (2328) 4549 (3734) 4518 (1493) 2452 (492)

athletes 201 (43) 201 (43) 171 (21) 0 (0)
breast cancer 24290 (851) 24267 (828) 26495 (3542) 3532 (231)

Probabilistic Accuracy
metabolism 0.51 (0.04) 0.51 (0.03) 0.63 (0.11) 0.58 (0.07)

athletes 0.80 (0.01) 0.80 (0.01) 0.80 (0.01) 0.80 (0.01)
breast cancer 0.85 (0.01) 0.85 (0.01) 0.85 (0.03) 0.87 (0.01)
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for different pruning criteria (Safe, Soft and Hard), using the SkILL and ProbFOIL+ systems.324

Please note that execution times between systems are not comparable.325

Probabilistic Accuracy Prediction pruning results in Table 2 show that applying the Soft326

or Hard strategies leads to clear improvements in probabilistic accuracy for ProbFOIL+ and327

does not lead to degradation in SkILL. The effect of prediction pruning is more evident328

for ProbFOIL+ because it selects fewer candidates in each iteration, when compared to329

the SkILL’s primary and secondary populations. It is therefore more important that bad330

candidates are pruned such that the limited beam is filled with better candidates. The331

prediction pruning strategy is thus particularly useful when traversing the search space with332

a narrow beam, so that the candidates selected to populate it are of greater predictive value333

when compared to using no prediction pruning. Safe pruning has no effect on these datasets334

because its pruning power is too limited.335

Search Space Reduction Table 2 also shows that applying prediction pruning does not336

necessarily reduce the search space. It can actually increase the number of rules evaluated337

during the execution, and even the execution time in some cases. This happens because338

prediction pruning provides a type of lookahead, that is, it makes an assessment of the339

predictive power of a rule in future iterations. When no prediction pruning is used, the340

algorithms have a strong bias toward rules that show good performance early on and the341

best rule (in the limited search space) is found after a few iterations. Prediction pruning342

counteracts this bias, and also allows candidates that only reach their full predictive accuracy343

after a higher number of iterations to be explored. However, since the algorithm may take344

more iterations, this can lead to more evaluations and longer rules that are harder to evaluate.345

4.2 Search Space Quality346

Each theory in the PILP search space can be thought of as a predictor, and for this reason347

its predictive quality can be assessed using the area under the ROC curve (AUC). Since348

prediction pruning removes theories from the search space based upon the operation that349

is being performed (AND or OR), the distribution of the remaining candidate theories can350

change (there may be cases where no candidate theories are left for the next iteration). As351

such, comparing the two search spaces using the AUCs of the theories they contain shows352

how the predictive quality of their candidates compares.353

For the SkILL experiments, the AUC of all rules containing more than one literal (AND354

search space) and all theories (OR search space) was calculated. The AUC of rules composed355

of only one literal was not considered because prediction pruning has no effect on these rules,356

which must always be evaluated. Analysing the distribution of the AUC values is relevant357

because if the upper quartiles of the distribution are improved, this shows that there are358

better candidate members selected to be explored given limited resources. Lower quartiles359

will naturally be discarded by the PILP algorithm’s metric to select the best final theory.360

The distribution of these values for each setting and search space are presented in Figures 2361

and 3 for the AND and OR search spaces, respectively. Each box depicts percentiles 0 and362

100 (the lower and upper whiskers, respectively), percentiles 25 and 75 (lower and upper box363

boundaries, respectively), and the percentile 50 (median) using a bold line.364

In Figs. 2–3, the higher the AUC value (y-axis), the greater the predictive power of the365

theory. Each boxplot corresponds to a setting. In Fig. 2 (AND search space only), the366

first boxplot corresponds to the rules generated using no prediction pruning, the second367

boxplot to the rules generated using safe prediction pruning, and so on. In Fig. 3 (AND368
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Figure 2 Distribution of theories’ AUCs for the AND search space for datasets metabolism,
athletes and breast cancer using different prediction pruning settings in the SkILL system.
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Figure 3 Distribution of theories’ AUCs for the OR search space, for datasets metabolism,
athletes and breast cancer using different prediction pruning settings in the SkILL system.

and OR search spaces), the pruning settings are reported as a tuple where the first value369

is the AND prediction pruning option and the second is the OR prediction pruning option.370

For example, the tuple (Soft,Hard) stands for soft AND prediction pruning and hard OR371

prediction pruning, whilst the tuple (No,Safe) stands for no AND pruning and safe OR372

prediction pruning.373

For the AUC distributions, statistical significance is also calculated (using non-paired374

two-tailed t-test) by comparing the distribution of AUCs fold to fold (e.g. fold 1 using soft375

OR prediction pruning against fold 1 without pruning). Table 3 reports the number of folds376

where the results were statistically significant for both the AND and the OR search spaces.377

In some cases, some folds do not produce an AND or OR search space because all theories378

are pruned away, and this is the cause for not always reporting five folds in comparison.379

In Fig. 3, it is visible that prediction pruning can improve the general quality of the380

evaluated theories, particularly in the case of the athletes and breast cancer datasets. In the381

breast cancer dataset, the two upper quartiles of the AUC distribution are clearly improved382

in three settings. This trend is also clear in the athletes dataset, where again prediction383

pruning significantly increases the predictive quality of the evaluated theories in three cases384

(and slightly in two other settings). On the metabolism dataset, the improvements due to385

prediction pruning are not as evident, but it is noteworthy that there is in fact a slight386
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Table 3 Number of significant differences (left) for the number of tested folds (right) in the
AND and OR AUC distributions for datasets metabolism, athletes and breast cancer using different
prediction pruning settings in the SkILL system.

Setting metabolism athletes breast cancer
(AND,OR) AND OR AND OR AND OR

(No, No) 0/4 0/5 0/5 0/5 0/5 0/5
(No, Safe) 0/5 2/5 0/5
(Safe, No) 0/4 0/5 0/5 2/5 0/5 0/5

(Safe, Safe) 0/5 2/5 0/5
(No, Soft) 0/4 4/4 0/5 4/5 0/5 0/5

(No, Hard) 4/4 4/5 –
(Soft, No)

4/4
2/5

0/5
3/5

3/5
2/5

(Soft, Soft) 5/5 3/5 3/5
(Soft, Hard) 5/5 4/5 –
(Hard, No)

–
5/5

0/5
3/5

1/4
5/5

(Hard, Soft) 3/4 4/5 4/4
(Hard, Hard) 1/1 4/5 –

increase in the maximum AUC value for the case of hard AND pruning and no OR pruning,387

as well as in all safe pruning settings. The boxplots with range zero indicate that in those388

settings the candidates that populate the beam do not have any predictive power in the test389

set. However, this does not imply a loss in predictive accuracy of the optimal model since390

rules of only one literal are not included in these boxplots because they are not affected by391

prediction pruning.392

Regarding the quality of the AND search space (Fig. 2), it is only significantly improved393

in the breast cancer dataset, using soft prediction pruning. However, the candidate rules that394

are selected for the AND search space impact the OR search space, since candidate theories395

will be selected from the rules that were previously explored in the AND search space. As396

such, even though the AND search space only shows direct impact from using prediction397

pruning in the breast cancer dataset, it indirectly impacts the candidate theories available398

for the OR search space in all datasets. This is particularly relevant for the athletes dataset,399

where the quality of the OR search space is affected by soft and hard AND pruning. For400

instance, setting (Soft, Soft) performs significantly better when compared to setting (No,401

Soft), and setting (Hard, No)’s 50 and 100 percentiles are higher than its counterpart setting402

(No, No). This effect is also visible in the breast cancer dataset, where the settings using soft403

or hard AND prediction pruning present the greatest improvement. In most cases where404

the quality of the OR search space increased, AND prediction pruning had previously been405

applied to the AND search space.406

Table 3 shows that the safe pruning criterion causes no significant difference in candidate407

theory predictive quality, both for the AND and the OR operation (lines 2–4). This is due408

to the fact that the safe pruning criterion is the least aggressive criterion and therefore409

the proportion of candidates that are pruned in this setting is limited. On the other hand,410

both soft and hard pruning criteria cause a significant difference in the AUC distribution411

of candidates, in particular for the OR operation, where most folds present a significant412

difference (lines 5–12 and columns 2, 4 and 6 in Table 3). However, for the AND operation,413

aggressive criteria do not cause such a significant difference in the distribution, in particular414

for the athletes dataset. This happens because the predictive power of rules in this dataset415
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is similar among candidates, and so even though different rules can be selected, this is not416

reflected in the distribution of AUC values. In cases where aggressive pruning causes the417

search space to be empty for all folds, there is no boxplot in Figs. 2–3, and no value reported418

in Table 3.419

Prediction pruning thus impacts the quality of the search space positively, allowing for420

limited resources to be targeted towards better candidate theories. Furthermore, even though421

in some cases the quality of the search space decreases (for instance the quality of the AND422

search space using hard prediction pruning in the breast cancer dataset), the accuracy of the423

best final theory found never decreases significantly, thus showing that prediction pruning424

can be applied to better select candidate theories without risk of impacting the final test425

accuracy.426

5 Conclusion427

This work proposes a novel prediction pruning methodology whose aim is to improve the428

quality of the explored candidate models in a PILP search space. Unlike previously proposed429

pruning approaches, such as beam search and estimation pruning, prediction pruning focuses430

on improving the quality of the search space. In doing so, it can direct the search towards431

more promising candidates which can lead to a reduction in execution time or an increase in432

predictive accuracy.433

This work also introduces three pruning criteria, with increasing pruning power, which434

can be used to decide which models should be pruned away during the prediction pruning435

stage in the PILP algorithm. All pruning criteria are based on the probabilistic information of436

candidate models and depend on which operation is being performed in the PILP algorithm:437

logic conjunction (AND search space) or disjunction (OR search space). The safe pruning438

criterion guarantees the safeness of the prediction pruning strategy, meaning that the optimal439

model is never pruned away during the search, but experiments show that this criterion is440

not very successful in pruning the search space significantly. The soft and hard pruning441

criteria, however, do exhibit pruning power while not suffering from a reduction in predictive442

performance.443

Results also show that prediction pruning maintains the predictive quality of the generated444

models. Prediction pruning impacts the distribution of the predictive quality of theories445

and the use of prediction pruning can shift the maximum value and upper quartile of the446

distribution upwards, thus indicating improved candidate theory quality. Deeper analysis of447

the AUC of theories shows that all three criteria improve the quality of the OR search space.448

AND prediction pruning, while not presenting a significant difference in all datasets, can449

influence the OR search space quality, and so using prediction pruning for both operations450

can increase the quality of the candidate theories while not sacrificing the final predictive451

accuracy.452

An interesting direction for future work is to study how to automatically adjust the453

pruning criterion based on data characteristics of the dataset. Further work also includes454

developing a search space traversal strategy combining several pruning strategies and, in455

particular, study how prediction pruning interacts with beam search and estimation pruning.456
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