
Reclaiming Memory from Lock-Free Hash Tries?

Pedro Moreno and Ricardo Rocha

CRACS & INESC TEC and Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

{pmoreno,ricroc}@dcc.fc.up.pt

Abstract. This work presents an efficient memory reclamation scheme
applied to an implementation of lock-free hash tries which follows a
methodology based on the concept of hazard pointers.

Keywords: Memory Reclamation · Lock-Freedom · Hazard Pointers.

1 Introduction

Nowadays, there are multiple implementations of efficient lock-free data struc-
tures but, most often, no memory reclamation method is proposed for them.
Researchers tend to either declare them outside of their scope or rely upon a
general purpose garbage collector [1]. However, such garbage collectors are rarely
lock-free or very efficient compared to manual memory management.

The most relevant lock-free memory reclamation schemes known are based on
two main methodologies: (i) hazard pointers [4] and (ii) temporal order between
events, which are usually achieved by either quiescent states [3] or epochs [2, 3].

With hazard pointers, each thread is responsible for keeping the (pointers
to the) elements it is visiting in globally visible memory, thus rendering them
irreclaimable during the visiting period of time. This method is very efficient in
terms of memory usage but requires two atomic writes for every visited element,
which can lead to huge overheads. Quiescent states and epochs rely on keeping a
temporal order between logical removal of elements and the instants in which a
thread has no reference to any element. Both methods allow very time efficient
implementations but have the disadvantage of not guaranteeing a bound on the
amount of unrecovered memory, revoking the theoretical lock-freedom property
of the system as no progress is guaranteed for reclamation.

Starting from the hazard pointers methodology, in this work, we present an
efficient memory reclamation scheme applied to an elaborate implementation of
lock-free hash tries [1], giving us the ability to exploit the hash tries’ structure to
achieve high efficiency, low memory bounds and even enhance the data structure
itself. We believe that our approach can be extended and applied to similar tree-
based data structures.
? This work was funded by the ERDF through Project 9471-RIDTI – Reforçar a Inves-

tigação, o Desenvolvimento Tecnológico e a Inovação – and through the COMPETE
2020 Programme within project POCI-01-0145-FEDER-016844, and by National
Funds through the FCT as part of project UID/EEA/50014/2013.



2 P. Moreno and R. Rocha

2 Hash Tries Overview

Hash tries are a tree-based data structure with nearly ideal characteristics for a
hash map implementation. We based our work on the lock-free implementation
of hash tries proposed by Areias and Rocha [1]. The implementation has two
kinds of nodes: hash nodes and leaf nodes. The leaf nodes store key/value pairs
and the hash nodes implement a hierarchy of hash levels of fixed size 2w. To
map a key/value pair (k, v) into this hierarchy, we compute the hash value h
for k and then use chunks of w bits from h to index the appropriate hash level,
i.e., for each hash level Hi, we use the w ∗ i least significant bits of h to index
the entry in the appropriate bucket array of Hi. Figure 1 shows a small example
that illustrates how the insertion and expansion of nodes is done in a hash level.

Figure 1(a) shows the initial configuration for a hash level. Each hash level
Hi is formed by a bucket array of 2w entries and by a backward reference Prev
to the previous hash level. Bk represents a particular bucket entry of Hi. A
bucket entry stores either a reference to a hash level (initially the current hash
level) or a reference to a separate chain of leaf nodes, corresponding to the hash
collisions for that entry. Figure 1(b) shows the configuration after the insertion
of node K1 on BK and Fig. 1(c) shows the configuration after the insertion of
nodes K2 and K3. A leaf node holds both a reference to a next-on-chain node
and a flag with the condition of the node, which can be valid (V ) or invalid (I).

When the number of valid nodes in a chain exceeds a given threshold, the
corresponding bucket entry is expanded to a new hash level and the nodes in the
chain are remapped in the new level, i.e., instead of growing a single monolithic
hash table, the hash trie settles for a hierarchy of small hash tables of fixed size
2w. The expansion operation starts by inserting a new hash level Hi+1 at the
end of the chain (as shown in Fig. 1(c)) and then it moves the leaf nodes, one
at a time, from Hi to Hi+1. Figures 1(d) and 1(e) show how node K3 is first
mapped in Hi+1 (bucket Bn) and then moved from Hi (bucket Bk).

Removal of keys are performed by first marking the leaf node as invalid
(setting its flag to I) and then by setting the next reference of the previous valid
node to the first valid node subsequent to the node being removed [1].

(c)

K1 K2 K3

.
.
.

Hi+1

Bm

Bn

Bk

.
.
.

Hi

.
.
.

(e)

.
.
.

Hi+1

K3

Bm

Bk

.
.
.

Hi

.
.
.

K1 K2

Prev

Prev

Prev

Prev

V V V

V

VV

Bn

(d)

.
.
.

Hi+1

K3

Bm

.
.
.

Hi

.
.
.

K1 K2

Prev Prev

VV

V

Bk

Bn

(a) (b)

.
.
.

Prev

K1Bk

.
.
.

.
.
.

Prev

Bk

.
.
.

2 
entries

w

Hi Hi

V

Fig. 1. Insertion and expansion of nodes in a hash level



Reclaiming Memory from Lock-Free Hash Tries 3

3 Our Memory Reclamation Scheme

To reclaim memory, we need to be sure that no thread can further use such
memory. A memory element M being removed can be easily made unreachable
(logical remove) for the upcoming threads. The problem arises if a thread had
accessed M before the logical remove and can still access M in the future. To
physically remove M and reclaim its memory we need to ensure that no thread
can further use M . To ensure this, we can use hazard pointers for individual
elements but, as we have seen, they are very time consuming. Instead, we propose
using the hazard pointers concept but as a way to record the hash bucket entry
and the corresponding chain of leaf nodes where a thread is operating. This
reduces the number of updates to the points where threads move between hash
levels. For that, we can use the hash value h as a witness of the path a thread is
traversing and the hash level l as the part of such path the thread is currently on.
In what follows, h and l will be named as the hazard hash (HH) and the hazard
level (HL), respectively. To prevent unbounded memory usage while maximizing
performance with this new approach, the following extensions where introduced
to the previous design.

– Bucket entries were extended to include a bit flag indicating if the stored
reference is for a next level hash node. The new flag is part of the atomic
field including the reference. Whenever the flag is set, the entire atomic field
becomes immutable.

– Leaf nodes were extended to include a generation field indicating the hash
level the node was first inserted on, and a tag indicating the hash level the
node is at the moment. The new tag is part of the atomic field including
the next-on-chain node and the flag with the condition (valid/invalid) of the
node. Whenever the tag is updated, the entire atomic field is updated.

– Threads now collaborate to finish the expansions in course in a path before
inserting new nodes. This ensures that no more than one expansion will be
occurring in a path at any given moment.

– If the number of nodes protected from memory reclamation by a thread’s
hazard pair < HH,HL > exceeds a given threshold, an expansion operation
has to be forced. This ensures that each thread T will have a bound on the
number of nodes it can be preventing from being reclaimed. This solves the
problem of having multiple nodes being inserted and removed in the chain
T is in, without triggering the threshold limit for expansion.

With these extensions in mind, our memory reclamation scheme works as fol-
lows. When a node N is being removed by a thread T , N is first made unreachable
for the upcoming threads (logical remove) and then stored on a local reclama-
tion list, from which T periodically tries to reclaim nodes (physical remove). The
reclamation procedure is similar to hazard pointers with the difference that each
hazard pair < HH,HL > protects a (logically) removed node N from memory
reclamation if: (i) N has a hash hN matching the hazard hash HH up to the
hazard level HL; (ii) generationN ≤ HL; and (iii) tagN ≥ HL. Note that the
tag preserves the level at which the node was invalidated and logically removed.



4 P. Moreno and R. Rocha

Read
HN.Bucket

Flag==1
HN=HN.Bucket

Read
LN.Key

Flag==0
LN=HN.Bucket

Update HL

Read
LN.Next

LN.Key!=Key

Found

LN.Key==Key

Tag>HL+1 Read
LN.Type

Tag==HL & LN.Next!=HN
LN=LN.Next

Read
HN.Bucket

Tag==HL+1

Not
found

LN.Next==HN

Type==Hash
HN=LN

Type==Leaf

Flag==1
HN=HN.Bucket Flag==0

LN=LN.Next

Fig. 2. Deterministic state machine representing the search for a node

Figure 2 illustrates the new set of states for traversing the hash trie structure
searching for a node. A key point of our scheme is to ensure that the traversal
procedure does not dereference a next-on-chain node if such node is not being
protected by the current hazard pair < HH,HL >. When a leaf node (LN)
contains a tag value equal to our current hash level plus 1 (HL + 1), we know
that an expansion operation has started and we need to verify if the expansion
is still in course by checking the flag in the bucket entry of the last hash node
HN seen. A flag value of zero means that the expansion is still in course, so we
can be sure that the next-on-chain reference we have read earlier is to a node
that was expanded from the previous level and is thus still protected by our
hazard pair. On the other hand, if a flag value of 1 is found, we can simply
follow the reference in the bucket entry as a way to reach the next hash level
and continue the traversal. Similarly, if we find a tag value greater than HL+ 1,
we can be sure to find the next hash level in the bucket entry of the last hash
node HN seen. This scheme grants us a memory bound, which depends on the
number of threads, hash levels and threshold values, while requiring a number
of atomic writes per operation very close to temporal order schemes (bounded
by the maximum number of levels).

References

1. Areias, M., Rocha, R.: Towards a Lock-Free, Fixed Size and Persistent Hash Map
Design. In: International Symposium on Computer Architecture and High Perfor-
mance Computing Applications and Technologies. pp. 145–152. IEEE (2017)

2. Fraser, K.: Practical Lock-Freedom. Tech. Rep. UCAM-CL-TR-579, University of
Cambridge, Computer Laboratory (2004)

3. Hart, T.E., McKenney, P.E., Brown, A.D., Walpole, J.: Performance of Memory
Reclamation for Lockless Synchronization. Journal of Parallel and Distributed Com-
puting 67(12), 1270–1285 (2007)

4. Michael, M.M.: Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects.
IEEE Transactions on Parallel and Distributed Systems 15(6), 491–504 (2004)


