
A Lock-Free Coalescing-Capable Mechanism for
Memory Management

Ricardo Leite
CRACS & INESC TEC and Faculty of Sciences

University of Porto
Portugal

rleite@dcc.fc.up.pt

Ricardo Rocha
CRACS & INESC TEC and Faculty of Sciences

University of Porto
Portugal

ricroc@dcc.fc.up.pt

Abstract
One common characteristic among current lock-free mem-
ory allocators is that they rely on the operating system to
manage memory since they lack a lower-level mechanism
capable of splitting and coalescing blocks of memory. In this
paper, we discuss this problem and we propose a generic
scheme for an efficient lock-free best-fit coalescing-capable
mechanism that is able of satisfying memory allocation re-
quests with desirable low fragmentation characteristics.

CCSConcepts • Software and its engineering→Mem-
ory management; Allocation / deallocation strategies.

Keywords Lock-Freedom, Memory Management, Alloca-
tion Mechanisms, Implementation, Evaluation.
ACM Reference Format:
Ricardo Leite and Ricardo Rocha. 2019. A Lock-Free Coalescing-
Capable Mechanism for Memory Management. In Proceedings of
the 2019 ACM SIGPLAN International Symposium on Memory Man-
agement (ISMM ’19), June 23, 2019, Phoenix, AZ, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3315573.3329982

1 Introduction
Memory allocation is a key component of most applications.
Modern memory allocators are multi-layered pieces of soft-
ware with demanding throughput and latency requirements.
To meet these requirements, most of the layers in modern
memory allocators are some form of intermediate cache
services used to quickly respond to allocation and dealloca-
tion requests. Some examples are allocators based on thread-
specific caches [5], arenas [4], slabs [2] or quick-lists [8].
However, at the lowest-level, all allocators require a com-
ponent capable of managing memory – that is, capable of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ISMM ’19, June 23, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6722-6/19/06. . . $15.00
https://doi.org/10.1145/3315573.3329982

reusing memory that was once a block of some size to al-
locate another block of a different size. This task can be
logically achieved with a component capable of splitting and
coalescing blocks of memory (often blocks that are multiples
of pages). Splitting is the act of dividing larger blocks of
memory to fulfill smaller allocation requests. Coalescing is
the act of joining adjacent free blocks into a single larger
free block of memory. Splitting is done so that more memory
remains available for future allocations. Coalescing is done
so that future requests for larger blocks of memory can be
fulfilled.
Several coalescing-capable mechanisms have been pro-

posed in the past [23]. Among these are buddy systems,
segregated fits and many forms of sequential fits (first-fit,
next-fit, best-fit, etc). All of these mechanisms have been
developed in the context of sequential execution, with a fo-
cus on reduced memory usage rather than memory request
throughput or latency. As standalone memory allocators,
these mechanisms have fallen out of favor and have been
gradually replaced by concurrent memory allocators, with
designs that increasingly use several layers. As a result, these
mechanisms turned ineffective when used standalone, es-
pecially in a modern context where memory is cheap and
plentiful and hardware has higher core counts. They are how-
ever still used as the lower-level mechanisms that provide
memory for the higher-level cache services.

Modern memory allocators need to operate in concurrent
environments. They thus need to employ synchronization
primitives in order to handle concurrent memory allocation
and deallocation requests. Nowadays, the most commonly
used memory allocators are lock-based [4, 5, 7]. However,
there have been some proposals for lock-free memory alloca-
tors [6, 14, 19, 22].

Lock-freedom is a desirable property for concurrent algo-
rithms, as it guarantees system-wide progress whenever a
thread executes some finite amount of steps, whether by the
thread itself or by some other thread in the process [10]. This
progress guarantee is by far the most important advantage
of lock-free synchronization and it protects the memory allo-
cator (and therefore the running application) from reaching
a complete halt even in the presence of a subpar operating
system scheduler, or when a very high number of running

https://doi.org/10.1145/3315573.3329982
https://doi.org/10.1145/3315573.3329982

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Ricardo Leite and Ricardo Rocha

threads exist when comparing to machine cores. By defini-
tion, lock-free algorithms use no locks and do not obtain
mutual exclusive access to a resource at any point. They
are therefore immune to deadlocks and livelocks. Without
locks, priority inversion and delays due to preemption dur-
ing locking cannot occur, and unexpected thread termination
is also not problematic. Instead of locks, lock-free algorithms
use atomic instructions to guarantee consistency in concur-
rent environments. The most relevant atomic instruction is
the CAS (Compare-and-Swap) instruction, which is widely
supported in modern architectures.

One common characteristic among all proposed lock-free
memory allocators is that they rely on the operating system
to manage memory. An example of this is the allocation and
deallocation of superblocks. Superblocks are continuous sets
of pages that contains equal-sized blocks. Blocks of different
sizes necessarily belong to different superblocks. In order for
memory that belongs to a block B1 of size S1 to be used for
a block B2 of size S2, the superblock that contains B1 must
be freed back to the operating system, so that a superblock
that contains blocks of size S2 can be allocated. The oper-
ating system is thus essential for the reuse of memory, and
responsible of managing superblocks so that the rest of the al-
locator can function. Current proposals of lock-free memory
allocators do not possess a lower-level coalescing-capable
component able to take over this task, and are thus funda-
mentally unable of functioning in a environment where no
operating system exists, or where the operating system only
provides a single region of memory that has to be managed.
On the other hand, modern lock-based memory allocators,
such as ptmalloc2 [7], Jemalloc [4] and TCMalloc [5], all
feature a coalescing-capable lower-level component. This
has a number of advantages: (i) performance benefits, as less
interaction with the operating system is required (usually
through the use of the mmap() and munmap() system calls
that are often prohibitively expensive); and (ii) practical im-
plications, since this enables these memory allocators to be
able to operate in the absence of an operating system, which
can be important for their usage, for example, in embedded
systems or as part of the operating system itself. In prac-
tice, a coalescing-capable lower-level component is used to
manage blocks that are multiples of pages.
Remarkably, there is little research on lock-free versions

of coalescing-capable mechanisms. The first design of a lock-
free mechanism that jointly supports allocation, deallocation
and coalescing operations is the recent work by Marotta
et al. [16, 17], which proposes a lock-free binary buddy sys-
tem named NBBS. However, the hierarchical structure that
buddy systems impose is known to restrict the way in which
coalescing can be performed and to cause high fragmentation
in practice [11].
In this work, we propose a generic scheme for a lock-

free best-fit coalescing-capable mechanism that supports
lock-free splitting and coalescing of blocks with arbitrary

sizes, and is equivalent to an address-ordered best-fit mecha-
nism [23], which has desirable low fragmentation character-
istics [24]. Our experiments, comparing the performance and
scalability of our proposal against NBBS and the operating
system, show that our proposal obtains the best results when
using standard benchmarks commonly used in the literature,
especially as the number of threads increases. We have mod-
ified these standard benchmarks to allocate/deallocate pages,
rather than byte-sized blocks.
To the best of our knowledge, this is the first design of a

generic lock-free coalescing-capable mechanism. Our mech-
anism does not put restrictions on how coalescing can be
performed nor cause internal fragmentation due to the use
of size classes. Ultimately, our aim is for our proposal to
be used as a lower-level mechanism for lock-free memory
allocators. In general, we argue that a lock-free coalescing-
capable mechanism has value in the context of user-space
lock-free memory allocators, allowing them to manage mem-
ory without the assistance of the operating system and thus
improve performance by potentially reducing the number of
system calls. A fully lock-free coalescing mechanism would
furthermore allow practical usage of lock-free allocation in
embedded systems and in environments where a single re-
gion of memory has to be managed. Moreover, we point out
some drawbacks in our proposal, and leave it clear that there
exists room for improvement in the subject of lock-free mem-
ory management. Among these drawbacks are the need for a
secondary memory allocator in order to dynamically allocate
nodes for internal data structures, and cases in which coa-
lescing and allocation may fail due to temporary ownership
of blocks. Due to these drawbacks, some assumptions are
needed in order for our design to be lock-free.

The remainder of the paper is organized as follows. First,
we discuss related work and present relevant background.
Next, we describe the key concepts, support data structures,
algorithms and open problems of our proposal. We then
show an experimental analysis of our proposal. We end by
outlining conclusions and discussing future work directions.

2 Related Work
We distinguish memory management from memory allo-
cation, as memory allocation is often an efficient caching
problem, especially as approached in the last decade, while
memory management requires the capability to split and
coalesce blocks of memory.

To be able to coalesce blocks, a coalescing-capable mecha-
nism has to store information about what blocks are neigh-
bors and whether those blocks are free and thus available
for coalescing. Buddy systems [21], which impose a strict
hierarchy on the address space, can quickly calculate the
corresponding buddy block through a simple address com-
putation, and thus only store a single bit of information per
block to determine whether the buddy is free or is being used.

A Lock Free Coalescing-Capable Mechanism ISMM ’19, June 23, 2019, Phoenix, AZ, USA

A more widely adopted mechanism is the usage of boundary
tags [12] as originally proposed by Knuth. Boundary tags
support splitting and coalescing of blocks with arbitrary sizes
but are more memory-intensive, as they require having a
header and a footer field per block containing information to
track prior and next blocks. Since our proposal is also based
on the concept of boundary tags, we discuss coalescing with
boundary tags in more detail in the next section.
Regarding lock-free coalescing mechanisms, to the best

of our knowledge, the only available design is a lock-free
binary buddy system named NBBS [16, 17]. Classic binary
buddy systems use a segregated fits mechanism containing
one free list per each possible power of two size class of
blocks. Blocks being coalesced are first removed from the
corresponding free lists and the resulting coalesced block is
then added. Instead of extending the segregated fits mecha-
nism to support lock-freedom, NBBS uses a single statically
allocated array containing a entry node for every possible
block in the buddy system. In this array, nodes are organized
by levels – starting with one node in level 1 for the single
block of size 2N , two nodes in level 2 for the 2 distinct blocks
of size 2N−1, and so forth – in the case of an address space of
size 2N and a minimum block size of 1, this equals to 2N+1−1
nodes in total.

In NBBS, each node corresponding to a non-leaf block (i.e.,
a block larger than the minimum size) has two child nodes
that correspond to the two buddy blocks that each make up
half of the block. Each node contains a number of flags with
information regarding whether the block is free or occupied,
and whether each child block is free, occupied or undergoing
coalescing. An allocation is performed by linearly traversing
the nodes fitting the level corresponding to the requested
size. If a free node is found, it is marked as occupied, and then
all ancestor nodes are also marked as having an occupied
child. In case an occupied ancestor is found, all the markings
are undone and the searching for a valid node continues. In
the deallocation case, ancestor nodes are marked as having
a child that is undergoing coalescing. After all ancestors
are marked, the node is marked as free, and coalescing and
occupied child flags are removed from ancestors.

In Sec. 5, we show experimental results comparing NBBS
against our proposal.

3 Coalescing with Boundary Tags
Consider that we have a block that has been deallocated and
that we want to coalesce it with its neighbors. To perform
coalescing, we need block information allowing to locate its
neighbors and their state. This section discusses how generic
coalescing can be performed with boundary tags [12].

Basics
With boundary tags, all blocks have an associated header
and footer. The header contains information about the block,

namely its size and its state (whether it is currently allocated
or free). The footer contains a back pointer to the header of
the same block that it belongs to.1 Figure 1 illustrates this
block information.

Figure 1. Block information needed for coalescing

Every block B has two neighbors that it might be able to
coalesce with, the one that precedes B in memory and the
one that follows B in memory. As Fig. 2 shows, given a block
B, we can locate the previous block P by reading the memory
that immediately precedes B’s header, which corresponds
to P ’s footer, and then follow the footer’s back pointer to
locate P ’s header, where state information is stored. Similarly,
we can locate the next block N by using B’s size to locate
N ’s header. We name the process of block coalescing with
the previous and the next block, respectively, as backward
coalescing and forward coalescing.

(a) Locating the header of the previous block

(b) Locating the header of the next block

Figure 2. Locating the previous and next blocks

Once we have located a block, we can begin to attempt to
coalesce. With boundary tags, that corresponds to building
a new block with the respective header and footer. Figure 3
shows an example of backward coalescing where a block B
is being coalesced with a previous block P to form a new
coalesced block C . In such case, P ’s header becomes C’s
header, B’s footer becomes C’s footer, and P ’s footer and B’s
header become irrelevant.
Analogously, in forward coalescing, where a block B co-

alesces with a next block N to form a new coalesced block
C , B’s header becomes C’s header, N ’s footer becomes C’s
footer, and B’s footer and N ’s header become irrelevant. In
both backward and forward coalescing,C’s header and footer
have to be updated and adjusted to C’s size, thus storing dif-
ferent information than the original blocks.
1Note that this back pointer can be also implemented using the block size,
as in the case of the header.

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Ricardo Leite and Ricardo Rocha

(a) Before coalescing

(b) After coalescing

Figure 3. Backward coalescing

Lock-Freedom
Performing coalescing with boundary tags in a sequential
environment is trivial. In a multithreaded environment, it is
similarly trivial if a synchronization lock is used to serialize
concurrent coalescing operations. Current state-of-the-art
lock-based memory allocators perform concurrent coalesc-
ing by defining multiple regions, each with a single lock.

Compared to lock-based approaches, lock-free coalescing
presents a number of challenges. First, with boundary tags,
we have two distinct pieces of information – the header and
the footer of each block – that ideally would have to be kept
coherent, but which cannot be ensured if using single CAS
instructions. Second, we cannot guarantee that, at some time
interval, no other thread changes the state of a neighbor
block that we are trying to coalesce with. Third, the region
of memory being managed is finite, thus not all blocks have
neighbors in both directions. Furthermore, since such region
might increase and decrease over time, when reading the
memory that precedes/follows a given block, we might end
reading invalid memory that we are not managing. In a se-
quential or serialized multithreaded execution, it is trivial
to check the limits of the region of memory being managed.
However, in a lock-free coalescing mechanism, nothing en-
sures that such limits do not change between the moment
at which we read them and the moment at which we read
the memory that precedes/follows a block, thus potentially
reading invalid memory.

To better understand the difficulty of lock-free coalescing,
consider the example in Fig. 4 where two blocks B1 and
B3 are deallocated simultaneously and attempt to coalesce
with a free block B2, which sits between B1 and B3. With
boundary tags, coalescing involves locating the header of the
neighbor block, checking whether the neighbor block is free
for coalescing, and atomically updating the header, then the
footer, for the new coalesced block. As seen in Fig. 4a, both B1
and B3 can reach B2’s header to attempt coalescing. However,
because building a new coalesced block is a two-step process,
B1 can locate B2, begin coalescing, update the header for the
new coalesced block C1 (which is B1’s header), and then B3
can locate B2 (through B2’s footer) and successfully coalesce

and create block C2 before B1 has a chance to update B2’s
footer. The result of this simultaneous coalescing are two
incorrect overlapping blocks C1 and C2, as shown in Fig. 4b.

(a) Blocks B1 and B3 simultaneously locate block B2 to at-
tempt coalescing

(b) Blocks B1 and B3 can both succeed, with a specific order
of operations, creating blocks C1 and C2, which overlap

Figure 4. Simultaneous coalescing with a shared neighbor

Note that, so far, we have only discussed how coalescing
is done once we have a block that has been deallocated and
that we wish to coalesce with its neighbors. We have not
discussed how free blocks are tracked nor how blocks are al-
located in the first place. The use of additional data structures,
needed to find and allocate blocks, naturally complicates the
goal of designing a lock-free coalescing mechanism.

4 Our Proposal
This section presents and discusses the design and imple-
mentation issues of our lock-free coalescing proposal.

4.1 Support Data Structures
Our proposal for a lock-free best-fit mechanism consists of
two logical data structures: (i) the mapper, which represents
the physical layout in memory; and (ii) the controller, an
ordered set-like data structure used to store free blocks in a
best-fit fashion. All blocks include a header and a footer, to be
managed by the mapper. Both the header and the footer sim-
ply store the corresponding block’s size. Neither the header
nor the footer contain information on whether the block
is allocated or free. Instead, the controller is the authority
used to assert whether a block is allocated or free. The con-
troller is simultaneously used to satisfy allocations, but also
to determine whether coalescing can be done. Before using a
block for coalescing or to fulfill an allocation, the controller
is used to ensure that a single thread obtains the block’s
ownership. Indeed, the main insight of our proposal is that

A Lock Free Coalescing-Capable Mechanism ISMM ’19, June 23, 2019, Phoenix, AZ, USA

the data structure used to obtain free blocks can also be the
one used to coordinate coalescing. Otherwise, if state is kept
elsewhere (i.e., in the header, in the footer or in other auxil-
iary data structure), the mechanism to determine whether
a block is free for coalescing inevitably becomes unable to
keep both the data structure and the referred state coherent
with each other when coalescing occurs.

Controller
The controller is an indexing data structure that manages
free blocks. In order to implement best-fit, it sorts blocks by
size, and blocks with the same size by address. In our current
implementation, the controller is implemented using a lock-
free binary tree proposed by Natarajan and Mittal [20]. A
block is represented by its starting address and by its size.
Both the starting address and size are multiples of the block
unit being managed, e.g., to handle page block allocations, a
1-page block unit is used. The operations supported by the
controller are shown next in Listing 1.

Listing 1. Controller operations
1 s t ruc t block {
2 void* addr; // block's starting address
3 s i z e _ t size; // block's size
4 };
5
6 // add block to controller
7 void ControllerAddBlock(block b);
8
9 // try to remove block from controller
10 bool ControllerRemoveBlock(block b);
11
12 // get block from controller given a size
13 block ControllerGetBlock(s i z e _ t size);

The controller is implemented as a lock-free indexed data
structure. Because it relies on the lock-freedom of the used
data structure, we next describe in more detail the expected
behavior and requirements of each operation, so that our
coalescing scheme works as intended. The ControllerAd-
dBlock() routine adds a block to the controller that must
be available for removal when the routine returns. It can be
assumed that the given block does not yet exist in the con-
troller. The ControllerRemoveBlock() routine removes a
given block from the controller, if it exists, and returns true.
Otherwise, it returns false. The removal must be complete
when the routine returns, such that the same block can be
immediately added back to the controller. The Controller-
GetBlock() routine removes and returns the least-ordered
block from the controller that satisfies the requested size.
If no block is found, it returns an invalid block starting at
address 0 and with size 0. This routine has the same removal
requirements as ControllerRemoveBlock().

The routinesControllerAddBlock() andControllerRe-
moveBlock() map directly into the add and remove oper-
ations of any lock-free data structure. The ControllerGet-
Block() routine is specific to our application and does not

map directly into the usual operations available in lock-free
data structures. We have extended the lock-free binary tree
proposed byNatarajan andMittal [20] to support it. In our im-
plementation, the ControllerGetBlock() routine traverses
the tree until it finds a block satisfying the requested size.
If a block is not found in a traversal, the requested size is
increased to a size found in one of the internal routing nodes
of the tree. The traversal is then repeated from the beginning
until the size exceeds the size of the largest available block
or a suitable block is found.

Mapper
The mapper represents the physical layout in memory, and
allows a block to find its neighbors in order to perform coa-
lescing. Each block logically has a header and a footer that
can be accessed by neighboring blocks. However, to allow
the mechanism to manage varying amounts of memory and
to avoid invalid accesses to memory, as discussed earlier, a
block does not physically contain its header and its footer.
In essence, the header and the footer are persistent objects
belonging to the mapper, which are reused as blocks are
being split and coalesced. The operations that the mapper
needs to support are shown next in Listing 2.

Listing 2. Mapper operations
1 s t ruc t header { s i z e _ t size; };
2 s t ruc t footer { s i z e _ t size; };
3
4 // get block from mapper given an address
5 block MapperGetBlock(void* addr) {
6 header h = GetHeader(addr);
7 block b = {addr , h.size};
8 return b;
9 }
10
11 // get block before a given block
12 block MapperGetPreviousBlock(block b) {
13 footer f = GetFooter(b.addr - 1);
14 block p = {b.addr - f.size , f.size};
15 return p;
16 }
17
18 // get block after a given block
19 block MapperGetNextBlock(block b) {
20 header h = GetHeader(b.addr + b.size);
21 block n = {b.addr + b.size , h.size};
22 return n;
23 }
24
25 // update mapper with a given block
26 void MapperUpdate(block b) {
27 UpdateHeader(b.addr , b.size);
28 UpdateFooter(b.addr + b.size - 1, b.size);
29 }

For all the addresses within the same block unit, the Get-
Header() and GetFooter() routines return the same cor-
responding header and footer, respectively. The same idea
applies to the first argument of the UpdateHeader() and
UpdateFooter() routines. Both the header and the footer
are small enough to fit inside a single processor word, and
thus they can be atomically updated through CAS atomic

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Ricardo Leite and Ricardo Rocha

operations. Therefore, both UpdateHeader() and Update-
Footer() routines are equivalent to an atomic write opera-
tion, while GetHeader() and GetFooter() are equivalent to
atomic reads.
A possible implementation for the mapper is to use an

array of uncommitted memory with two processor words
(header and footer) per block unit (i.e., per page if assuming
a 1-page block unit). In fact, in our implementation this
is further optimized to one processor word per page. An
alternative implementation for the mapper would be to use
a lock-free radix-tree.

4.2 High-level Allocation and Deallocation
Next, we show how the high-level allocation and deallocation
routines interact with the mapper and the controller.

Listing 3 shows the high-level allocation routine. It starts
by trying to get a blockwith sufficient size from the controller
(line 2) and, if no adequate block is found, more memory
has to be obtained from the operating system and a block
constructed with it.2 Otherwise, if a block is found, it can
be used to fulfill the memory request. To eliminate internal
fragmentation, the block is split if it is larger than what has
been requested (lines 6–17). Splitting consists of updating
the header and the footer for the original and the remaining
free block, and then adding the remaining free block to the
controller, so that it may be used to fulfill further memory
allocation requests or for coalescing.

Listing 3. High-level allocation
1 void* Alloc(s i z e _ t size) {
2 block b = ControllerGetBlock(size);
3 i f (b.addr == NULL) { // no block was found
4 ... // obtain more memory or fail
5 }
6 i f (b.size > size) { // too large , split
7 // at this point the block is owned by us,
8 // so it can be manipulated safely
9 block s = {b.addr , size};
10 MapperUpdate(s);
11 // remaining free block
12 block r = {b.addr + size , b.size - size};
13 MapperUpdate(r);
14 // add remaining free block to controller ,
15 // so that it becomes available
16 ControllerAddBlock(r);
17 }
18 return b.addr;
19 }

Listing 4 shows the high-level deallocation routine. Deal-
location starts by finding the block corresponding to the
given address (line 2). Then, since the block is owned by us,
we can attempt to coalesce this block with both neighbors
(lines 4 and 6). Coalescing is further detailed next. After we
have attempted to coalesce, we can add the resulting block
to the controller (line 8).
2In environments where a single region of memory has to be managed and
no more memory exists, the execution simply fails accordingly to some
pre-defined errors.

Listing 4. High-level deallocation
1 void Dealloc(void* addr) {
2 block b = MapperGetBlock(addr);
3 // attempt coalescing with previous block
4 b = CoalesceBackward(b);
5 // attempt coalescing with next block
6 b = CoalesceForward(b);
7 // add (coalesced) block to controller
8 ControllerAddBlock(b);
9 }

4.3 Coalescing
Coalescing only occurs when a block is in the process of be-
ing deallocated, which means that the block is not yet stored
in the controller. To coalesce a deallocated block, we have
to locate its neighbors with the mapper and then attempt to
remove each of those neighbors from the controller. Remem-
ber that such removal from the controller is only possible
if the neighbors blocks are free blocks. If we can remove a
neighbor block, we have acquired ownership of it, and thus
we can use it for coalescing. Both backward and forward
coalescing operate in the same manner, by attempting to re-
move the previous/next block from the controller, and then
performing coalescing.
Listing 5 shows the backward coalescing routine. Back-

ward coalescing begins by locating the previous block in the
mapper (line 3) and then by attempting to remove it from
the controller (line 4). Note that the controller stores not
only block sizes or addresses, but both. This is important, as
we could otherwise be removing a block that starts at the
previous block’s address, but has a different size (thus not
sharing a boundary with our block). If the removal of the
previous block is successful, we can perform coalescing and
update the corresponding header and footer in the mapper
(line 8).

Listing 5. Backward coalescing
1 block CoalesceBackward(block b) {
2 // get previous block
3 block p = MapperGetPreviousBlock(b);
4 i f (ControllerRemoveBlock(p)) {
5 // previous block is free , can coalesce
6 b = {p.addr , p.size + b.size};
7 // update mapper to reflect change
8 MapperUpdate(b);
9 }
10 return b;
11 }

Listing 6 shows the forward coalescing routine. Forward
coalescing follows the same pattern as backward coalescing.
The key difference is that, instead of locating the previous
block, it begins by locating the next block in the mapper
(line 3). Then, it also attempts to remove the next block
from the controller (line 4) and, if successful, it performs
coalescing and updates the corresponding header and footer
in the mapper (line 8).

A Lock Free Coalescing-Capable Mechanism ISMM ’19, June 23, 2019, Phoenix, AZ, USA

Listing 6. Forward coalescing
1 block CoalesceForward(block b) {
2 // get next block
3 block n = MapperGetNextBlock(b);
4 i f (ControllerRemoveBlock(n)) {
5 // next block is free , can coalesce
6 b = {b.addr , b.size + n.size};
7 // update mapper to reflect change
8 MapperUpdate(b);
9 }
10 return b;
11 }

Note that the high-level allocation and deallocation rou-
tines, and therefore the backward and forward coalescing
routines, are trivially lock-free if the controller is imple-
mented with a lock-free data structure.

4.4 Open Problems
There are some caveats in our current proposal and imple-
mentation that we would like to point out.

A first problem is that our design cannot guarantee that co-
alescing always occur. Consider an example with two neigh-
boring blocks, B1 and B2, owned by threads T1 and T2, re-
spectively. If T1 and T2 deallocate B1 and B2 simultaneously,
T1 will try to remove B2 from the controller, and T2 will
try to remove T1, but both will fail. Then T1 will add B1 to
the controller and T2 will add B2. We thus end up with two
adjacent blocks, B1 and B2, which are free but not coalesced.
This can be mitigated by performing recursive coalescing,
e.g., continue doing backward and forward coalescing while
there are adjacent free blocks. In the context of the example,
that ensures that both B1 and B2 will be coalesced when an-
other neighbor block is deallocated and attempts to coalesce.
The failure of coalescing reveals an interesting property – as
contention increases and more threads operate on the same
space, the more likely it is that coalescing fails. In Sec. 5, we
experimentally measure how often coalescing fails.
Another caveat is that the controller is implemented by

a lock-free data structure that likely uses nodes that must
be dynamically allocated. In particular, the data structure
we have chosen for our implementation [20] needs dynamic
allocation of nodes, and furthermore, is vulnerable to the
ABA problem [3] without the use of a memory reclamation
method such as epochs or hazard pointers [9, 18]. Dynami-
cally allocating memory for a data structure inside a memory
allocator is naturally tricky. It requires our design to assume
the existence of a secondary memory allocator capable of al-
locating equal-sized nodes that must also be lock-free. While
the allocation of equal-sized nodes is an easier problem than
general memory allocation, it complicates the implementa-
tion and practicality of our proposal. For our design to be
used as a lower-level allocator in a production memory al-
locator, such as TCMalloc [5] or Jemalloc [4], the controller
component would ideally not need to dynamically allocate

memory, and thus use a completely static data structure. We
leave it as further work whether there is a lock-free data
structure that is better suited to this context.
Finally, in order to perform splitting and coalescing, our

proposal requires that threads acquire temporarily owner-
ship of the blocks involved in such operations. While this is
what allows splitting and coalescing to be performed in the
first place, it can also cause allocation requests from other
threads to fail, if they could not use the free space in the
blocks that have been temporarily acquired. Consider a case
in which the controller contains a single block B1 that has
10 pages, and threads T1 and T2 that are simultaneously at-
tempting to allocate 1-page blocks. In order for T1 to allocate
a 1-page block, it must remove B1 from the controller (thus
acquiring temporary ownership), and then split B1 and add
the remainder block B2 back to the controller (thus releasing
temporary ownership). While T1 has temporary ownership,
T2 will be unable remove any block from the controller and
thus unable to allocate another 1-page block. Indeed, an un-
bounded number of allocations may fail until B2 is added
back to the controller, which compromises our proposal’s
ability to allocate in a lock-free manner, especially without
assuming another underlying allocator that can satisfy failed
allocation requests (i.e., the OS).
A possible workaround to attenuate this problem is to

set a maximum block size, such that, coalescing is simply
not performed after a block grows sufficiently large. The
controller will therefore have a larger number of blocks, of
which, each thread may temporarily hold at most one. Thus,
the use of our mechanism is unsuitable in environments
without an OS, but otherwise viable in the context of a lock-
free user-space memory allocator.

5 Experimental Analysis
The environment for our experiments was a dedicated x86-
64 multiprocessor system with four AMD SixCore Opteron
TM 8425 HE @ 2.1 GHz (24 cores in total) and 128 GBytes
of main memory, running Ubuntu 16.04 with kernel 4.4.0-
141 64 bits. To measure the performance of our mechanism,
we used standard benchmarks commonly used in the litera-
ture [1, 13, 15, 19], namely the Linux scalability, Threadtest
and Larson benchmarks. Although these benchmarks are
used to evaluate memory allocators, we believe that they are
also a good fit to be used to evaluate a coalescing-capable
mechanism. We have adapted these benchmarks to request
pages rather than smaller byte-sized blocks.

Benchmarks
Linux scalability is a benchmark used to measure memory al-
locator latency and scalability. It launches a given number of
independent threads, each of which runs a batch of 10 thou-
sand allocation requests allocating 1-page blocks followed
by a batch of identical deallocation requests.

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Ricardo Leite and Ricardo Rocha

Threadtest is similar to Linux scalability with a slightly
different allocation profile. It also launches a given number
of independent threads, each of which runs batches of 100
allocation requests allocating 1-page blocks followed by 100
deallocation requests. Each thread runs 100 batches in total.
Larson simulates the behavior of a long-running server

process. It repeatedly creates threads that work on a slice of
a shared array. Each thread runs a batch of 100 allocation re-
quests between 1 and 128 pages and the resulting allocations
are stored in random slots in the corresponding slice of the
shared array (each thread’s slice includes 100 slots). When a
slot is occupied, a deallocation request is first done to release
it. At any given time, there is a maximum limit of threads
running simultaneously, i.e., only one thread has access to
a given slice of the shared array, and slices are recycled as
threads are destroyed and created. This benchmark runs for
a total of 5 seconds, and measures number of allocations
performed per second rather than execution time.

We have changed these benchmarks such that they do not
touch the pages being provided in the allocation requests.
This eliminates any overhead due to page faults and phys-
ical memory allocation, which would be a constant factor
regardless of the mechanism being used.

Performance Evaluation
To put our proposal in perspective, we compared our mecha-
nism against the NBBS3 lock-free buddy system and against
the operating system. We used our mechanism with and
without recursive coalescing. Unlike NBBS, our implemen-
tation needs dynamic allocation of nodes for the lock-free
data structure used in the controller. To evaluate the oper-
ating system, we implemented a lower-level allocator that
uses the mmap() and munmap() system calls to allocate and
deallocate pages.

Figures 5 to 7 present experimental results for the bench-
marks described above when using the different mechanisms
with configurations from 1 to 32 threads (note that the hard-
ware used only supports 24 native threads). The results pre-
sented are an average of 5 runs.

Figure 5 shows the execution time, in seconds (log scale),
for running the Linux scalability benchmark. The results
show that our mechanism obtains the best results, with a
performance tendency comparable to the operating system,
as the number of threads increases. We note that NBBS per-
forms quite badly, even with a single thread, and suffers from
massive performance degradation, as the number of threads
increases. Upon inspection of NBBS’s source code, we ob-
served that the core allocation algorithm requires traversing
all allocated blocks in cases where blocks are allocated se-
quentially without interleaving deallocations. In essence,
this case leads to a O(n2) expected runtime, where n is the
number of allocated blocks. We highlight that these results

3Downloaded from https://github.com/HPDCS/NBBS in January 4, 2019.

differ from the original paper in [16]. We have found that
the Linux-scalability benchmark [15] was not correctly im-
plemented by the authors, and the results shown are of a
different allocation pattern – n allocation/deallocation pairs,
rather than a batch of n allocations followed by a batch of n
deallocations, as in the original Linux-scalability benchmark.

Figure 5. Execution time results, in seconds (log scale), com-
paring our mechanism, with (COA-R) and without (COA)
recursive coalescing, the lock-free buddy system (NBBS) and
the operating system (SYS) for the Linux scalability bench-
mark with configurations from 1 to 32 threads

Figure 6. Execution time results, in seconds (log scale), com-
paring our mechanism, with (COA-R) and without (COA)
recursive coalescing, the lock-free buddy system (NBBS) and
the operating system (SYS) for the Threadtest benchmark
with configurations from 1 to 32 threads

Figure 6 shows the execution time, in seconds (log scale),
for running the Threadtest benchmark. Similarly to the previ-
ous benchmark, our mechanism performs quite nicely, with
execution times one order of magnitude better than the oper-
ating system and two orders of magnitude better than NBBS.
Similarly to the previous benchmark, all mechanisms show a
performance degradation as the number of threads increases.

https://github.com/HPDCS/NBBS

A Lock Free Coalescing-Capable Mechanism ISMM ’19, June 23, 2019, Phoenix, AZ, USA

Figure 7. Throughput results, in seconds (log scale), com-
paring our mechanism, with (COA-R) and without (COA)
recursive coalescing, the lock-free buddy system (NBBS) and
the operating system (SYS) for the Larson benchmark with
configurations from 1 to 32 threads

Figure 7 shows the number of operations per second (log
scale) for running the Larson benchmark. Note that, un-
like previous figures, this benchmark measures allocation
throughput, and thus higher Y-axis values are better. Results
show that our mechanism is capable of consistently handling
higher allocation throughput as the number of threads in-
creases, which is not the case with NBBS and the operating
system. This is a highly desirable behavior in a coalescing-
capable mechanism. This can be explained by the allocation
pattern in the Larson benchmark, where allocations of differ-
ent sizes are made, which leads to searches and modifications
in different parts of the lock-free tree (controller) used in
our implementation, thus leading to decreased contention
points.

In all experiments, the results obtained for our mechanism
with andwithout recursive coalescing are very similar, which
shows that the cost of recursive coalescing is negligible for
these benchmarks.

Coalescing Failures
Section 4.4 describes the problem of coalescing failure in
cases where two threads deallocating neighboring blocks
attempt to perform coalescing simultaneously. To measure
the effect of this problem, we have designed a benchmark to
test how frequently coalescing failures occur in an extreme
high-throughput scenario where all threads are simultane-
ously deallocating blocks. Prior to launching any threads, the
benchmark configures our coalescing mechanism to man-
age a single region of memory, corresponding to a single
block in the controller. This region contains enough mem-
ory to include a fixed number B of allocated blocks to be
assigned to each of the T threads being considered (for a
total of T ∗ B blocks). These blocks are randomly distributed
to the threads. Then, T threads are launched simultaneously,
and each thread deallocates the B blocks assigned to it. At

the end, the number of remaining blocks in the controller
dictates the number of coalescing operations that have failed
due to simultaneous coalescing. If a single block remains in
the controller, that means that no coalescing failure occurred.

Figure 8 shows the frequency of coalescing failures using
our mechanism with recursive coalescing turned off for a
varying number of threads and a varying number of blocks
assigned to each thread. The results presented are an average
of 1000 runs.

Figure 8. Failed coalescing attempts when using our mech-
anism without recursive coalescing in a high-throughput
scenario with configurations from 2 to 32 threads

In general, we can observe that the number of coalescing
failures increases as the number of blocks to be deallocated
increases. However, the coalescing failures only occur in a
very small percentage of all deallocation operations, such
that, the total number of coalescing failures is closer to the
number of threads itself. For the experiments with configu-
rations between 500 and 4000 blocks allocated and with 8,
12 and 16 threads, there is an higher amount of coalescing
failures, which can be explained by the fact that, for some
reason, there is higher contention in the deallocation of the
last blocks. Anyway, this benchmark shows that coalescing
failure is relatively infrequent, even in an extremely high-
throughput scenario, which is unrealistic to occur in practice.
We can then conclude that, in real-world scenarios, this type
of coalescing failure will rarely occur.

We also tested this benchmark using our mechanism with
recursive coalescing turned on and we observed that, on
average, the number of remaining blocks in the controller is
close to 1. Only in a very small fraction of the experiments,
the controller ends with 2 or 3 blocks maximum.

6 Conclusion
We have presented the first known design of a generic lock-
free coalescing-capable mechanism. Our mechanism is capa-
ble of splitting and coalescing blocks with arbitrary sizes, i.e.,
without inducing internal fragmentation, and is equivalent to
an address-ordered best-fit mechanism, which has desirable

ISMM ’19, June 23, 2019, Phoenix, AZ, USA Ricardo Leite and Ricardo Rocha

low fragmentation characteristics. We have described the
key concepts, design decisions, implementation difficulties
and challenges of our proposal.

Our experiments, comparing the performance and scalabil-
ity of our proposal against NBBS and the operating system,
show that our proposal obtains the best results when us-
ing standard benchmarks commonly used in the literature,
especially as the number of threads increases. We also ob-
served that coalescing failure is relatively infrequent, even
in extremely high-throughput scenarios.

Further work includes study whether there is a lock-free
data structure that is better suited for usage in our proposal
and the design of new schemes capable of attenuating or
solving the open problems described previously.

Acknowledgments
This work is financed by the ERDF (European Regional De-
velopment Fund) through the Operational Programme for
Competitiveness and Internationalisation – COMPETE 2020
Programme, and by National Funds through the Portuguese
funding agency – FCT (Portuguese Foundation for Science
and Technology), within projects UID/EEA/50014/2019 and
POCI-01-0145-FEDER-016844.

References
[1] Emery D Berger, Kathryn S McKinley, Robert D Blumofe, and Paul R

Wilson. 2000. Hoard: A Scalable Memory Allocator for Multithreaded
Applications. In ACM SIGARCH Computer Architecture News, Vol. 28.
ACM, 117–128.

[2] Jeff Bonwick. 1994. The Slab Allocator: An Object-Caching Kernel
Memory Allocator. In USENIX summer, Vol. 16. Boston, MA, USA.

[3] Damian Dechev, Peter Pirkelbauer, and Bjarne Stroustrup. 2010. Under-
standing and Effectively Preventing the ABA Problem in Descriptor-
based Lock-free Designs. In 13th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing.
IEEE, 185–192.

[4] Jason Evans. 2006. A scalable concurrent malloc (3) implementation
for FreeBSD. In BSDCan Conference.

[5] Sanjay Ghemawat and Paul Menage. 2009. TCMalloc: Thread-caching
malloc. http://goog-perftools.sourceforge.net/doc/tcmalloc.html (read
on June 14, 2018).

[6] Anders Gidenstam,Marina Papatriantafilou, and Philippas Tsigas. 2010.
NBmalloc: Allocating Memory in a Lock-Free Manner. Algorithmica
58, 2 (2010), 304–338.

[7] Wolfram Gloger. 2006. Ptmalloc. http://www.malloc.de/en (read on
June 14, 2018).

[8] Mel Gorman. 2004. Understanding the Linux Virtual Memory Manager.
Prentice Hall Upper Saddle River.

[9] Thomas EHart, Paul EMcKenney, Angela Demke Brown, and Jonathan
Walpole. 2007. Performance of memory reclamation for lockless syn-
chronization. J. Parallel and Distrib. Comput. 67, 12 (2007), 1270–1285.

[10] Maurice Herlihy and Nir Shavit. 2011. On the Nature of Progress. In
International Conference On Principles Of Distributed Systems. Springer,
313–328.

[11] Mark S Johnstone and Paul R Wilson. 1998. The Memory Fragmenta-
tion Problem: Solved?. In ACM SIGPLAN Notices, Vol. 34. ACM, 26–36.

[12] Donald E Knuth. 1997. The Art of Computer Programming. Vol. 3.
Pearson Education.

[13] Per-Åke Larson and Murali Krishnan. 1998. Memory Allocation for
Long-Running Server Applications. ACM SIGPLAN Notices 34, 3 (1998),
176–185.

[14] Ricardo Leite and Ricardo Rocha. 2018. LRMalloc: a Modern and Com-
petitive Lock-Free Dynamic Memory Allocator. In 13th International
Meeting on High Performance Computing for Computational Science
(VECPAR 2018).

[15] Chuck Lever and David Boreham. 2000. malloc() Performance in
a Multithreaded Linux Environment. In USENIX Annual Technical
Conference. USENIX, 301–311.

[16] Romolo Marotta, Mauro Ianni, Andrea Scarselli, Alessandro Pellegrini,
and Francesco Quaglia. 2018. A Non-blocking Buddy System for Scal-
able Memory Allocation onMulti-core Machines. CoRR abs/1804.03436
(2018).

[17] Romolo Marotta, Mauro Ianni, Andrea Scarselli, Alessandro Pellegrini,
and Francesco Quaglia. 2018. A Non-blocking Buddy System for
Scalable Memory Allocation on Multi-core Machines. In 2018 IEEE
International Conference on Cluster Computing. IEEE, 164–165.

[18] MagedMMichael. 2004. Hazard pointers: Safe memory reclamation for
lock-free objects. IEEE Transactions on Parallel & Distributed Systems
15, 6 (2004), 491–504.

[19] Maged M Michael. 2004. Scalable Lock-Free Dynamic Memory Alloca-
tion. ACM Sigplan Notices 39, 6 (2004), 35–46.

[20] Aravind Natarajan and Neeraj Mittal. 2014. Fast Concurrent Lock-
free Binary Search Trees. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, Vol. 49.
ACM, 317–328.

[21] James L. Peterson and Theodore A. Norman. 1977. Buddy Systems.
Commun. ACM 20, 6 (1977), 421–431.

[22] Sangmin Seo, Junghyun Kim, and Jaejin Lee. 2011. SFMalloc: A Lock-
Free and Mostly Synchronization-Free Dynamic Memory Allocator for
Manycores. In 2011 International Conference on Parallel Architectures
and Compilation Techniques. IEEE, 253–263.

[23] Paul R Wilson, Mark S Johnstone, Michael Neely, and David Boles.
1995. Dynamic Storage Allocation: A Survey and Critical Review. In
Memory Management. Springer, 1–116.

[24] Paul R Wilson, Mark S Johnstone, Michael Neely, and David Boles.
1995. Memory Allocation Policies Reconsidered. Technical Report. Tech-
nical report, University of Texas at Austin Department of Computer
Sciences.

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://www.malloc.de/en

	Abstract
	1 Introduction
	2 Related Work
	3 Coalescing with Boundary Tags
	4 Our Proposal
	4.1 Support Data Structures
	4.2 High-level Allocation and Deallocation
	4.3 Coalescing
	4.4 Open Problems

	5 Experimental Analysis
	6 Conclusion
	Acknowledgments
	References

