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Abstract. A hash map is elastic if it can expand and compress. Hash
maps expand in order to reduce collisions and compress in order to reduce
depth and memory usage. Starting from a particular elastic lock-free hash
map design, which implements expansion and compression in constant
time while maintaining the high throughput of lock-freedom, we focus
on solving the problem of memory reclamation outside garbage collected
environments without losing the lock-freedom property. We propose a
lock-free and safe memory reclamation method using hazard pointers
that is compatible with the compression mechanism of this data struc-
ture. Experiments show that our approach obtains results on par with
the best state-of-the-art memory reclamation methods, both in execution
time and memory footprint.

1 Introduction

Lock-free data structures [5] ensure that the suspension of one thread will not
prevent other threads from progressing, making them suitable for asynchronous
systems and for applications which demand low latency like real-time appli-
cations. With lock-free data structures the management of locks is unnecessary,
which prevents deadlocks, livelocks, and priority inversion [4]. Furthermore, with-
out locks, we can reduce the amount of context switches and waiting queues. In
particular, context switches force a processor pipeline to flush, reload cache en-
tries, save processor registers, and the operating system scheduler to execute.

Lock-free programming can make use of distinct synchronization primitives as
replacements to mutual exclusion. In particular, the single width CAS (compare-
and-swap) atomic instruction, available in most processors, is commonly used to
implement lock-free data structures. However, its usage introduces an important
problem known as the memory reclamation problem. In an environment without
garbage collection, we cannot directly free the memory of a concurrent object
since other threads could still hold a reference to it. A solution is to design a
mechanism to determine when an object can be reclaimed. We must, therefore,
be able to check if no thread holds a reference to the objects we want to free.

In this work, we focus on solving the problem of memory reclamation outside
garbage collected environments for an elastic lock-free hash trie map data struc-
ture, named LFHT [9]. We say that a hash map is elastic if it can expand and
compress. Otherwise, if it cannot compress, we call it static. Hash maps expand
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in order to reduce collisions and compress in order to reduce depth and mem-
ory usage. The LFHT data structure implements expansion and compression in
constant time, while maintaining the high throughput of lock-freedom. LFHT’s
original design was implemented for use under garbage collected environments.
More recently, Moreno et al. [10] proposed a novel memory reclamation method
for the LFHT data structure, named Hazard Hash and Level (HHL), that ex-
plores the characteristics of the LFHT structure in order to achieve efficient
memory reclamation with low and well-defined memory bounds. However, the
HHL method is not compatible with LFHT’s compression mechanism. In this
work, we propose a lock-free and safe memory reclamation method based on
hazard pointers [3] that is compatible with the compression mechanism of this
data structure. Experimental results show that our approach obtains results on
par with the HHL method, both in execution time and memory footprint.

The remainder of the paper is organized as follows. Section 2 describes the
LFHT data structure and Section 3 introduces the memory reclamation problem
and possible solutions applied to LFHT. Next, Section 4 describes our method
for reclaiming memory for LFHT nodes. Finally, Section 5 presents experimental
results and then Section 6 concludes the paper by outlining some conclusions.

2 Elastic Lock-free Hash Trie Map

Classic hash maps use a linear hashing strategy to convert keys to integers which,
in turn, are used to index a monolithic array. On the other hand, hash trie maps
use a partition hashing strategy, as proposed by Bagwell [1], where a hash is
partitioned into chunks of W bits and each chunk is used to index a different
array of the map. The map forms a tree hierarchy with arrays of fixed size 2W .
Each array we traverse to belongs to a deeper level of the tree.

A hash trie map has two types of nodes: leaf nodes, and hash nodes. Leaf
nodes are key-value pairs while hash nodes are the fixed size arrays which to-
gether form a tree. We call each entry of these arrays a bucket. When two keys
collide on the same bucket, during insertion, the leaves form a singly linked list
called a collision chain. When the collision chain reaches a certain threshold, it
will expand to a new level of the tree. As collision chains get longer, so does
the average number of hops per lookup, or average path length. Expanding to a
new level will reduce the average path length of lookup and, therefore, improve
performance. The process of moving nodes to a new level is called rehashing.
Unlike the classic hash map, instead of rehashing all nodes of the map, only the
nodes of a collision chain will be moved to a new array.

Figure 1 illustrates LFHT’s expansion procedure. Each node in the collision
chain consists of a key-value pair, a reference to the next node in the chain and
a flag with the state of the node, which can be valid (V) or invalid (I). The
collision chain must be expanded in reverse order, starting from its tail on to the
head, one node at a time, to ensure all nodes remain reachable by any thread at
any point in time. Thus, first K2, then K1, and finally K0.
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Fig. 1: LFHT’s expansion procedure

To remove nodes we follow a two step process as proposed by Harris [2]. This
process is illustrated in Fig. 2. First, the node we wish to remove is marked as
invalid,K2 in Fig. 2, effectively making it immutable. Then, we detach it from the
collision chain by updating the pointer of the previous valid node on the collision
chain to the node in front of our target. The first step is necessary to prevent
the insertion of nodes in front of already detached ones. Any change to the tree,
when adding or removing leaf or hash nodes, will require a CAS operation. For
example, setting one node with a reference to another node requires a CAS.

Fig. 2: LFHT’s leaf removal

In a process called compression, a hash
node is removed if all its buckets become
empty after removing nodes. The procedure
starts by placing a special freeze node in be-
tween the target hash node (the one we wish
to remove) and its parent. Then we try to set
every bucket to point to the freeze node, one
by one. If this process fails, then it must be
because a new node was inserted concurrently,
and we must revert all changes of the compres-
sion. Figure 3 illustrates the compression procedure. After successfully compress-
ing one hash node, we could attempt to compress its parent.

3 Memory Reclamation Problem

Outside garbage collected environments, we may not be able to free memory
right after removal of nodes from the LFHT data structure. For example, after
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Fig. 3: LFHT’s compression procedure

removing a leaf node N, we are not sure whether some other thread has a local
reference to N. In the worst case, if we free the memory of N, we risk a use after
free problem like the following:

1. Thread T1 stops amidst of traversing through node N1.
2. T2 removes and frees the memory of N1.
3. T2 allocates a new node N2 calling malloc. The reference given by the allo-

cator points to the exact same memory block of the previously deleted node
N1. N2 is inserted in a completely different place on the hash map.

4. T1 traverses through N2, which has the same reference as the deleted N1. T1

has moved to another location in the structure.

Hazard pointers [3] is a memory reclamation method that solves the memory
reclamation problem. In this method, each thread maintains a number of single-
writer multiple-reader pointers, called hazard pointers, which are used to prevent
objects from having their memory reclaimed incorrectly. When moving through
a data structure, a thread sets its hazard pointers to the current objects being
accessed. This action is called protection of an object. Later, if another thread
removes an object, it starts by placing it into a reclamation list and only when
this list reaches a certain threshold, it executes the reclamation procedure trying
to free the objects stored in the reclamation list. An object may have its memory
freed if and only if it is not protected by any hazard pointer.

Hazard pointer protection comes at a high cost. Protection requires the use
of sequentially consistent writes, which will force the thread’s write buffers to
flush. Furthermore, to prevent race conditions, after setting a hazard pointer,
we must check again if the reference we just protected is still valid in the data
structure. This additional step is called protection safety check. These costly
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overheads can be mitigated by using asymmetric barriers [7], which provide
protection by moving the cost of memory management from the principal code
path to the less frequent memory reclamation procedure, significantly reducing
or eliminating memory barriers executed on the principal code path. As a result,
the reclamation procedure will be slower, but since it is rarely executed, we
achieve a positive net performance improvement.

The Hazard Hash and Level (HHL) method [10] is a specific memory recla-
mation method designed for the LFHT data structure, which is less costly than
hazard pointers, since often only two sequentially consistent writes are required
per lookup operation. The name HHL is due to the approach of protecting en-
tire collision chains of leaf nodes using hazard pairs. A hash-level pair uniquely
identifies a collision chain. The hash of a key refers to the path where the col-
lision chain is, whereas the level of the hierarchy selects a portion of the path.
To protect a pair, two separate writes are needed. However, when the HHL was
proposed, the LFHT structure did not support compression and hence the HHL
method was not designed with this in mind.

4 Our Contribution

To mitigate HHL’s lack of support for LFHT’s compression, we propose a lock-
free and safe memory reclamation method based on hazard pointers that is
compatible with LFHT’s compression mechanism. In what follows, we discuss in
detail our contribution. The key goals of our approach were:

– Fully support compression, which includes the ability to reclaim memory
from removed hash nodes and removed leaf nodes

– Maintain the lock-freedom property
– Guarantee well-defined memory bounds

In our approach, a hazard pointer can be used to protect the individual
reference of either a hash node or a leaf node. Before traversing through a hash
or leaf node, we thus protect its reference and perform a safety check. Two
hazard pointers are used to protect pairs of subsequent hash nodes while the
other hazard pointers are used to protect the leaf nodes in the collision chains.

Figure 4 illustrates the protection of nodes during the lookup operation. It
considers that a thread T1 is traversing the collision chain starting from bucket
Bp and managed to protect the hash nodes Hi+2 and Hi+3 and the leaf nodes
K0 and K1 and is now trying to follow the chain from K1 to K2. Consider also
that, concurrently, another thread T2 removed K1 and K2 from the hash map.
We know that K1 will not have its memory reclaimed because it is protected by
T1. However, since K2 was not protected before its removal, it could have been
already freed. Hence, to not risk accessing the potentially freed memory block
of K2, T1 must restart traversing from bucket Bp.

Algorithm 1 summarizes the use of hazard pointers for the lookup() proce-
dure, given a hash node H and a hash h. At the start, we determine the index of
the bucket at level H.level, using bit-wise shifts and masks to select a chunk of
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Fig. 4: Protecting nodes during lookup (dotted lines represent HP protections)

W bits from the hash h (line 1). Then, we read the bucket H[index] and try to
protect its reference (lines 2–3). The HpProtect() procedure sets the reference of
the first argument to one of the thread’s hazard pointers and performs the pro-
tection safety check by re-reading the second argument. If the protection safety
check fails, we should restart the algorithm from the beginning (line 4).

Algorithm 1 Lookup(H, h)
1: index← GetChunk(h,H.level,W )
2: iter ← H[index]
3: if ¬HpProtect(iter,H[index]) then
4: return Lookup(H,h)
5: if iter is a freeze node then
6: nxt← iter.next
7: if ¬HpProtect(nxt, iter.next) then
8: return Lookup(H,h)
9: if nxt = H then

10: return Lookup(RootH, h)
11: iter ← nxt
12: prev ← H
13: while iter 6= H do
14: if iter is a hash node then
15: return Lookup(iter, h)
16: nxt← iter.next
17: if iter is invalid and ¬Remove(iter, h) then
18: return Lookup(H,h)
19: else if iter is valid then
20: prev ← iter
21: if iter.hash = h then
22: return TRUE
23: if ¬HpProtect(nxt, prev.next) then
24: return Lookup(H,h)
25: iter ← nxt
26: return FALSE

Next, if the bucket points
to a freeze node, we try to
skip it and move to the next
node (lines 5–11). In the con-
tinuation, if the freeze node
or the bucket point to a new
hash node, we traverse down
a level of the tree (lines 14–
15). Otherwise, we traverse
through the collision chain
(lines 16–25). We must al-
ways try to protect the refer-
ence of the next node (lines
23–24) before moving to it
(line 25) and, if we find an
invalid leaf node, we must
attempt to remove it using
the Remove() procedure (line
17). If the removal is success-
ful, the removed node goes
to the thread’s reclamation
queue and we may proceed.
If the removal fails, we must
restart lookup (line 18). Fi-
nally, if we find the node with
the given hash h, we return
successfully (lines 21–22).

As mentioned above, each thread may require two hazard pointers, to protect
pairs of subsequent hash nodes, plus as many hazard pointers as the maximum
length of a collision chain, to protect leaf nodes. In what follows, we give more
details about the reason for these numbers.
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First, why do we need to protect more than one hash node at a time? After
setting a hazard pointer to protect a hash node, the node can still be removed
by another thread just before we are able to protect it. To prevent this, we
must perform an additional protection safety check to verify if the protection
was successful and, if the safety check fails, we must restart the operation. This
requires one hazard pointer to protect the parent hash node and another to
protect the child. This is necessary to prevent the parent hash node from having
its memory reclaimed before the additional safety check. Thus, to traverse any
list or tree, we need at least two hazard pointers.

For the leaf nodes, however, due to the expansion procedure, we must protect
every node of the collision chain with a separate hazard pointer. This is necessary
because, when rehashing nodes to a new level, we do that by moving from the
tail to the head of the collision chain but, since leaf nodes lack a reference to
the previous node on the collision chain, we cannot protect leaf nodes during
expansion and we must protect all nodes before starting the expansion.

During lookup, a thread may need to traverse an infinite amount of leaf
nodes. For example, if the previous leaf node of a collision chain is removed and
a new node is added to the front, the thread will exhaust all its hazard pointers.
To solve this issue, we must count the number of hops when traversing collision
chains. If the number of hops exceeds the maximum length of a collision chain,
we must go back to the beginning of the chain.1

In conclusion, we need at most 2+L hazard pointers per thread (L being the
maximum length of the collision chain). Bounded memory is guaranteed because
only at most (2+L)×NT references (NT being the maximum number of threads
in execution) can be protected at any instant.

4.1 Other Important Changes

To completely ensure the correctness of our approach, the following changes were
also applied (we discuss each one in more detail next):

– Threads must remove invalid nodes during lookup
– Threads must cooperate in an ongoing expansion before proceeding
– After compression, the prev field of a hash node must be invalidated

In Fig. 4, we have already illustrated an example where a thread needs to
restart traversing from the head of a collision chain if an invalid node N is
found since, otherwise, it would not be possible to protect the next node on the
chain. However, if the thread responsible for removing N is blocked for long,
other threads will continuously loop back to the head of the chain. Therefore, to
prevent obstruction, threads must detach invalid nodes from the collision chain.

During expansion, leaf nodes are moved to a new level L. If other threads
insert new nodes in L concurrently, the thread responsible for expanding may
need to protect these newly inserted nodes but may not have more hazard point-
ers available. This situation is illustrated in Fig. 5. Dotted lines represent the
1 For the sake of simplicity, this is omitted in Algorithm 1
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represents a node inserted by another thread. Because T has no more available
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prev

Bn

Hi+1
prev

Hi+2
prev

Bm

Hi

Fig. 6: Unable to protect a parent hash node

Every hash node has a
reference to its parent in
a field called prev. This
field is an important part of
the compression mechanism
since, when a hash node is
successfully compressed, we
follow prev’s reference to also
attempt to compress the par-
ent hash node. However, since
the prev field never changes
its value, the hazard pointer
safety check is useless. The prev field will still point to the parent even after
the parent has been reclaimed. In Fig. 6, thread T compresses Hi+2 and then
tries to protect Hi+1 before starting its compression. However, in the meantime,
some other thread completely removes Hi+1 and frees its memory. Because the
prev field of Hi+2 remains unchanged, T cannot use it as a way to protect Hi+1.
To make it possible to protect the parent hash node from the prev field, we
must therefore change its value to null before removing the child hash node.
And before modifying it to null, we protect the parent hash node.

4.2 Delegation Problem

During expansion, if a thread T1 only sees a node N as invalid after moving it
to the next hash level (because concurrently another thread T2 marked N as
invalid), T1 will become responsible for making N unreachable. The process of
transferring this responsibility to the expanding thread is called delegation. One
flaw with this process, called the delegation problem, is illustrated in Fig. 7.
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Fig. 7: LFHT’s delegation problem

The solution implemented in the HHL method for the delegation problem
is to check all hazard pointers twice during the reclamation procedure [10]. In
our approach, the delegation problem only occurs for nodes at the end of an
expanding collision chain and we can prevent the delegation problem altogether
by performing one additional check before invalidating a node. We check whether
its next neighbor is a new level and, in such cases, we must aid the expansion
procedure and only then we can remove the node. With this, we avoid loading
all hazard pointers twice during the reclamation procedure.

5 Experimental Results

Our experiments were run on a NUMA machine with 4 AMD Opteron 8425 HE
CPUs with 6 cores each. This causes a latency penalty when cores from different
nodes have to synchronize, so, when we increase the number of cores to 7, 13,
and 19, the performance may degrade slightly.

We compare 5 different implementations of the LFHT hash map: (i) SNF
(static no free), which does not implement compression and does not reclaim
memory; (ii) ENF (elastic no free), with compression but no memory reclama-
tion; (iii) EHP (elastic with hazard pointers), our elastic version with memory
reclamation based on hazard pointers; (iv) EHPA (elastic with hazard pointers
and asymmetric barriers), also our approach based on hazard pointers but using
asymmetric memory barriers, as described in section 3; (v) HHL, a static im-
plementation using the hazard hash and level memory reclamation method. Our
goal is to compare our EHP and EHPA implementations against the others.
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For benchmarking, we used a specific program that measures, along with
various metrics, the time it takes for multiple threads to perform N hash map
operations. Each thread will generate keys using a pseudo random number gen-
erator for the hash map operations, which can be either insertions, removals, or
searches. Figure 8 illustrates the benchmark program in all its phases for N map
operations with 25% insert operations, 25% remove operations, 25% successful
search operations and 25% failed search operations (respectively, group columns
named Insert, Remove, Fetch and Miss in Fig. 8).

N NStage 1

Stage 2

Test

Phase
Nodes on map

N

RemoveInsert Fetch Miss

N

Stage 0

N N N N

0.75N N0.25 N 0.25 N

seed0 seed1 seed2 seed3

Fig. 8: Benchmark program phases

Before starting the
benchmark, the hash
map is filled with a
number of nodes in
a two stage process.
The first stage adds
N unique keys to each
group of operations
(4N keys in total),
with each group of
generated keys start-
ing with a differ-
ent seed. The second
stage removes the 2N keys for the Insert and Miss groups of operations. By pre-
emptively removing a number of keys, we simulate the scenario where the map
has been in use for a long period of time. This allows us to more accurately show
the advantage of the elastic version as it benefits from a lower number of hash
nodes and shorter average path length. Moreover, this also guarantees that, dur-
ing the test phase, each removal and search operations will indeed target existing
keys in the map while insertion operations will add new keys.

For the benchmark results presented next we used a chunk size of 4, which
corresponds to hash nodes with 24 buckets, a collision chain length of 4 and
a reclamation frequency of 10,000 nodes, which means that the reclamation
procedure is triggered for every 10,000 nodes removed for the hash map and
stored in the reclamation list. Figure 9 shows the benchmark results obtained for
224 operations and an average of 20 samples for each measurement of throughput
from 2 to 24 threads (cores).

On average, HHL applies two protections per lookup, a contrast to our EHP
method which protects every node traversed through. Each protection is done
with a sequentially consistent write. In order to mitigate this issue, the EHPA
method takes advantage of the system call mem_barrier, which implements an
asymmetric barrier. With this function, every hazard pointer protection has
the lowest memory ordering constraints, as opposed to sequential consistency,
although a compiler barrier must still be used.

As expected, the removal benchmark (Fig. 9b) shows a significant slowdown
of the elastic versions, especially the ones using hazard pointers. However, this
particular test case using only removal operations is rare. In most cases, the
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Fig. 9: Benchmark results

number of search operations outnumbers insertions and removals, and a certain
number of removals implies that at least the same number of insertions occurred
previously. On the other hand, when considering only insertions or searches, as
shown in Fig. 9a and 9c respectively, the EHPA implementation is clearly faster
when compared to both EHP and HHL. Finally, Fig. 9d shows the case of mostly
performing searches (25% of successful searches and 25% of failed searches) with
simultaneously inserting and removing nodes. The results show that for this
more general case, EHPA can again outperform both EHP and HHL, which
is a fantastic result as HHL does not implement elasticity. On top of having
similar results in throughput to HHL, the EHPA implementation also reclaims
the memory of hash nodes. Thus, more memory can be reclaimed throughout
the program’s execution in comparison to HHL.
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6 Conclusion

We have proposed a memory reclamation method for a lock-free hash map data
structure named LFHT. To the best of our knowledge, this is the first implemen-
tation of a memory reclamation method compatible with LFHT’s compression
operation, being thus able to reclaim memory for both types of nodes, be they
key-value pair nodes or internal tree hash nodes. On top of having lower mem-
ory footprint, our design showed similar throughput when compared to the best
state-of-the-art method (HHL), and can even outperform it in some scenarios.

For future work, we plan to extend our reclamation method to support back
expansion. We also plan to compare our memory reclamation method against
the Automatic Optimistic Access [6] and the Free Access [8] methods.
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