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Abstract Prolog systems rely on an atom table for symbol management,
which is usually implemented as a dynamically resizeable hash table. This is
ideal for single threaded execution, but can become a bottleneck in a multi-
threaded scenario. In this work, we replace the original atom table implemen-
tation in the Yet Another Prolog (YAP) system with a lock-free hash-based
data structure, named Lock-free Hash Tries (LFHT), in order to provide effi-
cient and scalable symbol management. Being lock-free, the new implementa-
tion also provides better guarantees, namely, immunity to priority inversion,
to deadlocks and to livelocks. Performance results show that the new lock-
free LFHT implementation has better results in single threaded execution and
much better scalability than the original lock based dynamically resizing hash
table.
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1 Introduction

The initial programming languages were designed to abstract the computer
hardware where, to achieve reasonable performance, a developer would have
to learn first how to express the algorithmic problems in machine-oriented
terms. Higher-level languages were created to allow developers to program
algorithmic resolutions in terms closer to the problem’s conceptualization. It
is believed that higher-level languages are particularly helpful in developing
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succinct and correct programs that are easy to write and also easy to under-
stand. Logic programming languages, together with functional programming
languages, form a major class of such languages, called declarative languages,
and because logic programming languages are based on the predicate calcu-
lus, they have a strong mathematical basis.

Prolog is the most popular and powerful logic programming language.
Prolog gained its popularity mostly because of the success of the sophisticated
compilation technique and abstract machine known as the Warren’s Abstract
Machine (WAM) presented by David H.D. Warren in 1983 [23]. Nowadays, it
is widely used in multiple domains, such as, machine learning [14], program
analysis [7], natural language analysis [13], bioinformatics [12] and semantic
web [8]. Prolog systems represent data as terms, that can be number, strings,
or atoms, or a composition of terms. Prolog atoms are particularly important,
as they are both used as symbols and as a convenient representation of strings.
In this work, we focus on the Atom Table used for atom management and we
investigate whether the traditional design can still be a good solution for
recent challenges Prolog systems face.

One such challenge is to take best advantage of multi-core/multi-threaded
architectures, arguably one of the most popular and impactful recent hard-
ware developments. This type of architectures allow greater performance,
but resources must be properly managed and exploited. Many languages and
systems were not originally designed for multi-processing, which required
them to be later extended to support this type of architectures, and Prolog
systems were no exception.

Multi-threading in Prolog is the ability to perform concurrent compu-
tations, in which each thread runs independently but shares the program
clauses [11]. Almost all Prolog systems support some sort of multi-threading.
In particular, the Yet Another Prolog (YAP) multi-threading library [17] can be
seen as a high-level interface to the POSIX threads library, where each thread
runs on a separate data area but shares access to the global data structures
(code area, atom table and predicate table). As each thread operates its own
execution stack, it is natural to associate each thread with an independent
computation that can run in parallel as threads already include all the ma-
chinery to support shared access and updates to the global data structures
and input/output structures.

In this paper, we replace the original atom table implementation in the
YAP system with a lock-free hash-based data structure, named Lock-free
Hash Tries (LFHT), in order to investigate whether an efficient and scalable
symbol management, can make a difference in a multi-threaded environment.
Performance results show that the new implementation shows better results
both in single threaded execution and much better scalability than the original
atom table.

The remainder of the paper is organized as follows. First, we introduce
relevant background and present the main ideas of our design. Next, we
describe in detail the points required to easily reproduce our implementation.
Then, we present a set of experiments comparing the new atom table against
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the original one. At the end, we present conclusions and draw further work
directions.

2 Background

In this section, we describe the context of our work with particular focus on
the YAP system, the concurrent access to the atom table, and the LFHT design.

2.1 The YAP System

Yet Another Prolog (YAP) is a Prolog system originally developed in the mid-
eighties and that has been under almost constant development since then [18].

Figure 1 presents a high-level picture of the YAP system. The system is
written in C and Prolog. Interaction with the system always starts through the
top-level Prolog library. Eventually, the top-level refers to the core C libraries.
The main functionality of the core C libraries includes starting the Prolog
engine, calling the Prolog clause compiler, and maintaining the Prolog internal
database. The engine may also call the just-in-time indexer (JITI) [19]. Both
the compiler and the JITI rely on an assembler to generate code that is stored
in the internal database. The C-core libraries further include the parser and
several built-ins (not shown in Fig. 1). An SWI-Prolog compatible threads
library [24] provides support to thread creation and termination, and access
to locking.
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Fig. 1 The YAP system

YAP includes two main components, the Engine and the Database. The En-
gine maintains the abstract machine internal state, such as abstract registers,
stack pointers, and active exceptions. The Database maintains the root point-
ers to the internal database, which includes the Atom Table and the Predicate
Table. In order to support multi-threading, YAP’s data structures are organized
as follows:
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– the GLOBAL structure is available to all threads and references the global
data structures; locks should protect access to these data structures.

– the LOCAL structure is a per-thread array referencing the thread’s local
data structures, e.g., the engine abstract registers, internal exceptions, and
thread specific predicates. The data is accessible through the thread’sLOCAL
structure, whose address is available from thread-local storage.

Figure 2 presents in more detail YAP’s internal data structures with par-
ticular emphasis on the atom table. It assumes support for two threads, hence
it requires two LOCAL structures, each containing a copy of the corresponding
WAM registers.
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FUNC

PropsOfAE
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.
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Fig. 2 YAP’s internal data structures

The main structure inside GLOBAL is the Atom Table, which contains objects
of the abstract type Atom. As discussed above, atoms are used to represent
symbols and text. The latter usage stems because the same text can appear in
different parts of a program. Storing text as atoms can save both space and
time, once to compare two segments one just has to compare atoms, e.g., two
text segments match if and only if they are the same atom, that is, if they have
the same entry in the atom table. At the implementation level, the atoms are
stored in a linked-list and each node within that linked-list has a reference
to a secondary linked-list, that holds the properties of the atoms. Predicates
with atoms as name are also stored in the atom table. Predicates are also often
present in a Prolog program and there might exist several predicates with the
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same name (but with a different arity or belonging to different modules), and
in such situations, there is a direct hash-table for them.

The abstract type Atom has a single concrete type, AtomEntry. Thus, the
atom table is implemented as a single-level bucket array hash table with a sep-
arate chaining mechanism, implemented as linked lists, to support collisions
among AtomEntry objects. Once the bucket array data structure is saturated,
the hash table duplicates its size, and the AtomEntry objects are placed in the
newly created data structure. Each AtomEntry contains

1. StrOfAE: a C representation of the atom’s string;
2. NextOfAE: a pointer to the next atom in the linked list for this hash entry;
3. PropsOfAE: a pointer to a linked list of atom properties;
4. ARWLock: a reader-writer lock that serializes access to the atom.

The Prop type abstracts objects that we refer to by the atom’s name. Exam-
ple subtypes of Prop include functors, modules, operators, global variables,
blackboard entries, and predicates. All of them are available by looking up an
atom and following the linked list of Prop objects.

Figure 2 shows an atom table with four atoms: hello, +, port, and $live.
Notice that only + and $live have associated properties. In practice, most
atoms do not have properties. Every concrete type of Prop implements two
fields:

1. KindOfPE gives the type of property;
2. NextOfPE allows organizing properties for the same atom as a linked list.

Each property extends the abstract property in its own way. As an example,
functors add three extra fields: a back pointer to the atom, the functor’s arity,
and a list of predicates that share the same name and arity, but belong to
different modules.

This design is based on LISP implementations, and has been remarkably
stable throughout the history of the system. Main optimizations and exten-
sions include:

1. Older versions of YAP support two atom tables: one groups all ISO-Latin-1
atoms, where each character code c is such that 0 < c < 255, and the other
stores atoms that need to be represented as wide strings. Recent versions
of YAP use UTF-8 internally.

2. As discussed above, functors have their own Prop objects, namely, predi-
cates and internal database keys with that functor. This was implemented
to improve performance of meta-calls.

3. The case where we have predicates with the same functor but belonging
to different modules is addressed by a predicate hash-table, which allows
direct access to a predicate from a functor-module key. A typical example
is Machine Learning where each example is a module containing different
versions of the same predicate.

In Fig. 2, the atom + has two properties: one of the type op and another of
type functor. The atom $live has a property of type predicate.
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2.2 Lock-Free Hash Tries

YAP’s atom table uses single-level hash buckets that doubles size once they
are saturated. Concurrent accesses to the atom table are serialized by the use
of reader-writer locks.

Lock-freedom is an alternative to lock based data structures that allows in-
dividual threads to starve but guarantees system-wide throughput. Lock-free
data structures offer several advantages over their lock-based counterparts,
such as, being immune to deadlocks, lock convoying and priority inversion,
and being preemption tolerant, which ensures similar performance regard-
less of the thread scheduling policy. Lock-freedom takes advantage of the
Compare-And-Swap (CAS) atomic primitive that nowadays is widely found on
many common architectures. CAS reduces the granularity of the synchroniza-
tion when threads access concurrent areas, but still suffers from contention
points where synchronized operations are done on the same memory loca-
tions, leading to problems such as false sharing or cache memory ping pong
effects.

Hash tries [6] minimize these problems by dispersing the concurrent areas
as much as possible. Hash tries (or hash array mapped tries) are a trie-based
data structure with nearly ideal characteristics for the implementation of
hash tables. An essential property of the trie data structure is that common
prefixes are stored only once [9], which in the context of hash tables allows
us to efficiently solve the problems of setting the size of the initial hash
table and of dynamically resizing it in order to deal with hash collisions.
Several approaches exist in the literature for the implementation of lock-free
hash tables, such as Shalev and Shavit split-ordered lists [20], Triplett et al.
relativistic hash tables [22] or Prokopec et al. CTries [16].

The Lock-Free Hash Tries (LFHT) design, as originally proposed by Areias
and Rocha [1,2], is a tree based data structure implementing two types of
nodes: hash nodes, used to represent the hierarchy of hash levels where keys
are indexed; and leaf nodes, used to store the key-value pairs. Figure 3 shows
the general architecture of the LFHT design.

Each key is used to compute a hash h, which is then used to map the
corresponding key-value pair in the LFHT hierarchy. For that, it uses chunks
of w bits from h to index the entry in the appropriate hash level, i.e., for
each hash level Hi, it uses the ith group of w bits of h to index the entry in the
appropriate bucket array of Hi. All bucket entries in a hash node are initialized
with a reference to the hash node itself. During execution, each bucket entry
stores either a reference to a hash node (itself or a deeper hash node) or a
reference to a separate chaining mechanism of leaf nodes, that deals with the
hash collisions for that entry. Intermediate leaf nodes hold a reference to the
next-on-chain leaf node.

To find the value associated with a given key, it begins by computing the
corresponding hash value. Then, nodes are searched in the LFHT structure by
following the path given by the hash value. If the key exists, it will be found
in a leaf node and the corresponding associated value is returned.
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Fig. 3 General architecture of the LFHT design

The original LFHT design was implemented in C and proposed in the
context of YAP’s concurrent tabling engine [1]. In a nutshell, tabling is a
refinement of Prolog’s standard resolution that stems from one simple idea:
save intermediate answers for current computations, in a specific data area
called the table space, so that they can be reused when a similar computation
appears during the resolution process. This means that in a traditional tabling
environment, only concurrent search and insert operations are executed. The
authors of LFHT took advantage of this fact to create a table space design that
would be as efficient as possible in these two operations. Since no remove
operations were executed concurrently, no emphasis was given to memory
reclamation. All memory used to represent the table space would remain valid
during the execution of a concurrent tabled logic program. Only at the end,
when running in single-threaded mode, could memory resources be released
to the operating system.

As LFHT obtained interesting results, the authors consider the possibility
of extending it to support the remove operation in order to make LFHT avail-
able as a standalone data structure. However, supporting removals implied
that the design would have to support some sort of memory reclamation or
garbage collection mechanism or, alternatively, to be implemented on top of a
framework that would do that by default. The authors decided to exploit the
advantages of the Java Virtual Machine (JVM) and re-implemented the design
from scratch in Java, adding the support for the remove operation [3].

To maintain LFHT’s lock-freedom property, the remove operation was
implemented in three stages. On the first stage, the memory is logically re-
moved, i.e., the block of memory m being removed is marked with some
sort of tag in such a way that all other threads know that the information
in m is no longer valid. On the second stage, all the memory references to
m stored in other structures are deleted, meaning that, from a given instant
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of time, threads entering the LFHT data structure no longer see or reach the
memory m. Finally, on the third stage, the memory is physically released, i.e.,
the memory m can be reused in other context or freed to the host operating
system. In this three stages scenario, JVM’s garbage collector is very useful
as it already implements the third stage by default, leaving the focus on the
implementation of the first and second stages. In 2021, the LFHT design was
dully formalized to prove its correctness, in particular the expand operation
that handles with key collisions [4], and more recently, the design evolved as
a standalone Java application with new features and operations, such as, the
compress operation that is able to free unused hash levels [5].

At the same time, and starting from the ideas in the Java implementa-
tion with the remove operation, the LFHT implementation in C was adapted
and extended to support a memory reclamation scheme that could fully sup-
port the three stages described above without losing the lock-freedom prop-
erty [15], meaning that the design could finally meet the goal of being used
as a standalone data structure and application. Experimental results showed
that such a design is very competitive and scalable, when compared against
the Concurrent Hash-Map implementation used in the Intel’s Thread Building
Blocks (TBB) library. More recently, the LFHT design was improved even fur-
ther with a compression based design that would improve throughput [10].

3 Our Proposal

This section describes our proposal to improve the performance of YAP’s atom
table in concurrent environments. For that, we replaced the original version
of the atom table, based in single level hashing, by the LFHT design in such
a way that, instead of having a specialized version of a concurrent hash table
implementing the atom table, we can simply use the general purpose LFHT
design and allow it to manage everything, which goes from managing the
concurrent accesses, to indexing the atoms for a faster access and handling
atom collisions through a highly efficient chaining mechanisms. Moreover, to
free memory from the atom table, we also take advantage of LFHT’s mem-
ory reclamation mechanism, which will automatically handle the physical
removal of atoms and corresponding internal data structures.

In what follows, we show in more detail how the LFHT data structure was
integrated into the YAP system. To make the integration as smooth as possible,
we need to understand all the details regarding YAP’s internal database and
how it is accessible from all internal and external libraries and data structures.
Figure 4 presents the new organization of YAP’s internal data structures based
in the LFHT design (for comparison with Fig. 2, we left in gray the parts that
were not changed from the original design). For the sake of presentation, the
LFHT hash levels shown at the left of the figure are presented in a compact
way as a single level, representing the initial configuration, which will be
expanded during executing to multiples levels as described in the previous
section.
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Fig. 4 The new organization of YAP’s internal data structures

When comparing the new organization in Fig. 4 with the previous one in
Fig. 2, one can observe two main modifications. The original NextOfAE field
was removed, since the chaining mechanism will be managed by LFHT’s
design, and the read-writer lock ARWLock, used to serialize the access to the
atoms in the original version of the atom table, was also removed, since now
the LFHT design only uses CAS operations.

Using CAS operations instead of read-writer locks has some advantages.
It can potentially reduce significantly the number of write operations done
in memory during the execution of a program. At the implementation level,
a read-write lock, requires writing operations even in when threads are only
reading information from a protected memory region. This happens because
read-write locks need to keep track of the number of threads that are in a
protected memory region and, to do so, they use standard atomic counters.
Moreover, these writing operations require also memory barriers to ensure
the consistency of memory operations. These memory barriers have a con-
siderable cost in the performance of a system, since they apply an ordering
constraint between all memory operations that occur before and after the
memory barrier, affecting this way all running threads.

Note that LFHT does not completely avoid memory barriers, as the CAS
operation also uses them when executing a write operation. The gain comes
from the fact that the design is lock-free, which means that reading operations
do not require any write operations.
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The remaining data structures and references are unchanged. This is the
case of the PropsOfAE pointer to the atom’s properties and the StrOfAE repre-
sentation of the atom’s string, therefore allowing the other YAP’s data struc-
tures, such as the Predicate Table, to still access the atoms’ information as they
do in the original design.

In order to fully replace YAP’s atom table with LFHT’s design, some
additional extensions were required to ensure full compatibility with the
original design. These extensions include: (i) support for arbitrary keys and
full-hashing collisions; and (ii) an iteration mechanism capable of traversing
all keys stored in the atom table in a given instant of time. In the following
subsections, we discuss how these extensions were implemented.

3.1 Arbitrary Keys

By default, the LFHT implementation assumes that the hash function is good
enough to avoid key collisions, meaning that it relies only on the generated
hash value to find a key, thus not considering the case of two keys generating
the same hash value. To also consider this situation, when searching for a key
K, we still use the hash value h to move through the hash levels but, when a
node N corresponding to h is found, we need to confirm that N holds K. And,
if this is not the case, we keep searching for the next node corresponding to h
that may hold K.

YAP’s atom table uses strings as keys, and although we could add sup-
port for strings to LFHT’s design, we decided to implement a more general
solution independently of the type of the key. During LFHT’s initialization,
now we must give the following parameters: (i) a key comparison function;
(ii) a hash function; and (iii) a key destructor function. The key comparison
function should implement the comparison of keys to be used in the hash
value searching mechanism. The hash function allows to simplify the API,
since now we only need the key as argument to the LFHT operations instead
of both the key and the hash value. The key destructor functions allows to free
memory used by the key when we remove a node. We also allow for any of
these parameters to be undefined, and in such case we disable the associated
feature. For example, if no hash function is defined, we assume that the given
key is the hash itself, if no key comparison function is passed, we assume that
the user knows that hash values will not collide, and if no key destructor is
passed, we assume that the key will never be deleted during the execution.
Figure 5 shows the new C language high-level API of the LFHT data structure.

3.2 The Iteration Procedure

During the execution of a program, a Prolog system might be required to
iterate over all atoms present in the atom table. YAP is no exception, thus
LFHT data structure was extended to support this additional operation. In
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// Initializes the data structure and returns a handler
struct lfht_head *init_lfht(size_t (*hash_func)(void *),

int (*key_cmp)(void *, void *), void (*key_free)(void *));

// Returns the value associated with the key if it exists
void *lfht_search(struct lfht_head *head, void *key);

// Returns the value associated with the key if it exists,
// otherwise inserts the key with the provided value
void *lfht_insert(struct lfht_head *head, void *key, void *value);

// Removes the key and returns the associated value
void *lfht_remove(struct lfht_head *head, void *key);

// Returns the next key in hash/key order
void *lfht_next_key(struct lfht_head *head, void *key);

Fig. 5 C language high-level API of the LFHT data structure

a nutshell, the iterator of LFHT data structure presents atoms by the natural
order that their hash value appears in the data structure for collision free
atoms, otherwise, the LFHT data structure consumes the atoms by the natural
order of their keys.

At the implementation level, the iterator begins by presenting the atom
with the lowest hash value. And then, to present the next atom it uses the
previously presented atom, and the process continues until there are no more
atoms to be presented. If there are atoms with the same hash value, it presents
the next smallest key with the same hash value. Otherwise, returns the small-
est key of the next available smallest hash. By iterating this way, it ensures
that iteration is done over all keys that were present when the iteration began
and that were not removed during the iteration process. Keys that are inserted
concurrently during an iteration might not be presented, this will happen if
the iterator is iterating over a hash value which is higher than the hash value
of the key that was inserted.

Algorithm 1 shows how the iteration process is done over the hash nodes,
in order to find the next key. Note that we use the hash value from the most
significant bits to the least significant bits from the first level to the last level,
so that we can have the property that nodes in a bucket B[i] always have
smaller hash values than nodes in a bucket B[k] in the same hash node (for
i < k). To find the first key we pass the Null key to the Iterator function
which lets us start at the bucket entry corresponding to the hash with value
0. Otherwise, we compute the hash value from the key and start iterating
from the corresponding bucket. We begin in the root hash node and, if in the
corresponding bucket we find a new hash node, we try to recursively find
a next key in such hash node. If the bucket contains leaf nodes we call the
IterateChain() function described in Algorithm 2 in order to find a next key in
the chain. In both situations, if we find such a key we return it, otherwise we
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continue searching in the next bucket. If we reach the end of the hash node
without finding a key, we return Null in order to indicate no key was found.

Algorithm 1 Iterate(Key K, Node Hn)
1: if K = Null then
2: H⇐ 0
3: else
4: H⇐ Hash(K)
5: for i⇐ Index(Hn,H) to Hn.size do
6: if Hn.array[i].type = HASHNODE and Hn.array[i] , Hn then
7: R⇐ Iterate(K,Hn.array[i])
8: else if Hn.array[i].type = LEAFNODE then
9: R⇐ IterateChain(K,H,Hn.array[i])

10: if R , Null then
11: return R
12: return Null

Algorithm 2 shows how we find the next node in a chain. We need to
iterate over the whole chain as the nodes are unordered in the chain. We start
by filtering the nodes that are actually ordered after the key provided, then
we start by assigning the 1st node to N and replace it if we find a node that is
ordered before it1.

Algorithm 2 IterateChain(Key K, Hash H, Node Ln)
1: N⇐ Null
2: while Ln.type = LEAFNODE do
3: if Ln.hash > H or (Ln.hash = H and (K = Null or Ln.key > K)) then
4: if N = Null or Ln.hash < N.hash or (Ln.hash = N.hash and

Ln.key < N.key) then
5: N⇐ Ln
6: Ln⇐ Ln.next
7: return N

4 Experimental Results

In order to evaluate the impact of our proposal, we next show experimental
results comparing the original and new versions of YAP’s atom table. To put
the results in perspective, we also compare both YAP’s implementations with
SWI-Prolog, a well-known and popular Prolog system that also implements
concurrent support for the atom table in a lock-free fashion [25]. SWI-Prolog
uses a single-level hash design to implement the atom table with lock-free
operations, except for the resizing of the hash table, which is not lock-free

1 Note that, for the sake of simplicity, we are omitting how the iterator proceeds when a
concurrent expansion of hash nodes occurs.
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because it uses a standard read-writer locking scheme. This happens because
while the resize is in progress, the next pointers linking atoms in the same
bucket are generally incorrect, and dealing with this incorrectness is not a
trivial task, which is solved with a standard read-writer lock.

The hardware used was a machine with 4 AMD Opteron(TM) Processor
8425 HE with 6 cores each, 64KiB of L1 cache per core, 512KiB of L2 cache per
core and 5MiB of usable shared L3 cache per CPU. It had a total of 128GiB of
DDR3 memory. The machine was running the Ubuntu 22.04 operating system
with Linux kernel version 5.15.0-69.

4.1 Benchmark

We describe next the benchmark used to evaluate the performance of our
implementation. In a nutshell, the benchmark will generate a huge stress
over the Prolog’s atom table, by inserting an enormous amount of atoms in a
multi-threaded fashion. Although it is an artificial benchmark, it is designed
to expose all the potential bottlenecks in the atom table, allowing a deeper
study about using the LFHT design in YAP. Next, we show the pipeline of
predicates used in the benchmark.

% compile the generation sequences
:- compile(’seq.pl’).

% top query call
benchmark(WO, T):-
atom_dataset(DS),
% mark the inital time
statistics(walltime ,[InitTime,_]),
% create and join threads
findall(Id, (between(1, T,_),

thread_create(worker(DS, WO),Id)), Ids),
forall(member(I,Ids), thread_join(I,_)),
% mark the final time
statistics(walltime ,[EndTime,_]),
Time is EndTime - InitTime,
% show the execution time
write(’Time: ’), write(Time).

Fig. 6 Initial setup and top query call

We begin with Fig. 6 showing the Prolog code for the initial setup of the
benchmark and the benchmark/2 predicate, which is the top predicate to be
called. We start by compiling an initial set (file seq.pl) of 240, 000 different
sequences that will be used as base sequences to generate a combination of
multiple atoms to be inserted in the atom table. The benchmark/2 predicate is
then used to mark the initial and final times, create and join threads, and to
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show the execution time. It receives two arguments, the worker offset WO,
used to batch a set of sequences from the initial set that will be used to create
the combination of atoms, and the total number of threads T to be executed.
For this benchmark, we used a batch of 2, 000 sequences of work to be done.

% setup scheduler
:- dynamic qsize/1.
:- mutex_create(qlock).
qsize(0).

% manage the working queue
worker(DS, WO) :-
mutex_lock(qlock),
% get work from queue
retract(qsize(I)),
(I =< DS -> % thread got work W
% setup next work
IL is I + WO, assert(qsize(IL)),
mutex_unlock(qlock),
% compute work W
compute(I, IL),
% get more work
worker(DS, WO)

; % no more work to be done
assert(qsize(I)),
mutex_unlock(qlock)).

Fig. 7 The naive parallel scheduler

The second stage of the pipeline is the scheduler. Figure 7 shows the code
that implements the naive parallel scheduler used in the benchmark. It uses
a dynamic predicate qsize/1 to mark the number of the next sequence from
the initial set that is available to be used for the generation of atoms and
a standard lock named qlock to synchronize threads when they are getting
work. To get work, a thread T begins by gaining access to the lock, then it
reads the next sequence I stored in qsize/1 and, if there is work to be done, T
prepares the queue with the next available sequence IL, releases the lock and
goes to executing work. Otherwise, there is no more work to be done, thus T
keeps qsize/1 in the same state, releases the lock, and proceeds to the thread
join predicate.

The third and final stage of the pipeline implements the process of gener-
ating atoms to be inserted and stored in the atom table. Figure 8 shows both
compute/2 and combine_atoms/2 predicates. For each batch of work, a thread
uses the compute/2 predicate to get the corresponding sequences from the
initial set, and, for each sequence, it calls the combine_atoms/2 predicate to gen-
erate all possible combination of atoms from the sequence. Each generated
atom is then automatically inserted by the Prolog system in the atom table.
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% compute the sequences
compute(I, I) :- !.
compute(I, IL) :-
atom_seq(I, AS),
(combine_atoms(AS, _), fail; true),
I1 is I + 1,
compute(I1, IL).

% generation of atoms
combine_atoms(AS, R) :-
atom_concat(A1, A2, AS),
atom_concat(A2, A1, R).

Fig. 8 Generation of the atoms to be inserted in the atom table

4.2 Results

The results shown in the following figures were obtained by taking the mean
of 10 benchmark runs. Figure 9 shows the speedup obtained by YAP with
the atom table replaced by the LFHT data structure against YAP’s original
implementation for every combination of 1 to 24 threads. The results show
that, on average, we can achieve a minimum speedup of 1.8 with a single
thread and a maximum speedup around 3.4 with 23 threads. The speedup for
24 threads is slightly worse than for 23 threads because, as the LFHT version
has better CPU utilization, it is more affected by background/operation system
processes when all cores are in use.
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Fig. 9 Speedup of YAP’s LFHT version against YAP’s original implementation
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These results show that we can achieve not only better overall perfor-
mance, but also much better scalability. In particular, the readers-writer locks
present in the original atom table can be a significant bottleneck that the LFHT
data structure is able to avoid.

To put the results in perspective, we also compared the YAP results with
SWI-Prolog. Figure 10 shows the throughput of sequences that are com-
puted per second in both the YAP (original and LFHT-based atom tables)
and SWI-Prolog implementations. As one can observe, the original YAP im-
plementation already provides much better performance and scalability than
SWI-Prolog, and the LFHT-based atom table is able to provide a considerable
improvement on top of it. For example, with 24 threads, our LFHT-based
implementation is able to achieve 24.6 times the throughput of SWI-Prolog.
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Fig. 10 Throughput for YAP and SWI-Prolog

5 Conclusions and Future Work

We have presented an approach to replace the original atom table implemen-
tation in the YAP system with a lock-free hash-based data structure, named
LFHT. Our main motivation was to refine the previous atom table design in
order to be as effective as possible in the concurrent search and insert opera-
tions over the atom table. We discussed the relevant details of the approach
and described the main algorithms. We based our discussion on YAP’s con-
current atom table data structure, but our approach can be applied to other
Prolog systems or to other generic systems that need to use similar concurrent
atom tables.
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A key design decision in our approach was to adapt the LFHT design to
work as a fully standalone C application, allowing the hash function to be
defined by the user, and implementing a new iterate operator. This facilitated
the migration from the old lock-based atom table to the new lock-free atom
table, where threads do not block when accessing the data structure. Experi-
mental results showed that our approach can effectively reduce the execution
time and scale better than the previous design.

As future work, we plan to test our approach on real world Prolog appli-
cations widely-used in the community, such as, the Aleph Machine Learning
system [21] and the ClioPatria Semantic Web system2.
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