
Agent Spaces: a Scalable Architecture
for Distributed Logic Agents

Paul Tarau
Department of Computer
Science and Engineering
University of North Texas

Denton, Texas, USA
tarau@cs.unt.edu

Arun Majumdar
Vivomind Research LLC.
Rockville, Maryland, USA
arun@vivomind.com

Paulo Moura
Dept. of Computer Science
University of Beira Interior
& CRACS, INESC–TEC,

Portugal
pmoura@di.ubi.pt

ABSTRACT
We introduce a simple agent construct associated to a named
local database and a “Twitter-style” weak inheritance mech-
anism between local agents.

On top of a remote predicate call layer, connecting dis-
tributed agent spaces, we build a replication mechanism al-
lowing agents “visiting” remote spaces to expose their com-
putational capabilities to non-local followers.

The resulting protocol has the remarkable property that
only updates to the state of the agents are sent over the net-
work through transactional remote predicate calls guaran-
teed to always terminate, and therefore spawning of multiple
threads can be avoided. At the same time, calls to a visit-
ing agent’s code by its followers are always locally executed,
resulting in performance gains and reduced communication
efforts.

Categories and Subject Descriptors
D.3.3 [PROGRAMMING LANGUAGES]: Language
Constructs and Features—Concurrent programming struc-
tures, Coroutines

General Terms
Mobile code, Distributed Programming, Remote execution
of logic programs, Distributed dynamic Prolog databases,
Agent mobility protocols

Keywords
Agent mobility protocols, Remote execution of logic pro-
grams, Distributed dynamic Prolog databases, Agent coor-
dination

1. INTRODUCTION
Agent programming constructs have influenced a signif-

icant number of mainstream software components ranging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RACS’12 October 23-26, 2012, San Antonio, TX, USA.
Copyright 2012 ACM 978-1-4503-1492-3/12/10 ...$10.00.

from interactive Web services to mixed initiative computer
human interaction.

From the very beginning, Performatives in Agent commu-
nication languages [10, 6] have made these constructs reflect
explicitly the intentionality, as well as the negotiation pro-
cess involved in agent interactions. At the same time, it has
been a long tradition of logic programming languages (see
e.g. [8, 9, 17]) to use multiple logic engines for supporting
concurrent execution and autonomous reasoning threads.

Naturally, this has suggested to investigate whether some
basic agent-oriented language design ideas can be used for
a refactoring of Prolog’s interoperation with the external
world, including interaction with other instances of the Pro-
log processor itself.

LeanProlog is a Java-based, continuation passing, com-
piled Prolog system. It succeeds the Jinni Prolog imple-
mentation that has been used in various applications [14,
16, 15, 18] as an intelligent agent infrastructure, by taking
advantage of Prolog’s declarative knowledge processing ca-
pabilities in combination with a simple and easily extensible
runtime kernel supporting a flexible reflection mechanism.

In this context, we have centered our LeanProlog imple-
mentation around logic engine constructs providing an API
that supports reentrant instances of the language processor.
This has naturally led to a view of logic engines as instances
of a generalized family of iterators called Fluents [17], that
have allowed the separation of the first-class language in-
terpreters from the multi-threading mechanism, while pro-
viding a very concise source-level reconstruction of Prolog’s
built-ins.

The original Fluents has been extended with a few new op-
erations [21] supporting bi-directional, mixed-initiative ex-
changes between engines, high level multithreading constructs
[19] and a coordination framework [20] resulting in an agent-
oriented view of autonomous logic processors.

To ensure genuine scalability and readiness for integration
in cloud-computing services, the next development stage in-
volves designing resource-aware distributed agent program-
ming constructs that are as oblivious as possible to the ac-
tual location of an agent. This paper describes a simple
and efficient multi-agent layer that supports distributed ex-
ecution, essential agent mobility and a simple and scalable
multi-agent collaboration mechanism in LeanProlog.

The paper is organized as follows. Section 2 describes lo-
cal inheritance mechanisms and interactions between agents.
Section 3 describes our“remote logic invocation”(RLI) mech-
anism and its implementation in Java. Section 4 introduces

agent spaces and section 5 explains the distributed program-
ming constructs ensuring agent mobility. Section 6 gives
some typical use cases of the framework. Finally, section 7
discusses related work and section 8 concludes the paper.

2. THE LIGHTWEIGHT PROLOG AGENT
LAYER

We start with a quick “bird’s eye view” of LeanProlog’s
multi-agent layer.

Our agents are implemented as named Prolog dynamic
databases. Each agent has a process where its home is lo-
cated — called an agent space. They share code using a
simple “Twitter-style” mechanism that allows their follow-
ers to access to their predicates. The A follows B relation is
not transitive, but agents can dynamically decide who they
follow at a given time. Agents can also visit other spaces
located on local or remote machines — where other agents
might decide to follow their replicated “avatars”. The state
of their avatars is dynamically updated when a state change
occurs in an agent’s code space. Communication between
agents, including avatar updates, is supported by a remote
predicate call mechanism between agent spaces, designed in
a way that each call is atomic and guaranteed to terminate.

We will next expand the details of various components.

2.1 Agents as Dynamic Code in Multiple
Named Databases

Lean Prolog provides dynamic database operations acting
on multiple named databases. The name of the database is
added as the first argument to otherwise usual Prolog pred-
icates e.g. assert(Clause) becomes db_assert(Database,

Clause), db_retract(ClauseHead) becomes db_retract(

Database, ClauseHead) etc. A default database (named
’$’) is used for operations without an explicit database ar-
gument. The default database is shared i.e. when no def-
inition exists in a named database, calls are redirected to
predicate definitions in the default database.

The state of an agent (seen as a set of dynamic Prolog
predicates) is contained entirely in a database with a name
derived from the name of the agent.

LeanProlog also supports dynamically created databases
controlled through unique handles allowing agents to hide
private state information.

2.2 A “Twitter-style” Agent Inheritance
Mechanism

Agents share compiled code, which is immutable in Lean-
Prolog. They also inherit code automatically from the de-
fault dynamic database of a given agent space when calling
predicates for which they do not provide their own defini-
tions.

An agent can decide to “follow” a set of other agents. The
set of agents followed by a given agent can be updated dy-
namically at any time. Syntactically, running the goal

?- cindy@[alice, bob].

ensures that agent cindy follows agents alice and bob but
later cindy can change her mind and issue

?- cindy@[alice, dylan].

from which point in time cindy follows a different set of
agents.

This results in a fully dynamic, but a weak, non-transitive,
and strictly“one-level”inheritance mechanism between data-
bases.

Note also that an agent inherits a complete predicate def-
inition from the first of the followed agents that provides
it. This choice is justified, as inheriting different fragments
of a predicate from various agents would result in programs
difficult to debug. Moreover, an agent can only inherit code
present in the space where it runs a given goal, i.e. it inher-
its either from local agents or from agents visiting the agent
space where its code executes.

This mechanism is a radical departure from typical object
oriented languages. Our decision is motivated by the fact
that the dynamic nature of an agent’s agreement to follow
other agents would quickly create unexpected consequences
if propagated to its followers.

This inheritance mechanism is implemented by adapting
the traditional Prolog meta-interpreter handling dynamic
code to look-up dynamic predicate definitions for a given
agent provided by the agents it follows, as well as shared
code in the default database ’$’.

2.3 Agent Interactions
Communication between agents located in the same agent

space, is achieved through dynamic database updates or
predicate calls as well as through code inherited from the
followed agents. We illustrate how these mechanisms work
with the predicate local_agent_test.

local_agent_test:-
assert(friends(cool_people)),
% alice follows bob and cindy
alice@[bob, cindy],
alice@assert(like(macs)),
alice@assert(like(popcorn)),
alice@assert(hate(candy)),
% shorthand for assert
alice@((hate(pcs) :- true)),
% cindy starts following alice
cindy@[alice, bob],
% bob likes what alice hates
bob@((like(X) :- alice@hate(X))),
foreach(cindy@friends(X), println(friends:X)),
foreach(bob@like(X), println(bob:likes(X))),
foreach(alice@like(X), println(alice:likes(X))),
foreach(cindy@hate(X), println(cindy:hates(X))).

When running the predicate one can observe the fairly natu-
ral semantics of “following” another agent, for instance that
bob likes candy because cindy hates it.

?- local_agent_test.
friends : cool_people
bob : likes(candy)
bob : likes(pcs)
alice : likes(macs)
alice : likes(popcorn)
cindy : hates(candy)
cindy : hates(pcs)
true.

Cooperative coordination patterns, or high-level multi-
threading encapsulated in parallel fold and findall opera-
tions are available to express various interaction protocols.

The following example illustrates how one can emulate
message exchanges between agents coordinated cooperatively
using the Linda protocol.

coop_mes_test(N):-
C = ’$mes_coord’,

alice@[], bob@[], cindy@[],
new_coordinator(C),
N2 is N*2,
new_task(C, (

for(_, 1, N2),
alice@handle_msg(From, m(I)),
println(alice_got(From, m(I)))

)
),
new_task(C, (
for(I, 1, N),

println(bob_sent(alice, m(I))),
bob@send_msg(alice, m(I))

)
),
new_task(C,(
for(I, 1, N),

println(cindy_sent(alice, m(I))),
cindy@send_msg(alice, m(I))

)
),
coordinate(C),
stop_coordinator(C).

Note that multi-threading is avoided in this case and the
actual execution is handled by the predicate coordinate/1

that manages the protocol cooperatively implemented in
terms of operations on first-class logic engines. Such pro-
tocols have the advantage to work deterministically and sig-
nificantly faster than their multi-threaded equivalents due to
reduced scheduling, memory allocation and synchronization
costs.

The following execution trace illustrates the actual mes-
sage exchanges, happening in a natural order.

?- coop_mes_test.
...
bob_sent(alice, m(1))
cindy_sent(alice, m(1))
alice_got(bob, m(1))
bob_sent(alice, m(2))
cindy_sent(alice, m(2))
alice_got(cindy, m(1))
bob_sent(alice, m(3))
cindy_sent(alice, m(3))
alice_got(bob, m(2))
alice_got(cindy, m(2))
alice_got(bob, m(3))
alice_got(cindy, m(3))

We will show later that it makes sense to uncouple the
execution of logic engines running a given agent’s code from
the state of the agent. Toward this end we will show next
how to uncouple an agent’s communication mechanisms and
the physical location where its code executes.

3. CALLING REMOTE PREDICATES
The first steps towards distributed execution and agent

mobility involve designing a reliable and as high level as
possible remote execution mechanism.

LeanProlog uses Java’s Remote Method Invocation (RMI)
communication layer to connect Prolog processes on the
same or different machines together. Our Prolog-level com-
munication layer, called Remote Logic Invocation (RLI) con-
sists of a mechanism to automatically start a registry con-
taining the names (called ports in RMI parlance) of the Pro-
log processes on a given host, as well as a server and a client
API designed under the assumption that calls are atomic
and guaranteed to terminate.

On the Java side, the following interface specifies the op-
erations that a client can request from a server:

package rli;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface ServerStub extends Remote {
public Object rli_in() throws RemoteException;

public void rli_out(Object T) throws RemoteException;

public int rli_ping() throws RemoteException;

public int rli_stop_server() throws RemoteException;

public Object rli_call(Object T)
throws RemoteException;

}

Among them, rli_in and rli_out can be used to imple-
ment message queues, rli_ping can test if a server is alive
and rli_stop_server can be used to shut down a server re-
motely. However, the only operation relevant for our agent
layer is rli_call which specifies a deterministic (first solu-
tion) call to a remote Prolog goal. On the Prolog side, a
client executes the call:

rli_call(Host, Port, Goal, Result).

To start a server on a named Port (and possibly activate the
RMI registry keeping track of servers locations and capabil-
ities, unless it is already running) one executes:

rli_start_server(Port).

A few additional predicates are available to handle message
queues or to let a client to wait until a server is running,
but as we will show in the next sections these two pred-
icates are all we need for implementing high-level mecha-
nisms that support agent mobility and remote agent com-
munication. Of special interest are rli_start_broker and
rli_register(Host, ThisHost, ThisPort) that start a spe-
cial well-known server — called a “broker” — which main-
tains a registry of all agents on a given host, together with
their location information.

4. AGENT SPACES
An agent space is seen as a container for a group of agents

usually associated with a Prolog process and an RLI server.
To keep things simple we can assume that the name of the
space is nothing but the name of the RLI port.

The start_space(BrokerHost, ThisHost, Port) predi-
cate starts, if necessary, the unique RLI service associated to
a space and registers it. Registration happens after making
sure that on each host, a broker, keeping track of various
agents and their homes, is started when needed.

start_space(_, _, Port):-
’$space’ ==> OtherPort,
!,
errmes(no_space_started_at(Port),

already_started_space(OtherPort)).
start_space(BrokerHost, ThisHost, Port):-
’$space’ <== Port,
(BrokerHost == localhost -> rli_start_broker
; true
),
rli_wait(BrokerHost, broker),

rli_start_server(Port),
rli_wait(Port),
rli_register(BrokerHost, ThisHost, Port).

Note that a unique global variable (assigned with ’==>’ in
LeanProlog) keeps track of the port associated to an agent
space.

Communication with agents inhabiting an agent space
happens through this unique port — typically one per pro-
cess. This requires that all RLI calls to a given port are
atomic and terminating.

5. AGENT MOBILITY AND STATE
SYNCHRONIZATION

Our concept of agent mobility is derived directly from the
unique nature of a Prolog program — that can be seen as a
set of predicate definitions built each from an ordered set of
clauses. This ensures that changes of an agent’s state can
be safely propagated from an agent space to another with-
out the need to spawn a thread for each otherwise possibly
non-terminating remote procedure call. We will now show
that it is possible to keep such calls always local using code
replication.

5.1 Visiting an Agent Space
An agent can visit one or more agent spaces at a given

time. When calling the visit(Agent, Host, Port) predi-
cate, an agent broadcasts its database and promises to broad-
cast its future updates. Note that information about visiting
agents is recorded both at their home spaces and the agent
spaces they visit. One can conceptualize that an agent is rep-
resented at a remote space by a replica of its set of clauses
that we call its“avatar”. To keep things simple, the database
associated to an avatar bears the same name as the the one
in its home space.

visit(Agent, Host, Port):-
visiting(Agent, Host, Port),
!,
errmes(no_reason_to_visit,

already_visiting(Host,Port)).
visit(_Agent, Host, Port):-

get_space_name(Port),
Host == localhost,
!,
errmes(no_reason_to_visit,already_at(Port)).

visit(Agent, Host, Port):-
rli_ping(Host, Port),
assert(’$visiting’(Agent,Host,Port)),
rli_call(Host, Port, (done:-Agent <== ’$visiting’), _),
take_my_clauses(Agent, Host, Port).

The take_my_clauses(Agent, Host, Port) predicate remo-
tely asserts the agent’s clauses to the database of the agent’s
“avatar”. Note that only the agent’s own code goes and not
the code that the agent inherits locally. This allows context
dependent behavior when the code of the avatar is called
remotely — for instance, while the reasoning rules about ge-
ographical location may travel unchanged, the actual GPS
coordinates to which they refer (say in the form of a Prolog
fact), may be different at the location the agent visits from
those at the agent’s home.

As the agent keeps track of all the locations where it has
dispatched avatars, it will be able to propagate updates to its
database using atomic, guaranteed to terminate RLI calls.

An agent is also able to unvisit a given space — in which

case the code of the avatar is completely removed and broad-
casts of updates to the unvisited space are disabled.

unvisit(Agent, Host, Port):-
retract(’$visiting’(Agent,Host,Port)),
rli_call(Host, Port, gvar_remove(Agent), _),
rli_call(Host, Port, db_clear(Agent), _).

An agent can have followers in various spaces that it visits.
Note however that followers inherit the code of the avatar —
and therefore all their calls stay local. This also makes more
sense as, for instance, an agent asked to find neighboring gas
stations should do it based on the GPS location of the agent
space it is visiting.

It is an agent’s autonomous decision to visit a given agent
space. At the same time it is an agent’s autonomous decision
to become a follower locally or mediated through an avatar.
The presence of “free will” on both sides provides flexibility
and enables implementation of “anthropomorphic” mecha-
nisms for negotiation, reputation building and trust between
agents in a given application.

Fig. 1 sees agents as sets of logic engines running on one or
more threads in the context of larger and larger distributed
computational units. An agent space is typically associated
to a Prolog process.

Illustra(on	
 of	
 our	
 Agent	
 Ontology	

CLOUD	

(A	
 set	
 of	
 Machines	

Machine	

(A	
 set	
 of	
 Processes)	

Prolog	
 Process 	

(A	
 set	
 of	
 Threads)	

Thread	

(A	
 set	
 of	
 Engines)	

Agent	

Figure 1: A hierarchical view of agent aggregations

6. DISTRIBUTED AGENT INTERACTIONS
We will now work through a simple example involving two

agent spaces and visiting agents.
First we define a predicate french_space/0 that initializes

an agent space where salutations occur in French, inhabited
by agent alice.

french_space:-
start_space(french_space),
assert(when_arriving_say(bonjour)),
assert(when_leaving_say(aurevoir)),
rli_wait(english_space),
wait_for_agent(bob),
alice@[bob],
alice@salutations,
alice@visit(english_space).

Next we define a predicate english_space/0 where saluta-
tions occur in English, inhabited by agent bob.

english_space:-
start_space(english_space),
assert(when_arriving_say(hello)),
assert(when_leaving_say(goodbye)),
bob@[],
bob@((salutations:-

when_arriving_say(A),
println(A),
when_leaving_say(B),
println(B))),

bob@visit(french_space),
wait_for_agent(alice),
bob@unvisit(french_space),
alice@[bob],
alice@salutations.

When running the two predicates in two different terminal
windows one can see the results of bob visiting french_space.

?- french_space.
bonjour
aurevoir

and the results of alice visiting english_space.

?- english_space.
hello
goodbye

The example illustrates the semantics of “visiting”. When
bob visits, he promises that future code updates will follow
him — resulting in the predicate salutations being brought
to french_space. Since alice follows bob this predicate
becomes available to her there. Note that the salutation
messages come out in French, given that bob’s predicate de-
pends on the local facts in predicates when_arriving_say/1
and when_leaving_say/1.

When alice visits english_space and decides to follow
bob there, her salutations come out in English. Note also
that alice gains access to the predicate salutations simply
by following bob, but that she needs to state that in every
space where she agrees to do so. This illustrates the workings
of an agent’s “free-will” and one can use such mechanisms
for implementing complex negotiation protocols.

7. RELATED WORK
There’s a significant number of papers relating agents and

distributed programming, going back as early as [1] and [7]
and covering agent interaction as well as various aspects
of knowledge sharing. The paper [3] provides a survey on
various agents platforms and related programming language
constructs.

Combining concurrency with a shared database has been
described in a multi-threaded implementation in various Pro-
log systems as early as in in [4].

There are several agent toolkits based on Prolog. Ex-
amples include Tu-Prolog [11] which can use .NET or Java
RMI, LPA Chimera Agents toolkit running on the Windows
platform, SICStus Prolog that provides agent support using
add-ons for TCP/IP, .NET and Java interfaces for distri-
bution, the SRI Open Agent Architecture based on either
of SICStus or Quintus Prolog, and Qu-Prolog that uses a
middleware broker system called “Pedro” handling TCP/IP
based inter-process messaging [12].

The SRI Open Agent Architecture (OAA) [5] is also writ-
ten in Prolog and uses a remote predicate call based messag-
ing protocol, but has a different philosophy of layering, and
methods for the formation of agent societies. SOCS agents

are based on Sicstus Prolog with JXTA and XML messag-
ing, which is a heavyweight solution in our opinion, but the
authors acknowledge that at the time there were few choices
for technologies available to build dynamical multi-agent so-
cieties.

The closest implementation to our system is Tu-Prolog
[11] which also provides a high level agent layer using objet
oriented abstractions. It also sees workspaces as logical con-
tainers, used to structure the overall environment where the
agents play. As in most mobile agent implementations Tu-
Prolog agents can dynamically join and concurrently work
in multiple workspaces. Among the differences our agent
mobility protocol and the “Twitter-style” code inheritance
mechanism.

Many agent toolkits are available in procedural program-
ming languages that lack the ease of representation and rea-
soning models that characterize declarative approaches, and
none of them support native high level agent architectures
that require little knowledge of the programmer to create
networks of societies of agents. Examples of such procedu-
ral tools are ABLE [2], JADE [13] and JACK [22], which
can be connected to Prolog systems using middleware ap-
proaches.

In this context, our emphasis has been on high-level de-
sign constructs that not only relieve the programmer of a
lot of burdensome implementation efforts, but that enable
rapid prototyping of various computational models. For ex-
ample, inter-agent communication based on message-passing
can also be built by creating Agents as specialized message-
brokers, between LeanProlog spaces. Agents as message-
brokers combine the dynamic addressing and routing of mobile-
mailboxes: the transmission of agents as message-brokers by
visiting spaces and their subsequent use in processes where
they were not previous found enables one to create massively
parallel, dynamically altering patterns of interconnections
between communicating LeanProlog machines. Our agent
model supports non-deterministic interactions between mul-
tiple agents that may be distributed internet-wide, for in-
stance in multi-agent logistics and planning problems.

Other issues that some agent platforms run into in real
world applications are that with large numbers of agents,
one rapidly runs out of the TCP/IP address spaces when
one TCP/IP port is used per agent. Also, the overheads in
programming and maintenance are much higher as a system
evolves because one has to artificially build namespaces and
mechanisms to keep track of them, which, in a system that
is designed to evolve dynamically, is very difficult to do.

8. CONCLUSIONS
We have described a distributed multi-agent architecture

that, despite its simplicity exhibits some novelty in terms
of the way agents inherit dynamic code and the way they
engage in communication with other agents. Our concept
of agent mobility is based on a simple remote logic invoca-
tion mechanism. While quite straightforward — by limiting
calls to database updates — it provides remote code sharing
without requiring potentially non-terminating remote pred-
icate calls and it allows a “free will” mechanism that agents
can exercise when using other agents’ knowledge bases. We
have deliberately not covered various reasoning mechanisms
that agents can implement — these are seen as independent
of the infrastructure itself — our main focus in this paper.

Acknowledgments
Paul Tarau’s work has been supported in part by NSF (re-
search grant 1018172) and Vivomind Research LLC. Arun
Majumdar thanks VivoMind Research LLC for support. Paulo
Moura’s work has supported by the LEAP project (PT-
DC/EIA-CCO/112158/2009), the ERDF/COMPETE Pro-
gram and by FCT project FCOMP-01-0124-FEDER-022701.

9. REFERENCES
[1] G. Agha. ACTORS: A Model of Concurrent

Computation in Distributed Systems. The MIT Press:
Cambridge, MA, 1986.

[2] J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N.
Mills, and Y. Diao. Able: a toolkit for building
multiagent autonomic systems. IBM Syst. J.,
41:350–371, July 2002.

[3] R. H. Bordini, L. Braubach, M. Dastani, A. E. F.
Seghrouchni, J. J. Gomez-Sanz, J. Leite, G. O’Hare,
A. Pokahr, and A. Ricci. A survey of programming
languages and platforms for multi-agent systems, 2006.
The Slovene Society Informatika, Ljubljana, Slovenia.

[4] M. Carro and M. V. Hermenegildo. Concurrency in
Prolog Using Threads and a Shared Database. In
ICLP, pages 320–334, 1999.

[5] A. Cheyer and D. Martin. The open agent
architecture. Autonomous Agents and Multi-Agent
Systems, 4:143–148, March 2001.

[6] FIPA. FIPA 97 specification part 2: Agent
communication language, Oct. 1997. Version 2.0.

[7] J. Y. Halpern and Y. O. Moses. Knowledge and
common knowledge in distributed environments. In
Proceedings of the 3rd ACM Conference on Principles
of Distributed Computing. ACM Press, 1984.

[8] M. V. Hermenegildo. An abstract machine for
restricted AND-parallel execution of logic programs.
In Proceedings on Third international conference on
logic programming, pages 25–39, New York, NY, USA,
1986. Springer-Verlag New York, Inc.

[9] E. Lusk, S. Mudambi, E. Gmbh, and R. Overbeek.
Applications of the Aurora Parallel Prolog System to
Computational Molecular Biology. In In Proc. of the
JICSLP’92 Post-Conference Joint Workshop on
Distributed and Parallel Implementations of Logic
Programming Systems, Washington DC. MIT Press,
1993.

[10] J. Mayfield, Y. Labrou, and T. W. Finin. Evaluation
of KQML as an Agent Communication Language. In
M. Wooldridge, J. P. Müller, and M. Tambe, editors,
ATAL, volume 1037 of Lecture Notes in Computer
Science, pages 347–360. Springer, 1995.

[11] A. Ricci, M. Viroli, and G. Piancastelli. simpa: An
agent-oriented approach for programming concurrent
applications on top of java. Sci. Comput. Program.,
76:37–62, January 2011.

[12] P. J. Robinson and K. L. Clark. Pedro: a
publish-subscribe server using prolog technology.
Softw. Pract. Exper., 40(4):313–329, Apr. 2010.

[13] N. I. Spanoudakis and P. Moraitis. Modular JADE
Agents Design and Implementation Using ASEME. In
J. X. Huang, A. A. Ghorbani, M.-S. Hacid, and
T. Yamaguchi, editors, IAT, pages 221–228. IEEE
Computer Society Press, 2010.

[14] P. Tarau. Towards Inference and Computation
Mobility: The Jinni Experiment. In J. Dix and
U. Furbach, editors, Proceedings of JELIA’98, LNAI
1489, pages 385–390, Dagstuhl, Germany, Oct. 1998.
Springer. invited talk.

[15] P. Tarau. Inference and Computation Mobility with
Jinni. In K. Apt, V. Marek, and M. Truszczynski,
editors, The Logic Programming Paradigm: a 25 Year
Perspective, pages 33–48, Berlin Heidelberg, 1999.
Springer. ISBN 3-540-65463-1.

[16] P. Tarau. Intelligent Mobile Agent Programming at
the Intersection of Java and Prolog. In Proceedings of
The Fourth International Conference on The Practical
Application of Intelligent Agents and Multi-Agents,
pages 109–123, London, U.K., 1999.

[17] P. Tarau. Fluents: A Refactoring of Prolog for
Uniform Reflection and Interoperation with External
Objects. In J. Lloyd, editor, Computational Logic–CL
2000: First International Conference, London, UK,
July 2000. LNCS 1861, Springer-Verlag.

[18] P. Tarau. Agent Oriented Logic Programming
Constructs in Jinni 2004. In B. Demoen and
V. Lifschitz, editors, Logic Programming, 20-th
International Conference, ICLP 2004, pages 477–478,
Saint-Malo, France, Sept. 2004. Springer, LNCS 3132.

[19] P. Tarau. Concurrent Programming Constructs in
Multi-engine Prolog: Parallelism just for the cores
(and not more!). In M. Carro and J. H. Reppy,
editors, DAMP, pages 55–64. ACM, 2011.

[20] P. Tarau. Coordination and Concurrency in
Multi-engine Prolog. In W. D. Meuter and G.-C.
Roman, editors, COORDINATION, volume 6721 of
Lecture Notes in Computer Science, pages 157–171,
Berlin Heidelberg, June 2011. Springer.

[21] P. Tarau and A. Majumdar. Interoperating Logic
Engines. In Practical Aspects of Declarative
Languages, 11th International Symposium, PADL
2009, pages 137–151, Savannah, Georgia, Jan. 2009.
Springer, LNCS 5418.

[22] J. Tweedale, N. Ichalkaranje, C. Sioutis, B. Jarvis,
A. Consoli, and G. Phillips-Wren. Innovations in
multi-agent systems. Journal of Network and
Computer Applications, 30(3):1089–1115, Aug. 2007.

