
LogicObjects : A Linguistic Symbiosis Approach
to Bring the Declarative Power of Prolog to Java

Sergio Castro
RELEASeD lab

ICTEAM Institute
Université catholique de

Louvain, Belgium
sergio.castro@uclouvain.be

Kim Mens
RELEASeD lab

ICTEAM Institute
Université catholique de

Louvain, Belgium
kim.mens@uclouvain.be

Paulo Moura
Dept. of Computer Science
University of Beira Interior
& CRACS, INESC–TEC

Portugal
pmoura@di.ubi.pt

ABSTRACT
Logic programming is well suited for declaratively solving
computational problems that require knowledge representa-
tion and reasoning. Object-oriented languages, on the other
hand, are well suited for modeling real-world concepts and
profit from rich ecosystems developed around them, which
are often missing from logic languages. For applications that
require both the declarative power of logic programming and
the rich modeling expressiveness and development environ-
ments offered by object-oriented languages, there is a need
for reconciling both worlds. LogicObjects is our linguistic
symbiosis framework for integrating Prolog within the Java
language. It extends Java with annotations that allow Java
programs to interact transparently and automatically with
Prolog programs.

Keywords
Linguistic Symbiosis, Object-Oriented Programming, Logic
Programming, Multi-paradigm programming

1. INTRODUCTION
Object-oriented programming languages have demonstra-

ted their usefulness for modeling real-world concepts. In
addition, the availability of continuously growing software
ecosystems around them, including advanced IDEs and ex-
tensive libraries, has contributed to their success. Declara-
tive languages like Prolog, however, are more convenient for
expressing problems of declarative nature, such as rule-based
systems [6, 15].

Linguistic symbiosis [11] has been used in the past to solve
the problem of integrating programs written in different lan-
guages. In particular, the SOUL [9] language implements ad-
vanced language symbiosis features between Smalltalk and
Prolog [6, 10]. Some limits and issues with SOUL have been
discussed in [9]. This work is a first step towards a frame-
work that overcomes most of these limitations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RAM-SE’12, June 13, 2012, Beijing, China
Copyright 2012 ACM 978-1-4503-1277-6/12/06 ...$10.00.

Although there exists some other work that focusses on
facilitating the interaction from an object-oriented language
to a logic language, to the best of our knowledge this is the
first approach that provides a truly transparent, automatic
and customizable integration from the perspective of the
object-oriented language.

This paper is structured as follows: Section 2 presents a
problem of declarative nature and its implementation in a
logic language. This will be referenced in the next sections.
Section 3 presents our framework and shows how it enables
a transparent access from Java to our implementation in
logic. Section 4 discuss relevant related work and section 5
presents our conclusions and future work.

2. CASE STUDY: THE LONDON UNDERGROUND

This case addresses a typical problem that can be imple-
mented easily with a logic programming language: a query-
ing system about subway lines and stations in a big city
(e.g., to query the number of intermediate stations from
one station to another). Since most public transport sys-
tems require a user-friendly interface, which can be devel-
oped more easily with an object-oriented language, a good
solution would be to implement the declarative part of the
application in Prolog and the user interface in Java.

The first stage of the problem consists in expressing our
knowledge about the London Underground in terms of logic
statements. Most of the code in this section has been taken
“as is” from [7]. However, we did introduce an interesting
variation in the original code. Instead of implementing it
in plain Prolog, we used Logtalk [12], a portable object-
oriented layer on top of Prolog, thus allowing us to benefit
from the symbiosis features it offers while at the same time
facilitating the mapping that needs to be made between ob-
jects belonging to the two worlds.

In our universe of discourse, stations are connected to
other stations through underground lines. A station is nearby
another one if there is at most one station in between them.
Finally, a station A is reachable from another station B if
there exists a list of stations L that form a path going from
B to A.

Listing 1 shows the Logtalk definition of the metro object
(we omitted some predicate clauses to save space). Note
that, although Logtalk also supports classes, we are not us-
ing the word class here, since we are just defining a prototype
object and to avoid confusion with Java classes. The metro
object encapsulates the knowledge about how stations are
connected (lines 5–8), plus the rules for the logic predicates

nearby/2 (lines 10–11) and reachable/3 (lines 13–14). The
messages (queries) that the metro object can answer are
specified using the public/1 directive (line 2).

1 :− object (metro) .
2
3 :− pub l i c ([connected /3 , nearby /2 , reachab le /3]) .
4
5 connected (s t a t i on (bond s t r e e t) ,

s t a t i on (o x f o r d c i r c u s) , l i n e (c en t r a l)) .
6 connected (s t a t i on (o x f o r d c i r c u s) ,

s t a t i on (tot tenham court road) , l i n e (c en t r a l)) .
7 connected (s t a t i on (bond s t r e e t) ,

s t a t i on (green park) , l i n e (j u b i l e e)) .
8 . . .
9

10 nearby (X,Y) :−connected (X,Y,L) .
11 nearby (X,Y) :−connected (X,Z ,L) , connected (Z ,Y,L) .
12
13 reachab le (X,Y , []) :−connected (X,Y,L) .
14 reachab le (X,Y, [Z |R]) :−connected (X,Z ,L) , r eachab le (Z ,Y,R) .
15
16 :− end object .

Listing 1: The metro object in Logtalk

Messages are sent in Logtalk using the ::/2 operator. For
example, to find which stations are connected to the station
Bond Street we can use the query shown in listing 2.

metro : : connected (s t a t i on (bond s t r e e t) , Stat ion , Line) .

Listing 2: Invoking a Logtalk method

Logtalk and Prolog both support non-deterministic queries,
which allows retrieving all existing solutions for a query us-
ing backtracking, and meta-programming, which allows e.g.
to construct a list with all solutions to a query. For exam-
ple, to get a list of all stations connected to Bond Street we
could write the query shown in listing 3.

f i n d a l l (
Stat ion ,
metro : : connected (s t a t i on (bond s t r e e t) , Stat ion , Line) ,
S ta t i ons

) .

Listing 3: Invoking a Logtalk method using the
findall/3 meta-predicate

Listing 4 shows the definition of a parametric object [13]
line/1.

1 :− object (l i n e (Name)) .
2
3 :− pub l i c ([name/1 , connects /2]) .
4
5 name(Name) :− parameter (1 , Name) .
6
7 connects (Stat ion1 , Stat ion2) :− s e l f (S e l f) ,

metro : : connected (Stat ion1 , Stat ion2 , S e l f) .
8
9 :− end object .

Listing 4: The line object in Logtalk

The object’s sole parameter (line 1) can be retrieved with
the method name/1 (line 5). This object also defines a con-
nects/2 method (line 7) that answers stations directly con-
nected by the line represented by the receiver object. This
method implementation is delegated to the metro object.

Our last object is the station object (Listing 5). As for
the line object, it is also a parametric object having as sole
parameter the name of a station (line 1). It defines a method
connected/1 (line 7) that answers if the station is connected
with another station (or answers the stations that are con-
nected if the parameter is an unbound variable). connect-
ed/2 (line 9) takes as a second parameter the underground
line that connects the stations. The method nearby/1 (line

Figure 1: Objects from two different worlds living
in symbiosis.

11) answers if the station is nearby another station received
as a parameter. The method reachable/1 (line 13) answers
if the station received as parameter is reachable from the
receiver station object (or answers the reachable stations if
the parameter is an unbound variable). The method reach-
able/2 (line 15) does the same, but includes in its second
argument a list with all the intermediate stations. All these
methods are delegated to the metro object.

1 :− object (s t a t i on (Name)) .
2
3 :− pub l i c ([name/1 , connected /1 , connected /2 , nearby /1 ,

reachab le /1 , reachab le /2]) .
4
5 name(Name) :− parameter (1 , Name) .
6
7 connected (Stat ion) :− connected (Stat ion ,) .
8
9 connected (Stat ion , L) :− s e l f (S e l f) ,

metro : : connected (Se l f , Stat ion , L) .
10
11 nearby (Stat ion) :− s e l f (S e l f) , metro : : nearby (Se l f ,

S tat ion) .
12
13 reachab le (Stat ion) :− reachab le (Stat ion ,) .
14
15 reachab le (Stat ion , In t e rmed ia t eSta t i ons) :− s e l f (S e l f) ,

metro : : reachab le (Se l f , Stat ion ,
In t e rmed ia t eSta t i ons) .

16
17 :− end object .

Listing 5: The station object in Logtalk

Finally, we show the loader file of our library. A loader file
defines the collection of objects that should be loaded (line
2) when requiring a Logtalk library. We further discuss these
objects in the next section.

1 :− i n i t i a l i z a t i on (
2 l o g t a l k l o a d ([metro , s ta t ion , l i n e])
3) .

Listing 6: The load all.lgt loader file

3. LOGICOBJECTS
In the previous section we have shown the implementa-

tion of the declarative part of our case study using Logtalk
objects. In this section, we add Java counterparts to these
objects and show how objects from the Java world can sym-
biotically interact with objects in Logtalk. All these objects
are illustrated in figure 1.

In the remainder of this section we describe the linguistic
symbiosis techniques employed by our LogicObjects frame-
work. Our current implementation focusses on a symbiosis
from the Java point of view. We decided to start the de-
sign and implementation of our symbiosis from the object-

oriented language since this direction has been reported [5,
6, 9] as the most difficult to achieve transparently.

3.1 Linguistic symbiosis
Linguistic symbiosis [11] is the ability of a program to

transparently invoke routines defined in another language
as if they were defined in its own language [9]. In addition,
Wuyts and Ducasse [16] add that to achieve real symbio-
sis, objects from each language must be understood in the
other. In our particular context, these generic symbiosis re-
quirements could be rephrased as being able to:

– Map Java methods to logic queries.

– Translate Java objects to logic terms, and back.

Several additional problems specific to symbiosis between
an object-oriented language and a logic language are pre-
sented in [6, 9]. We repeat some of them below:

Unbound variables: Most object-oriented languages can-
not work with unbound variables. However, it is com-
mon in logic to call a predicate with unbound variables.

Return values: In object-oriented languages, methods of-
ten return objects as a result of their execution. In
logic, there are no such return values: results are re-
turned by binding values to unbound variables. More
than one value can be returned in this way.

Managing multiplicity: In object-oriented languages there
is a difference (e.g., return type) between methods that
return a single value or a collection of values. Logic
languages make no distinction between predicates that
produce a single solution or many solutions.

Let us now discuss how LogicObjects deals with these issues.

3.2 Translating objects to logic terms
In the context of symbiosis between Java and Prolog, Java

objects should have a representation as logic terms and logic
terms should be manipulatable as Java objects [2]. Hence,
we need a mechanism for mapping logic terms to objects and
vice-versa.

Brichau et al. [2] defined such a mapping for the specific
problem of transforming Java objects representing parse tree
nodes to logic terms and vice-versa. In their work, there is
an implicit direct mapping between a logic predicate name
and a class name. The arguments of logic predicates are
mapped to the children of the parse tree nodes by means of
the same recursive algorithm.

We generalize their mapping solution by providing, using
Java annotations, a general mapping between logic predicate
names and Java classes and between predicate arguments
and Java object properties.

To illustrate our technique, let’s consider the implementa-
tion of the Line class in Java, shown in listing 7. This class
is the Java counterpart of the line Logtalk object defined in
listing 4. The annotation LObject on line 1 identifies this
class as (partially) implemented in logic. We refer to these
classes as symbiotic classes. The name of the Logtalk object
on the logic side providing this implementation is derived
from the class name Line. The default mapping is basically
a transformation from Java camel-case naming convention
to Prolog names with lowercase tokens separated by uncer-
scores. E.g., the Java class FooBar would be translated

to the Logtalk object foo bar. This default mapping can be
overridden easily, however, since the LObject annotation can
include a name attribute indicating explicitly the name of
the object on the logic side implementing the logic methods
of this Java class. When provided, this name will be the one
used, instead of deriving it from the class name. When the
object on the logic side is a parametric object, its parameters
need to be declared on the Java side by means of a params
attribute in the LObject annotation. In the Line class ex-
ample, the single parameter of the parametric object on the
logic side is mapped to the instance variable name. An in-
stance of Java class Line with its name set to “central”, is
thus automatically translated to the logic term line(central).

In this simple example the transformation of the object
property name to a term is straightforward, since it is just
a string of characters and no additional mapping informa-
tion is required. If the property would have been a symbi-
otic object (in case where somewhere in the class hierarchy,
the field’s declaration includes an LObject annotation) the
transformation process will continue recursively, given that
the property object could also have properties that are sym-
biotic objects and so on.

1 @LObject (params = {”name”})
2 public abstract c lass Line {
3 private Str ing name ;
4
5 public Str ing getName () { return name ; }
6 public void setName (St r ing name) { this . name = name ; }
7
8 @LMethod
9 public abstract boolean connects (Stat ion s1 , Stat ion

s2) ;
10
11 @LMethod(name = ”connects ” , params = {” ” , ” ”})
12 public abstract int segments () ;
13 }

Listing 7: The Line object in Java

Translating a term to an object is the inverse process but
in this case we need a translation context, which encapsu-
lates the translation objective and environment. With this
context, we can answers questions such as: Is the translated
object going to be assigned to a field? Is it the result of a
symbiotic method (a Java method implemented in Prolog)?
Are there relevant annotations in the context (e.g., a field or
method) that should influence the translation? And so on.

The procedure of transforming a logic term into a Java
object starts by attempting to find a symbiotic class in the
system which name and number of parameters correspond
with the logic predicate’s name and its number of arguments.
Once we found such a symbiotic class, the translation con-
text plays an active role in how the Java object will be in-
stantiated. If, according to the context, the expected type
is an ancestor class of the found symbiotic class (or they are
the same), then we just need to ask the framework for an
instance of the symbiotic class, as is shown in section 3.7.
However, if the found symbiotic class is an ancestor of the
expected type, according to the translation context, then it
is an instance of the expected type that should be created,
and its properties should be set according to the arguments
to the logic predicate. For translating each of these argu-
ments, a new translation context will be created according
to the field declaration of the matching property, and the
conversion algorithm is applied recursively.

In case where no symbiotic class can be found, the trans-
lation needs to be guided entirely by the translation context.
For example, if the expected type is a list, a Java list will
be instantiated. This list will be filled with the translation

to Java objects of each member of the corresponding Pro-
log list. If additional information on the expected type of
these list members is provided (e.g., when the Java list is a
parameterized type), then a new translation context is cre-
ated and the list elements are translated according to this
context. For an example of such translation see section 3.6.

3.3 Mapping methods to logic queries
As in [9], by default methods are mapped to logic pred-

icates with the same name as the method name, and the
number of method arguments as the predicate cardinality.
An example of this default mapping can be found in listing
7. The method connects on line 9 has two arguments. It is
recognized by the framework as a symbiotic method since it
includes the LMethod annotation (line 8). It is mapped by
default to the Logtalk method connects/2 in listing 4, line 7.
Note that this particular Logtalk method will be executed
in the context of the Logtalk object corresponding to the
Java object receiving the message.

Although this default mapping is often useful, a program-
mer can always customize it by adding attributes to the
LMethod annotation. An example of such a customization
is the Java method segments on lines 11–12. As specified by
the name and params annotation attributes, this method
will be mapped to the logic predicate connects/2.

With this technique we are thus able to map one single
Logtalk predicate to different Java methods according to our
needs and give each of these mappings a distinct semantics.

3.4 Dealing with unbound variables
In Prolog, it is common to write queries with unbound

variables. In Java, however, all variables must be bound to
a value (either an explicit assigned value, or a default initial-
ization value). As mentioned before, the segments method
of class Line is mapped, through the LMethod annotation,
to the predicate connects with arity two. Parameters speci-
fied in the params attribute are interpreted as Prolog terms.
In this case, both parameters are the symbol “ ”, which is
interpreted as an anonymous logic variable by Prolog.

Before evaluating a symbol as a term certain macro sub-
stitutions will happen, however. For example, the symbol $n
(where n ∈ N0) is interpreted as the object received as nth

parameter by the method. The class Station (listing 8) pro-
vides examples of methods including these symbols in their
params attribute (lines 9 and 17). The current available
macros are detailed in section 3.9.

1 @LObject (params = {”name”})
2 public abstract c lass Stat ion {
3 private Str ing name ;
4
5 public Str ing getName () { return name ; }
6 public void setName (St r ing name) { this . name = name ; }
7
8 @LSolution (”S”)
9 @LMethod(params = {”S” , ”$1 ”})

10 public abstract Stat ion connected (Line l i n e) ;
11
12 @LWrapper @LSolution (”S”)
13 @LMethod(params = {”S”})
14 public abstract List<Stat ion> nearby () ;
15
16 @LSolution (” In te rmed ia t eSta t i ons ”)
17 @LMethod(name = ”reachab le ” , params = {”$1 ” ,

” In te rmed ia t eSta t i ons ”})
18 public abstract List<Stat ion>

i n t e rmed ia t eS ta t i on s (Stat ion s t a t i on) ;
19 }

Listing 8: The Station object in Java

Parameters can even contain Java expressions that, upon
evaluation, will be converted to a logic term. An example

of this will be given in section 3.9.

3.5 Returning results
The value returned by symbiotic methods depends on the

context of the method declaration. For example, when noth-
ing else is specified and the method returns a boolean value
(as for the connects method in class Line), the framework is
smart enough to query the corresponding predicate in Prolog
and answer whether the query has at least one solution.

If the method instead returns a numeric value (as for the
segments method in class Line) and nothing else is specified,
the return value will be the number of results of the query.
In our example, the number of segments an underground
line has corresponds to the number of stations it connects.
This is the total number of answers of the logic method
connects/2 in the line Logtalk object.

For customizing method results, the framework offers an
annotation LSolution. Its value attribute specifies a logic
term that will be returned by the method (after conversion
to a Java object), according to the variable bindings of a
solution. To illustrate this, consider the implementation of
the Station class (listing 8). The method connected (lines 8–
10) answers another station that is connected to the receiver
on the line sent as a parameter. Since the name attribute is
not specified in the annotation, the Java method name (after
being translated to Prolog conventions) is used as the pred-
icate to query. The first parameter is a Prolog logic variable
S; the second parameter is the term representation of the
first parameter to the Java method. The result returned by
the Java method will be the term specified by the value at-
tribute of its LSolution annotation. Any unbound variables
in that term will be bound according to the bindings of the
variables present in the arguments of the Logtalk method. In
our example, the term to return is the Prolog logic variable
S that will be bound, upon execution, to a compound term
of the form station(nameStation). This compound term will
be transformed automatically to an instance of the Station
class according to the algorithm described in section 3.2.

Although in our example the term to return was just a
logic variable, it can be a logic term of arbitrary complexity.

3.6 Managing multiplicity
Given that a logic query can have multiple solutions, we

need a way to differentiate when the programmer wants just
one solution or all of them. Initially we tried to infer this
from the method return type. For example, if the method
returns a collection class, then with certain probability its
intention is returning a collection of results instead of just
one. This assumption is not always valid however.

Consider the method intermediateStations in the Station
class (listing 8, lines 16–18). This method is mapped to the
reachable/2 predicate in the station Logtalk object (listing
5, line 15). The params attribute in the LMethod annotation
indicates that the first parameter of the Logtalk predicate
will be the logic term representation of the first parameter of
the Java method (indicated by the macro $1). The second
parameter is the Prolog variable IntermediateStations.

The LSolution annotation specifies that the return value
of the method is the variable IntermediateStations. As ex-
plained in section 2, this variable is bound to a list with all
the intermediate stations between the receiver station ob-
ject, and the station object sent as first parameter of the
method. Then, the Java method is returning a list of ob-

jects that corresponds to the binding of one variable in one
solution (the first) answered by the Logtalk predicate. This
is thus an example where a method returning a collection of
objects is not intending to answer a group of solutions, but
just one single solution interpreted as a collection.

In order to resolve ambiguities, we offer the LWrapper
annotation. If a method does not include the LWrapper
annotation, it will return just one result if the LSolution
annotation is present. If the LSolution is also absent, the
result will try to be inferred from the return type of the
method, as explained in section 3.5.

The method nearby (listing 8, lines 12–14) is an example of
the usage of the LWrapper annotation (line 12). One answer
to this method is a station that is nearby the receiver station
object. Given that the LWrapper annotation is present, the
framework considers the type of the method (a List class)
as a container of all its solutions. The expected type of each
solution is given by the first (an only) type parameter in
the parameterized return type. In our example, the return
type is List<Station>. Thus the type for each solution is
Station. As explained in section 3.2, this type will guide
the process of transforming the logic term in the variable
IntermediateStations to an object. If the container type is
not parameterized, then the type of each solution would be
considered Object and the framework will try to infer the
right transformation based only on the returned logic term.

3.7 Instantiating a symbiotic class
We have seen in the previous examples that symbiotic

classes and their symbiotic methods are declared as abstract.
In order to obtain an instance of symbiotic classes the frame-
work provides the LogicObjectFactory class. By means of
its create method, new instances of symbiotic classes can be
created. This is illustrated in listing 9, line 1.

1 Line l i n e =
LogicObjectFactory . ge tDe fau l t () . c r ea t e (Line . c lass) ;

2 l i n e . setName (” c en t r a l ”) ;
3 System . out . p r i n t l n (”Number o f segments : ” +

l i n e . segments ()) ;

Listing 9: Instantiating a symbiotic class

The output of the code snippet in listing 9 is: Number of
segments: 2. This corresponds to the number of segments
in the line central, as specified on the Prolog side (listing 1).

3.8 Auto-loading Logtalk objects
Usually, in Prolog we need to load a file containing rules

and facts before we are able to query and reason about them.
Likewise, in Logtalk, objects are usually defined in their
own file. Normally, there is a loader file that loads all the
application objects, as exemplified in listing 6.

Our framework provides several mechanisms for transpar-
ently loading Logtalk objects before they can be used. When
instantiating a symbiotic class, if the framework detects that
a Logtalk file with an equivalent name (taking into account
the mapping between naming conventions) exists in the same
package as the class, it will transparently load it. This hap-
pens only the first time when the class is instantiated. If
the Logtalk files are in a different directory, or if they must
be loaded in a specific order, the loader can make use of a
logicobjects.properties configuration file. This file should be
located in the same package as the symbiotic classes. In our
example, this configuration file contains just the line:

imports=logic lib.example.metro.load all.

It is possible to include additional files by separating them
with a comma. It is also possible to specify a file as a com-
pound term. For instance, the following line is equivalent to
the previous example:

imports=logic lib(example(metro(load all))).

If none of these techniques is enough for defining the
Logtalk dependencies of a symbiotic class, the programmer
could use the imports attribute in the LObject annotation
described in section 3.2. This attribute defines the Logtalk
files that should be loaded before the symbiotic class can be
instantiated.

3.9 Other features

Macros
Term expressions are typically used when adapting method
parameters or when defining a method’s return value. Previ-
ous examples have shown that these expressions often need
to include the representation as terms of certain Java ob-
jects. To facilitate this task, following macros can be used:

$$ A comma separated list of the original arguments of the
method, converted into terms.

$0 The object receiver (‘this’) of the method.

$n The nth parameter of the method as term.

Symbiosis terms
Terms between /{ and /} delimiters are symbiosis terms
[16] and contain Java expressions that will be transformed
into logic terms before evaluation by the logic engine. As in
SOUL, such terms can be used as a logic condition or as an
argument to a logic condition.

In the current implementation, logic variables cannot be
included in the expression. However, it is possible to include
method parameters or other values using the same constants
introduced by Javassist [3] to ease the (re-)definition of in-
strumented methods at runtime. These constants are evalu-
ated in the context of the symbiotic method. Note that the
macro symbols mentioned in the previous section are a sub-
set of the Javassist constants that can be used in a symbiosis
term (we refer to the Javassist documentation for detailed
information and examples about the available symbols). As
an example, consider the symbiotic term shown in listing 10.

my term (/{myJavaMethod ($1) /} , $0)

Listing 10: A symbiotic term example

In this term, the first argument of the predicate my term
is the converted return value (a term) of sending the my-
JavaMethod message to the object using this symbiotic term.
The myJavaMethod method takes as parameter the first pa-
rameter of the original Java method where this symbiosis
term is used. The second parameter is the object receiver of
the method (also a term).

Integration with Prolog
Our framework also offers an LQuery annotation for symbi-
otic interactions with logic libraries. This annotation uses a

value attribute that can include any arbitrary Prolog query.
E.g. an LQuery(predicate1($0), predicate2($1)) method an-
notation will be interpreted as querying the logical conjunc-
tion of the predicate predicate1 having as argument the re-
ceiver of the method, and the predicate predicate2 having
as argument the first parameter of the Java method. All the
other annotations (e.g., LSolution, LWrapper) are, of course,
still available and with the same semantics.

4. RELATED WORK
In addition to the SOUL language, there are a number

of works attempting to provide a symbiotic integration be-
tween object-oriented languages and a logic language. Most
of them are focused on interactions, from the logic language,
with objects from an object-oriented language. Examples
include Java, Scala, and Python implementations of Prolog
(e.g. [1, 8, 14]). These implementations usually provide a
set of built-in Prolog predicates that allow easy access to
the implementation language libraries.

A technique for instrumenting annotated abstract meth-
ods as logic queries is proposed in [4]. Types participating
in a method declaration explicitly represent distinct types of
Prolog terms, so there is not a real transparent interaction
between objects in the two worlds.

For a more extensive survey of other systems integrating
logic reasoning and object-oriented programming we refer
to [5].

5. CONCLUSIONS AND FUTURE WORK
The starting point of our work were the problems and

issues [9] found while designing and using the symbiotic lan-
guage SOUL. As these problems were mainly localised in
the object-oriented side, we focussed our current effort on
this aspect of the symbiosis. Our technique improves on
each of the reported problems, proposing an elegant solu-
tion based on annotations, and including many possibilities
for customization.

Our future work will focus on implementing a full two-
way symbiosis. We plan to use the reflective mechanisms
of Logtalk for transparently and automatically referring to
Java objects and invoking their methods in a similar way
as has already been accomplished from the Java side. In
addition, we will explore techniques for establishing a causal
connection between objects belonging to our two different
worlds.

Acknowledgements. This work is partially supported by
the LEAP project (PTDC/EIA-CCO/112158/2009), the ER-
DF/COMPETE Program and by FCT project FCOMP-01-
0124-FEDER-022701.

6. REFERENCES
[1] D. Boulanger and U. Geske. Using logic programming

in java environment (extended abstract). Technical
Report 10, Knowledge-Based Systems Group, Vienna
University of Technology, Austria, 1998.

[2] J. Brichau, C. De Roover, and K. Mens. Open
unification for program query languages. In
Proceedings of the XXVI International Conference of
the Chilean Computer Science Society (SCCC 2007),
2007.

[3] S. Chiba. Load-time structural reflection in java. In
Proceedings of the 14th European Conference on
Object-Oriented Programming, ECOOP ’00, pages
313–336, London, UK, UK, 2000. Springer-Verlag.

[4] M. Cimadamore and M. Viroli. Integrating java and
prolog through generic methods and type inference. In
Proceedings of the 2008 ACM symposium on Applied
computing, SAC ’08, pages 198–205, New York, NY,
USA, 2008. ACM.

[5] M. D’Hondt. A survey of systems that integrate logic
reasoning and object-oriented programming. Technical
report, Vrije Universiteit Brussel, 2003.

[6] M. D’Hondt, K. Gybels, and V. Jonckers. Seamless
integration of rule-based knowledge and
object-oriented functionality with linguistic symbiosis.
In Proceedings of the 2004 ACM symposium on
Applied computing, SAC ’04, pages 1328–1335, New
York, NY, USA, 2004. ACM.

[7] P. Flach. Simply logical: intelligent reasoning by
example. John Wiley & Sons, Inc., New York, NY,
USA, 1994.

[8] C. Friedrich Bolz. Pyrolog: A prolog interpreter
written in python using the pypy translator toolchain.
https://bitbucket.org/cfbolz/pyrolog/.

[9] K. Gybels. Soul and smalltalk - just married:
Evolution of the interaction between a logic and an
object-oriented language towards symbiosis. In
Proceedings of the Workshop on Declarative
Programming in the Context of Object-Oriented
Languages, 2003.

[10] K. Gybels, R. Wuyts, S. Ducasse, and M. D’Hondt.
Inter-language reflection: A conceptual model and its
implementation. Comput. Lang. Syst. Struct.,
32(2-3):109–124, July 2006.

[11] Y. Ichisugi, S. Matsuoka, and A. Yonezawa. Rbcl: A
reflective object-oriented concurrent language without
a run-time kernel. In International Workshop on New
Models for Software Architecture (IMSA): Reflection
And Meta-Level Architecture, pages 24–35, 1992.

[12] P. Moura. Logtalk - Design of an Object-Oriented
Logic Programming Language. PhD thesis,
Department of Computer Science, University of Beira
Interior, Portugal, Sept. 2003.

[13] P. Moura. Programming patterns for logtalk
parametric objects. In S. Abreu and D. Seipel, editors,
Applications of Declarative Programming and
Knowledge Management, volume 6547 of Lecture
Notes in Artificial Intelligence, pages 52–69.
Springer-Verlag, Berlin Heidelberg, Apr. 2011.

[14] P. Paul Tarau. Styla: a lightweight scala-based prolog
interpreter based on a pure object oriented term
hierarchy. http://code.google.com/p/styla/.

[15] S. Russel and N. P. Artificial Intelligence, A Modern
Approach. Prentice Hall, 1995.

[16] R. Wuyts and S. Ducasse. Symbiotic reflection
between an object-oriented and a logic programming
language. International Workshop on MultiParadigm
Programming with Object-Oriented Languages, 2001.

https://bitbucket.org/cfbolz/pyrolog/
http://code.google.com/p/styla/

	Introduction
	Case Study: The London Underground
	LogicObjects
	Linguistic symbiosis
	Translating objects to logic terms
	Mapping methods to logic queries
	Dealing with unbound variables
	Returning results
	Managing multiplicity
	Instantiating a symbiotic class
	Auto-loading Logtalk objects
	Other features

	Related Work
	Conclusions and Future Work
	References

