
Under consideration for publication in Theory and Practice of Logic Programming 1

BigYAP: Exo-compilation meets UDI

Vı́tor Santos Costa and David Vaz

CRACS - DCC/FCUP, University of Porto, Portugal

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

The widespread availability of large data-sets poses both an opportunity and a challenge to logic
programming. A first approach is to couple a relational database with logic programming, say,
a Prolog system with MySQL. While this approach does pay off in cases where the data cannot
reside in main memory, it is known to introduce substantial overheads. Ideally, we would like
the Prolog system to deal with large data-sets in a efficient way both in terms of memory and
of processing time. Just In Time Indexing (JITI) was mainly motivated by this challenge, and
can work quite well in many application.

Exo-compilation, designed to deal with large tables, is a next step that achieves very in-
teresting results, reducing the memory footprint over two thirds. We show that combining exo-
compilation with Just In Time Indexing can have significant advantages both in terms of memory
usage and in terms of execution time.

An alternative path that is relevant for many applications is User-Defined Indexing (UDI).
This allows the use of specialised indexing for specific applications, say the spatial indexing
crucial to any spatial system. The UDI sees indexing as pluggable modules, and can naturally
be combined with Exo-compilation. We do so by using UDI with exo-data, and incorporating
ideas from the UDI into high-performance indexers for specific tasks.

1 Introduction

The last few years have seen the convergence of two trends. On the one hand, there has

been a steady improvement in hardware, both in terms of processing and in terms of

storage. On the other hand, more and more data is stored in computer databases. Most

of this data, be it web data, medical records data, spatial data, or text data is essentially

read-only. Thus, efficient access to the data is often achieved by loading copies of the

data in main memory, either of a single computational unit or in a distributed network.

and processing it in-line.

Logic Programming provides a high-level description of data that naturally fits re-

lational databases (but that can also be a target for other types of databases). It fur-

ther provides a powerful reasoning mechanism to query the data. We claim that these

in-memory big databases provide an excellent opportunity for logic programming, and

namely, for Prolog systems. Moreover, these opportunities offer a number of interesting

implementation challenges.

The first challenge is memory management. Prolog sees data as a program. More

precisely, most Prolog systems use an emulator and data is stored as a set of abstract-

machine instructions. Executing data improves running-time, but has a cost in memory

usage. Moreover, often Prolog systems store each fact (or row in a table), as a separate

data-structure with its own headers and footers, further increasing the memory overhead.



2 Vı́tor Santos Costa and David Vaz

Clause management overheads can be addressed by packing clauses together either at

program load-time, as done in XSB (Swift and Warren 2012), or at run-time, as done in

YAP (Santos Costa et al. 2012). Abstract-machine instruction overhead can be reduced by

coalescing different instructions into a single instruction, and by specialising the merged

instruction for a fixed set of arguments. In that way, a fact with three arguments can be

compiled as a single WAM instruction, reducing the representation overhead to a single

opcode (Santos Costa 2007). Ultimately, one can go further and separate data from

code, the so-called exo-compilation (Demoen et al. 2007). This idea was originally used

in Mercury (Conway et al. 1995), but it has never been widely implemented in Prolog

systems. Indeed, to the best of our knowledge, only hProlog (Demoen and Nguyen 2000)

actually implemented exo-code. On other systems, such as YAP, coalescing instructions

seemed to work well enough at reducing memory overhead.

The second challenge stems from the need to access the database efficiently. Full scans

of a table with millions of rows take a long time. Good indexing is necessary but raises

several difficulties. Prolog execution often is about searching for terms that match a query

term, a process that can be implemented efficiently using hash-tables. One first question

is which arguments or combinations of arguments should have associated tables, or in-

dices? Indexing all possible combinations is very expensive, 2arity. Traditionally, Prolog

systems index the first argument only, as suggested for the PLM (Warren 1977) and origi-

nal WAM (Warren 1983), but this is not effective for databases. One solution is to support

multi-argument indexing, but according to an user-given or compile-time order (Demoen

et al. 1989; Van Roy 1994). A more ambitious solution is to index combination of argu-

ments only when they are actually needed: this idea is called just-on-time-indexing and

it is used in the YAP and XXX Prolog systems (Santos Costa et al. 2007; Santos Costa

et al. 2012), and more recently in SWI-Prolog (Wielemaker et al. 2012).

The JITI allows Prolog systems to process effectively databases with millions of facts,

but at a cost of extra memory usage. More precisely, we pay two costs in memory: the

actual storage required for the extra hash-tables, and the fragmentation costs incurred

when creating and later releasing the temporary data-structures necessary to store the

indices. In our experience, the first cost is often higher than the memory needed to

actually store the data, and the second cost is not negligible for large databases.

A second limitation of Prolog indexing is that it it hard to efficiently answer even

simple aggregated queries over a table. As an example, imagine that we have a table

of patient prescriptions and we wanted to known when patient Michael started taking

warfarin. The query could be written as:

?- min(Date, hasdrug(michael, Date, warfarin) ).

A Prolog program needs either to run a setof/3 and extract the head of the list, or it

can implement the query as:

?- hasdrug(michael, Date, warfarin),

\+ (hasdrug(michael, _D, warfarin), _D < Date).

A more elegant solution to this specific query is mode-directed tabling (Guo and Gupta

2008), but this technique unfortunately requires creating a new intermediate table, which

may be quite expensive space-wise, and does not immediately address more complex

queries such as:



BigYAP: Exo-compilation meets UDI 3

?- hasdrug(michael, Date0, warfarin),

diagnoses(michael, DateF, bleeding),

DateO < DateF.

One alternative idea in this case is user-defined indexing (UDI) (Vaz et al. 2009). The

principle is to allow the user to include low-level code specialised for say, indexing in

the presence numeric range operators. The operations of interest are then plugged-in as

extensions to the Prolog engine.

Next, we argue that in order to apply Prolog to data-sets with hundreds of millions

of elements and still have a reasonable memory footprint, we should reconsider exo-

compilation and user-defined indexing. The goal should not be so much to be efficient,

but to have a compact representation while avoiding fragmentation and large temporary

data-structures. Moreover, as many of the queries of interest need more than Herbrand

semantics, we need to be able to fit user-defined indexing with this approach.

We next present a novel, exo-compilation based representation scheme for facts and for

indices, that allows integration with user-defined indexing. We show substantial savings

space-wise, and good performance time-wise. Most important, we have been able to

process effectively very large datasets with up to 300 million facts in mid-range machines

(up to 24GB).

2 Exo-Code

Exo-code separates data from byte-code by simply storing data as an array (Demoen

et al. 2007). For simplicity sake but also because we are interested in databases, we start

by assuming the data is in first normal form (Codd 1970), that is, we only include Prolog

atoms and numbers (integers to start with). Given this, there are two decisions:

• Should we store tagged or un-tagged objects?
• Should we use a vertical representation, i.e., separate facts, an horizontal represen-

tation, i.e., separate arguments, or a single block of data?

These decisions are not as crucial as they would be in the WAM: one important advantage

of exo-compilation is that we encapsulate the data. Thus, we can feel free to experiment

with different representations. Our system currently implements a single block of tagged

terms, where each entry corresponds to an argument of a fact. We thus implement the

following relation:

d(A1
i , A

2
i , . . . , A

arity
i )⇔ (P [i− 1][0], P [i− 1][1], . . . , P [i− 1][arity − 1])

where P points to the base of the array and we follow C notation for indices. The actual

implementation reuses the WAM abstract machine register S as a pointer to the current

fact, that is, when entering exo-code clause i+1 we always execute first S ← P +i∗arity,

thus ensuring that S points to the beginning of fact i + 1.

2.1 Instructions

Accessing the data is performed by a variation on the WAM’s vget atom instruction. We

remind the reader that in the WAM the instruction

get atom Xi, C



4 Vı́tor Santos Costa and David Vaz

will unify the contents of argument register Xi and the constant C. Remember that in

our exo-code, the code is a sequence of terms and the WAM abstract machine register S

initially points to the first argument of the clause. Thus, the corresponding instruction

exo-code instruction is

get exo atom i

that unifies the contents of argument register Xi and the constant at position S[i− 1].

2.2 Database Loading

An important consideration in the design of the exo-code is loading. Currently, we use a

two step process:

1. run through the database and verify the database size (number of clauses) and the

type of each argument.

2. Compute size and allocate space for predicates.

3. run through the database and copy each fact to the allocated space sequentially.

This model avoids fragmentation, as atoms are allocated in the symbol table by the first

step, thus before we allocate any space for the predicate. In contrast, by default YAP

reads clauses one by one, mixing allocation of atoms in the symbol table with allocation

of compiled code for individual clauses. As both are allocated from the same pool, it is

impossible to recover all space when consolidating the clauses together, as described in

Figure 1.

a(1, john, 2)john a(2, peter, 2)peter a(3, peter, 2)

Fig. 1: Space Fragmentation When Compressing Clauses. When YAP compiles a file

with three facts, the parser first adds the constant john to the symbol table, then YAP

compiles a(1,john,2), then the parser adds peter, and then YAP compiles the second

and third clauses. When YAP tries to release space by packing the three clauses, the first

clause will become a hole.

3 Indexing Exo-Code

Indexing is key to the implementation of exo-code. In fact, our design is such that, ar-

guably, all code is indexing code. We start by describing the general flow of the execution

when we enter an exo-code procedure.

Every exo-procedure starts with the instruction exo, that:

1. builds up a map with the instantiation state on every argument;

2. does a linear scan on a collection of indices:

(a) If one index matches the map, it executes the index.

(b) If no index matches, it generates a new one in JITI style.

The next step of exo-execution corresponds to executing an index, and consists of the

following steps:



BigYAP: Exo-compilation meets UDI 5

1. Construct a key using the map of instantiated arguments.
2. Look-up the key in a hash-table, and:

(a) if not there, execute the fail instruction;

(b) If it matches several clauses, make S point to the first clause, and jump to the

non-determinate code entry;

(c) If it matches a single clause, make S point to the first code, and jump to the

determinate code entry.

The global structure of the exo-code is shown in Figure 2. Each index block includes a

map of instantiated arguments, a hash-table of keys and matching clauses, and a block

of emulator code with two entry points: the determinate and the non-determinate entry.

Next, we discuss the hash-table and the block of emulator instructions in more detail.

EXO

Predicate
Descriptor

Data
Block

Index Block Index BlockIndex Block

- - - + - - + - +

Hash
Table

Hash
Table

Data

Fig. 2: Exo-code: the predicate descriptor includes the first opcode to be executed. in this

case exo. It also points to the data block that includes the code, stored as an array. The

header of the code block points to a linked list of indexing blocks, one per each mode of

the predicate’s argument. Each indexing block may (or may not) include a hash table

and always includes byte-code.

3.1 The Hash Table

The hash-table was designed to be compact and to not require allocation of temporary

memory to be built. Speed is relevant but it was not considered the major goal. We

implemented it as two arrays, both containing indices of clauses:

• the keys array points to a clause and is used for matching;
• the chains array contains pointers to a chain of clauses that match the clause.

In some more detail, if i(G) is an index block that has the same instantiation map as a

query G, and assuming there are no collisions, we have that:



6 Vı́tor Santos Costa and David Vaz

• h ← hash(G), where h is the value of the i(G) hash function for either a term G

or a clause C;

• k ← i(G).keys[h] refers to a clause C such that hash(C) = h;

• i(G).chains[k] refers to the second clause C ′ such that hash(C ′) = h;

• i(G).chains[i(G).chains[k]] refers to the third clause C ′′ such that hash(C ′′) = h;

A chain terminates when we find the OUT OF DOMAIN value. Notice that if in-

dexing on the goal makes the goal always determinate, a all values in i(G).chains are

OUT OF DOMAIN , and thus the chains data-structure can be discarded.

3.2 The Hash Function

Experience showed that the algorithm can be quite sensitive to the quality of the hash

function, especially for very large tables. We settled in using the FNV non-cryptographic

hash function (Henke et al. 2007).

hash← FNV basis;

for octet of data do

hash← hash ∗ FNV prime;

hash← hash⊕ octet of data;

end for

return hash

Notice that we need to walk all the octets in the representation of all bound terms (the

key). Table 1 justifies our decision by comparing this function against other widely used

hashing functions. We present the times necessary to construct hashes on three tables

from an Observational Medical Outcomes Partnership (OMOP) simulated medical record

database (Murray et al. 2012). The times are dominated by the lookup operation and by

collision handling, so they give a good estimate on how effective the algorithms are.

Dataset Entries RS DJB2 FVN-1A Murmur3
conditions 175,496,758 16,824ms 17,055ms 16,635ms 19,823ms
hasdrug 118,541,933 12,770ms 12,387ms 11,744ms 14,238ms
dates 266,297 18ms 25ms 18 ms 23ms

Table 1: Hash algorithm performance

Note that these hash functions are much more expensive to compute than the module

hash used in the WAM, but they are useful at reducing collisions on larger tables.

Hash table size defaults to three times the size of the table. If the number of collisions

is very low (possibly because there are few different keys), we contract the size of the

table and rebuild. If the number of a sequence of collisions exceeds a threshold, by default

32, we stop, expand the table size and rebuild from scratch.

3.3 The Index Code

Every index block has associated a code sequence. For a predicate of arity 4, assuming

that arguments 1 and 4 were bound, the code would be:



BigYAP: Exo-compilation meets UDI 7

L_non_det_enter:

try_me_exo

retry_me_exo

L_det_enter:

get_exo_atom 2

get_exo_atom 3

proceed

The two labels correspond to the non-determinate and determinate entry points, respec-

tively. Determinate execution enters the code on the first get exo atom, unifies, and

proceeds.

Choice-point instructions The try me exo instruction creates a choice-point whose alter-

native points to the retry me exo instruction. It works very much as the WAM’s try me

instruction, except that if we currently match clause C:

1. it pushes the value of i(G).chains[k], where k is the index of the current clause, to

the new choice-point.

2. after executing, control jumps to L det enter, that is, it skips the retry me exo

instruction.

The retry me exo instruction combines the WAM’s retry me and trust me instructions:

1. it pulls n← i(G).chains[k] from the stack, and it updates S to point at the clause

at offset n;

2. it computes v ← i(G).chains[n];

3. if v = OUT OF DOMAIN the chain terminates, so execute a trust me.

4. otherwise, execute a retry me, but do not update the choice-point’s alternative.

3.4 The Default Block

The indexing code always has a default indexing block, that corresponds to the case

where no arguments are instantiated. The default block has an empty hash-table, and

the code for our example would be:

L_non_det_enter:

try_exo S0

retry_exo Sf

get_exo_atom 1

get_exo_atom 2

get_exo_atom 3

get_exo_atom 4

proceed

The instructions are similar to the ones discussed above. Two differences:

1. try exo sets S to S0, which points to the first clause;

2. retry exo executes trust when S == Sf .



8 Vı́tor Santos Costa and David Vaz

Optimisations A number of optimisations are possible. We briefly mention three:

• If an index block is determinate, a more instantiated block cannot be a better

indexer; thus, if such blocks exist they can be discarded.

• We use 32-bits offsets to represent addresses. Offsets complicate and slow-down

code, but they halve memory usage.

• As proposed in the original exo-code paper, if the value of an argument does not

matter, we can simply skip code for that argument (Demoen et al. 2007). We may

also want to declare arguments to be output, and never build indices on them.

4 The UDI and Exo-Code

The UDI allows users to integrate their own indexing engines within YAP. This is impor-

tant when we want to obtain indexing that depends on a certain interpretation of terms,

say, if we want to process number ranges in a special way. The UDI can benefit from

exo-coding, as exo-coding isolates the data from the Prolog engine. Next, we describe

how the UDI integrates with exo-compilation.

To illustrate our approach, we refer back to the prescription query in page 2. Consider

we want to extend exo-code to support range searches over the second argument, given

that the first and third arguments are instantiated. We need to address three questions:

• Where? How do we know that we want to give a special semantics to the second

argument? The UDI solution is to have declarations that specify the type for this

argument, and to use attributed variables to constrain execution (Vaz et al. 2009).

• When? In contrast with the initial UDI, we now implement UDI indexing at run-

time. This complicates the design of the UDI somewhat, but allows for integration

between the UDI and the JITI.

• How? We call the UDI code after the exo-index is constructed, and we assume full

access to the data-structures (that are mostly independent of the WAM’s).

The idea is presented in figure 3. The left-side shows the exo-hash table as described

before: the key array indirectly indexes a second array, the chains array, that points to

a sequence of entries. The sequence is represented as a linked-list, and follows Prolog

ordering. If we want to find the largest and the smallest integer it will takes time O(n),

where n is the chain size, bounded by the number of clauses.

In contrast with the previous approach for UDI compilation, in exo compilation space

and time are paramount, so we assume the UDI code can directly access the exo hash

table data-structure. In this case, we assume that the data is read-only so there is no point

in building an incremental and updatable data-structure, such as a B-Tree. Instead, in

order to achieve logarithmic search, we organize clauses as sorted blocks, one per different

value of the key. The approach is shown in Figure 3(b). The keys table did not change, but

the chains table was made to point to a new table, that contains blocks with sequences

of clauses. Each block contains:

• a header giving the size of the block;

• plus a sequence of pointers to clauses, ordered by the numeric argument.

This very straightforward approach guarantees constant-time access to the minimal and



BigYAP: Exo-compilation meets UDI 9

key

cls

key

cls

cls

(a) Default hash table for exo-indexing

key

cls
Block

key

cls

Block

(b) An UDI hash-table for exo-indexing, us-
ing integer ordering: chains of integers are
moved into blocks

Fig. 3: Reshaping an exo-hash table by using the UDI.

maximal elements, and logarithmic time for other elements. The space overhead is O(C),

where C is the number of clauses.

The interface occurs at three-points:

Compilation: the exo-compiler calls the UDI code after constructing a new hash-table

(the interface may also allow calling before). In the example, the UDI code collects the

entries matching a key, sorts them, and stores them in the new sequence table. Last, the

chains table is made to point to the sequence table.

Procedure Entry : the exo instruction detects that the matching indexing block is UDI,

so it calls the UDI code after performing look-up in the hash table. The UDI code follows

the chain pointer, executes based on a constraint on the numeric argument. Examples

of constraints include min, implemented by take the first element; max, implemented by

reading the number of elements in the chain and take the last; and gt X implemented

by searching for X and set-up a choice-point starting at clause Ai > X and ending at last

element

Notice that the ordering of returned clauses does not follow traditional Prolog order.

The search for X can be binary or linear, depending on the chain-size. Last, if X is

unconstrained one should enumerate all clauses.

Instruction retry : in this case the update of the choice point and the detection of the

last instruction are performed by the UDI code. This requires storing the limits in the

choice-point. and calling the UDI code before the main body of retry or trust starts.

The proposed UDI is motivated by medical domains, where often we want to find the

first time a patient has been prescribed a certain drug, and whether she took the drug

after having reported some pre-specified condition. Other approaches would be needed

for spatial data, for example. Last, notice that the approach requires sorting each bucket

of clauses. A step-wise algorithm, like a B-Tree, may be a better approach if we have few

keys and large buckets.



10 Vı́tor Santos Costa and David Vaz

5 Evaluation

We first evaluate exo-code on a gene expression and on a web mining application. These

experiments were performed on a Intel Xeon E5620 Linux Red Hat v6.3 machine, running

in 64 bit mode, with 24GB memory. Exo-code is using 64-bit addresses throughout for

comparison fairness. As our first dataset, we use the human gene ontology (Ashburner

et al. 2000). The application takes advantage of the YAP-R interface (Angelopoulos et al.

2013) to consult differentially expressed genes from gene expression data, and then uses

the gene ontology database to detect the main functions of those genes. YAP loads the

gene ontology as three relations: a set of concepts, a graph connecting those concepts,

and a table instantiating the concepts in the context of the human genome. In the second

dataset we have a tokenised extract of an Italian ecology blog. Again we use R, but this

time to construct a cloud of words with the most popular stem words in the ecology blog.

Most work is Prolog counting how many times the different words occur in the blog. We

show two versions: the first 5 million tokens, and the full blog with 38M tokens.

Exo Compact Byte-code
File Facts Time Size Time Size
Annotations 425,093 1,978 8,386 5,254 16,772
Terms 39,222 300 2,145 560 3,677
Graph 992,790 5,062 46,537 12,366 69,805
Tokens5M 5,000,000 29,719 195,312 39,133 312,500
Tokens 38,331,459 199,088 1,301,989 253,962 2,083,183

Table 2: Exo-code and Emulated code loading times in msec and Sizes in KB

Table 2 shows the loading time using exo and default compilation. The results show

a speedup in loading time (exo-compilation does not actually need to compile), and a

compression factor between two and 1.5. Notice that the byte-code already uses coa-

lesced instructions and compacted clauses (Santos Costa 2007). We do not consider the

fragmentation overhead at this point.

Exo Byte-code
File Index Size (KB) Index Size (KB)
Annotations 8,386 17,286
Terms 4,598 4,014
Graph 46,537 161,034
Tokens5M 351,563 588,551
Tokens 2,343,582 3,831,397

Table 3: Exo-code and JITI byte-code index size in KB

Table 3 compares indexing size. Notice that exo-indexing actually takes more space in

the Terms predicate. This is because this table needs indexing on a single argument. The

WAM in this case builds a very compact table and YAP does not need to generate choice-

point manipulation instructions. Exo-indexing does best when one has to do complex

accesses and one has to backtrack through the database. This occurs in the Graph table,

where exo-code is four times more compact.

Table 4 compares query run times and memory usage by YAP, as measured by the



BigYAP: Exo-compilation meets UDI 11

Exo Compact Byte-code
Run Time Max Pages Run Time Max Pages

Annotator 52s 1,965,808 35s 2,889,056
Tokens5M 9s 1,941,904 17s 7,193,392
Tokens 43s 11,763,312 63s 43,056,080

Table 4: Query Cputime in sec. and memory usage in number of used pages, as reported

by the Operating System.

Operating System. On the one hand, exo-code has an higher execution overhead, and

thus should be slower. On the other hand, the hash function used in the exo-code does

a much better job on very large tables than the standard WAM radix hash. The results

confirm this: the “small” benchmark is slower when running with exo-code, but on the

larger data-set exo-code is actually faster.

We also show the difference in number of resident pages, as it gives a good indication

of total memory usage (there was no swapping). Note that exo-compilation does better

than what we get just when considering the actual code, as the YAP JITI uses very

dynamic data structures that cause substantial fragmentation.

As a final result, we evaluate performance on a machine-learning task. The goal is to

mine health-record data for adverse drug events (Page et al. 2012). We use Inductive Logic

Programming (ILP) on simulated electronic health records data (Murray et al. 2012). We

compare run-times on a i7-3930K with 64GB of ram, running ubuntu in 64-bits mode.

Altogether, the data has approximately 300 million tuples: 175M tuples in a table of

prescriptions, 118M tuples on a table of diagnosis, and 10M tuples on a table of persons.

Execution time is dominated by 1100 queries that are performed on 8M examples. We

use the UDI to sort by the dates at which patients were diagnosed or had prescriptions.

The main queries search for the first time a patient developed a certain symptom given

that he had been exposed to a certain drug. Results are shown in Table 5.

Exo Exo + UDI Byte-code
Load Time (sec) 690 692 2,200
Run Time (sec) 6,769 5,108 5,469
Total Time (sec) 7,459 5,800 7,669
Memory (MB) 21,690 23,388 60,632

Table 5: Data Mining in the OMOP database: we compare byte-code, exo and exo plus

UDI. Load Time is the time to load the database, Run Time is cputime taken to run the

query, Total Time is wall-time reported for full execution, and Memory is total memory

usage in MBytes as reported by the Operating System.

As expected, exo-code load times and memory usage do very well in this last test:

memory usage drops to a third, making it possible to use large datasets in mid-range

machines. The run-time performance is actually faster using YAP byte-code than with

exo-code. We believe this is because the default JITI constructs a hash-table per instan-

tiated argument in each usage mode. Instead, exo-compilation builds a single hash table.

Even so, performance is close.

The run-time improves with UDI indexing, as a substantial amount of time is spent in

range queries, such as finding the first time a drug or condition was reported. Although



12 Vı́tor Santos Costa and David Vaz

we most often do not have that many different reports per patient and condition or drug,

UDI indexing largely improves the run-time with only a small overhead in memory, in

this case 10 %. The use of UDI actually outweighs the exo-code overhead when compared

with traditional compilation. Last, we again notice that these results were obtained using

64-bit addresses in the hash-tables. Using 32-bit offsets reduces total memory usage in

this application to a maximum of 15 and 16GB.

6 Conclusions and Future Work

We introduce an implementation of exo-compilation for Prolog. In contrast with the

initial proposal (Demoen et al. 2007), the fundamental goal is not so much to obtain

a compact representation of the database but to obtain a compact representation of

the indices, as they dominate overall performance, while striving at supporting scalable

access to data in Prolog. This requires compilation algorithms to be ideally O(n).

The second contribution of the paper is the integration of the exo and UDI work. This is

motivated by practical applications of Prolog: we need efficient search in ordered values.

On the other hand, we do not want to encumber generic Prolog with the machinery

required for all types of different indexing. The UDI offers an excellent solution towards

this problem and naturally fits with the exo-compilation ideas.

Our results so far have been excellent. The overhead of the exo instructions and the

hash function seems to be offset by the gains in quality from using a better hash key, even

for relatively small data-sets. Most importantly, we have been able to process very large

data-sets, with hundreds of millions of facts, in mid-sized machines (24GB of memory

with current hardware). This opens the door to exciting new results in using Prolog.

The current implementation has some important limitations. First, we do not support

floating point numbers and ground complex terms. This can be easily addressed by

computing how much space we need in the first loading step, but complicates hashing.

Second, compilation is noticeably slow for large data-sets. Third, as described in (Demoen

et al. 2007), one important advantage of exo-compilation is the ability to optimise for

different types of queries, say, one can generate code specialised for first-solution queries.

We would like to incorporate these ideas in our system. It is interesting to reuse our

results on hash tables in the context of the standard WAM. Last, using these large

datasets raises a number of interesting questions: how to best run the queries? Where

to insert constraints and where to reorder goals? Should we consider combining with

bottom-up execution? And how will reuse and tabling work in these very large sets (Zhou

and Have 2012)? We believe these are important research questions and worth of future

investigation.

Acknowledgments

We would like to acknowledge the referees for their very valuable comments. This work

is partially financed by the ERDF European Regional Development Fund through the

COMPETE Program (operational program for competitiveness) and by National Funds

through the FCT Fundação para a Ciência e a Tecnologia (Portuguese Foundation

for Science and Technology) within projects LEAP PTDC/EIA-CCO/112158/2009 and

ADE PTDC/EIA-EIA/121686/2010.



BigYAP: Exo-compilation meets UDI 13

References

Angelopoulos, N., Santos Costa, V., ao Azevedo, J., Wielemaker, J., Camacho, R.,
and Wessels, L. 2013. Integrative functional statistics in logic programming. In Proc. of
Practical Aspects of Declarative Languages. LNCS, vol. 7752. Rome, Italy. Accepted.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M.,
Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-
Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M.,
Rubin, G. M., and Sherlock, G. 2000. Gene ontology: tool for the unification of biology.
The Gene Ontology Consortium. Nature genetics 25, 1 (May), 25–29.

Codd, E. F. 1970. A relational model for large shared data banks. Communications of the
ACM 13, 6, 377–387.

Conway, T., Henderson, F., and Somogyi, Z. 1995. Code Generation for Mercury. In
Proceedings of the International Symposium on Logic Programming, J. Lloyd, Ed. MIT Press,
Cambridge, 242–256.

Demoen, B., Mariën, A., and Callebaut, A. 1989. Indexing in Prolog. In Proceedings of
the North American Conference on Logic Programming, E. L. Lusk and R. A. Overbeek, Eds.
Cleveland, Ohio, USA, 1001–1012.

Demoen, B. and Nguyen, P.-L. 2000. So Many WAM Variations, So Little Time. In LNAI
1861, Proceedings Computational Logic - CL 2000. Springer-Verlag, 1240–1254.

Demoen, B., Nguyen, P.-L., Santos Costa, V., and Somogyi, Z. 2007. Dealing with large
predicates: exo-compilation in the WAM and in Mercury. In Proceedings of the Seventh
Colloquium on the Implementation of Constraint and Logic Programming (CICLOPS 2007),
S. Abreu and V. Santos Costa, Eds. Porto, Portugal, 117–131.

Guo, H.-F. and Gupta, G. 2008. Simplifying dynamic programming via mode-directed tabling.
Softw., Pract. Exper. 38, 1, 75–94.

Henke, C., Schmoll, C., and Zseby, T. 2007. Empirical Evaluation of Hash Functions for
Multipoint Measurements . Tech. rep., Fraunhofer Institute FOKUS. 11.

Murray, R. E., Ryan, P. B., and Reisinger, S. J. 2012. Design and Validation of a Data
Simulation Model for Longitudinal Healthcare Data. In Proc. of the ANIA Annual Symposium.
Vol. 1176–1185. Washington DC, USA.

Page, D., Santos Costa, V., Natarajan, S., Peissig, P., Barnard, A., and Caldwell, M.
2012. Identifying adverse drug events from multi-relational healthcare data. In Proceedings of
the Twenty-Sixth Conference on Artificial Intelligence, AAAI-12, J. Hoffmann and B. Selman,
Eds.

Santos Costa, V. 2007. Prolog Performance on Larger Datasets. In Practical Aspects of
Declarative Languages, 9th International Symposium, PADL 2007, Nice, France, January 14-
15, 2007., M. Hanus, Ed. Lecture Notes in Computer Science, vol. 4354. Springer, 185–199.

Santos Costa, V., Damas, L., and Rocha, R. 2012. The YAP Prolog system. Theory and
Practice of Logic Programming 12, Special Issue 1-2, 5–34.

Santos Costa, V., Sagonas, K., and Lopes, R. 2007. Demand-Driven Indexing of Prolog
Clauses. In Proceedings of the 23rd International Conference on Logic Programming, V. Dahl
and I. Niemelä, Eds. Lecture Notes in Computer Science, vol. 4670. Springer, 305–409.

Swift, T. and Warren, D. S. 2012. XSB: Extending Prolog with Tabled Logic Programming.
TPLP 12, 1-2, 157–187.

Van Roy, P. 1994. 1983-1993: The Wonder Years of Sequential Prolog Implementation. J.
Logic Program. 19/20.

Vaz, D., Santos Costa, V., and Ferreira, M. 2009. User Defined Indexing. In Logic
Programming, 25th International Conference, ICLP 2009, Pasadena, CA, USA, July 14-17,
2009. Proceedings, P. M. Hill and D. S. Warren, Eds. Lecture Notes in Computer Science, vol.
5649. Springer, 372–386.



14 Vı́tor Santos Costa and David Vaz

Warren, D. H. D. 1977. Implementing Prolog - Compiling Predicate Logic Programs. Tech.
Rep. 39 and 40, Department of Artificial Intelligence, University of Edinburgh.

Warren, D. H. D. 1983. An Abstract Prolog Instruction Set. Technical Note 309, SRI Inter-
national.

Wielemaker, J., Schrijvers, T., Triska, M., and Lager, T. 2012. SWI-Prolog. TPLP 12, 1-
2, 67–96.

Zhou, N.-F. and Have, C. T. 2012. Efficient tabling of structured data with enhanced hash-
consing. TPLP 12, 4-5, 547–563.


