
A VM program starts with a byte indicating the number of predicates P in the program. Next, there
are several components:

• An unsigned integer indicating the number N of nodes to instantiate, followed by 2N unsigned integers
corresponding to one pair of unsigned integers one for node. The first value is the node ID to use during
execution and the second one the ID given by the user.

• An unsigned integer indicating the number of arguments needed to run the program.

• An unsigned integer describing the number of rules R in the program. Followed by R byte regions.
Each region contains an unsigned integer, N , indicating the size of the rule and then N bytes with the
string for this rule.

• An unsigned integer indicating the number S of constant strings in the program followed by S pairs
containing the length of the string and the string itself.

• A byte indicating the number of code constants C and then C bytes for the types of such constants.
Finally, there’s an unsigned integer describing the code size for computing the constants and the code
itself.

• A set of P predicate descriptors, with 69 bytes each.

• A set of P byte-code instructions, one for each predicate.

A predicate descriptor consists of the following fields:

• A short integer indicating the size, in bytes, of the corresponding byte-code instructions.

• 1 byte describing the predicate’s properties.

• 1 byte indicating the aggregate’s type, if any. The high nibble if the aggregate type and the low nibble
the aggregate field.

• A byte indicating the predicate’s number of fields F .

• 32 bytes with information about the fields’ types. Actually, only F bytes are used, and the remaining
bytes are zeroes.

• 32 bytes containing the predicate’s name representing as a string. As before, unnused bytes are left as
zeroes.

1



INSTRUCTION BYTE FORMAT ARGS

IF

0 1 1 0 0 0 0 0
0 0 0 r r r r r
j j j j j j j j
j j j j j j j j
j j j j j j j j
j j j j j j j j

reg, jump offset

if reg != 0 then process until ELSE and then jump.
if reg = 0 then jump to ELSE
(note: IFs may be nested)

ELSE 0 0 0 0 0 0 1 0 —
a marker for if blocks

ITER

1 0 1 0 0 0 0 0
0 i i i i i i i
o o o o o o o o
a a a a a a a a
j j j j j j j j
j j j j j j j j
j j j j j j j j
j j j j j j j j

id, options, options arg, jump offset, matchlist

iterates over all the tuples of type id that match
according to the following matchlist.
after all matching facts have been processed, use
jump offset to jump to the next instruction

NEXT 0 0 0 0 0 0 0 1 —
return to iter and process next matching fact

SEND

0 0 0 0 1 0 0 0
0 0 0 r1 r1 r1 r1 r1
0 0 0 r2 r2 r2 r2 r2

reg1, reg2

sends the tuple in reg1 along the path in reg2
if reg1 = reg2 then the tuple is stored locally

REMOVE 1 0 0 r r r r r reg
delete tuple stored in reg from database

OP

1 1 0 0 0 0 0 0
0 0 v1 v1 v1 v1 v1 v1

0 0 v2 v2 v2 v2 v2 v2

0 0 v3 v3 v3 v3 v3 v3

0 0 0 o o o o o

val1, val2, val3, op

sets val3 = val1 op val2

NOT

0 0 0 0 0 1 1 1
0 0 v1 v1 v1 v1 v1 v1

0 0 v2 v2 v2 v2 v2 v2

val1, val2

sets val2 = not val1

MOVE

0 0 1 1 0 0 0 0
0 0 v1 v1 v1 v1 v1 v1

0 0 v2 v2 v2 v2 v2 v2

val1, val2

copies val1 to val2
2



INSTRUCTION BYTE FORMAT ARGS

MOVE-NIL
0 1 1 1 0 0 0 0
0 0 v v v v v v

val

sets val to the nil list

TEST-NIL

0 0 0 0 0 0 1 1
0 0 v1 v1 v1 v1 v1 v1

0 0 v2 v2 v2 v2 v2 v2

val1, val2

v2 = 1 if v1 is nil.
v2 = 0 if v1 is not nil.

ALLOC

0 1 0 0 0 0 0 0
0 i i i i i i i
0 0 v v v v v v

id, val

allocates a tuple of type id and stores it in val

RETURN 0 0 0 0 0 0 0 0 —
finished processing the tuple - return

CALL

0 0 1 0 0 0 0 0
0 i i i i i i i
0 0 0 r r r r r

id, reg, args

call external function number id with args and store
the result in reg

CONS

0 0 0 0 0 1 0 0
0 0 0 0 0 0 t t
0 0 v1 v1 v1 v1 v1 v1

0 0 v2 v2 v2 v2 v2 v2

0 0 v3 v3 v3 v3 v3 v3

val1, val2, val3

sets val3 = val1 :: val2
t is the list type (00 = int, 01 = float, 02 = addr)

HEAD

0 0 0 0 0 1 0 1
0 0 0 0 0 0 t t
0 0 v1 v1 v1 v1 v1 v1

0 0 v2 v2 v2 v2 v2 v2

val1, val2

sets val2 = head val1
t is the list type (00 = int, 01 = float, 02 = addr)

TAIL

0 0 0 0 0 1 1 0
0 0 0 0 0 0 t t
0 0 v1 v1 v1 v1 v1 v1

0 0 v2 v2 v2 v2 v2 v2

val1, val2

sets val2 = tail val1
t is the list type (00 = int, 01 = float, 02 = addr)

FLOAT

0 0 0 0 1 0 0 1
0 0 v1 v1 v1 v1 v1 v1

0 0 v2 v2 v2 v2 v2 v2

val1, val2

sets val2 = (float)val1

3



INSTRUCTION BYTE FORMAT ARGS

SELECT 0 0 0 0 1 0 1 0 size,hsize,htable,codeblocks

this is a big instruction used to select a specific code
block for a node. it is followed by a 4-byte integer
indicating the size of the whole instruction, then
a 4-byte integer indicating the
size N of a simplified hash-table. N represents
the number of nodes in the system for efficiency reasons.
Next, there is N*4-byte integers, where each integer
is the offset to a code block of the corresponding
node. The offsets start after the end of the hash
table. If the offset is 0, this node has no
associated code block, so it should use size to
jump to the next instruction. If the offset is
positive, you should subtract one byte from it
and then jump to the code block. At the end of
each code block, there is a RETURN-SELECT.

RETURN-SELECT 0 0 0 0 1 0 1 1 jump

This instruction is followed by a 4-byte integer
with a jump offset to the next instruction.

COLOCATED

0 0 0 0 1 1 0 0
0 0 v1 v1 v1 v1 v1 v1

0 0 v2 v2 v2 v2 v2 v2

0 0 0 r r r r r

n1,n2,dest

sets dest = true if nodes n1 and n2 are on the same machine
sets dest = false otherwise

DELETE
0 0 0 0 1 1 0 1
0 i i i i i i i
0 0 v1 v1 v1 v1 v1 v1

i,v1

deletes the tuples of type i with the first argument as value v1

REMOVE
1 0 0 0 0 0 0 0
0 0 0 r r r r r

reg

deletes tuple reg from the database

RETURN-LINEAR 1 1 0 1 0 0 0 0

linear fact was used, execution must terminate

RETURN-DERIVED 1 1 1 1 0 0 0 0

head of rule was derived, return if some linear fact was used

4



INSTRUCTION BYTE FORMAT ARGS

RULE 0 0 0 1 0 0 0 0 id

rule id is gonna be executed

RULE DONE 0 0 0 1 0 0 0 0

rule id has been matched

SAVE ORIGINAL

0 0 0 1 0 0 1 0
j j j j j j j j
j j j j j j j j
j j j j j j j j
j j j j j j j j

jump

save initial tuple and run the following
code until we hit a return.
the original tuple may be consumed
in the process.
if that’s the case, then stop execution,
else continue by jumping to the outer block.

OP BYTE FORMAT

float 6= 0 0 0 0 0

int 6= 0 0 0 0 1

float = 0 0 0 1 0

int = 0 0 0 1 1

float < 0 0 1 0 0

int < 0 0 1 0 1

float ≤ 0 0 1 1 0

int ≤ 0 0 1 1 1

float > 0 1 0 0 0

int > 0 1 0 0 1

float ≥ 0 1 0 1 0

int ≥ 0 1 0 1 1

float% 0 1 1 0 0

int% 0 1 1 0 1

float+ 0 1 1 1 0

int+ 0 1 1 1 1

float− 1 0 0 0 0

int− 1 0 0 0 1

float∗ 1 0 0 1 0

int∗ 1 0 0 1 1

float÷ 1 0 1 0 0

int÷ 1 0 1 0 1

addr 6= 1 0 1 1 0

addr = 1 0 1 1 1

addr > 1 1 0 0 0

bool or 1 1 0 0 1

5



VALUE BYTE FORMAT ARGS

REG 1 r r r r r reg

TUPLE 0 1 1 1 1 1 —
refers to the tuple currently being processed

HOST ID 0 0 0 0 1 1 —
refers to the node currently being processed

NIL 0 0 0 1 0 0 —
the empty list

INT 0 0 0 0 0 1 int
the next 4 bytes after the current instruction
are an immediate integer to which this refers

FLOAT 0 0 0 0 0 0 float
the next 4 bytes after the current instruction
are an immediate float to which this refers

ADDR 0 0 0 1 0 1 addr
the next 4 bytes after the current instruction
are the address to which this refers

FIELD 0 0 0 0 1 0
the next two bytes after the current instruction
indicate a field of a register in the following format:

X X X X f f f f
X X X r r r r r

field, reg

with reg indicating a register with a tuple value
and field indicating the tuple’s field number.

STRING 0 0 0 1 1 0 size, content
the next 4 bytes indicate the length of the string
which are followed by the string itself

ARG 0 0 0 1 1 1 id
the next byte indicates the argument id

CONST 0 0 1 0 0 0 const id
the next 4 bytes indicates the constant id

ARGS BYTE FORMAT

VALUE X X v v v v v v value

6



MATCHLIST BYTE FORMAT

MATCHLIST
f f f f f f f f
m m v v v v v v

field, marker, value

requires that the tuple’s field field match value
mm=11 if the match list is empty and mm=01 for the last
entry in the list.

AGGREGATE BYTE FORMAT

none 0 0 0 0

first 0 0 0 1

int max 0 0 1 0

int min 0 0 1 1

int sum 0 1 0 0

float max 0 1 0 1

float min 0 1 1 0

float sum 0 1 1 1

int set union 1 0 0 0

float set union 1 0 0 1

int list sum 1 0 1 0

float list sum 1 0 1 1

TYPE BYTE FORMAT

int 0 0 0 0

float 0 0 0 1

addr 0 0 1 0

int list 0 0 1 1

float list 0 1 0 0

addr list 0 1 0 1

int set 0 1 1 0

float set 0 1 1 1

type 1 0 0 0

string 1 0 0 1

PROPERTY BYTE POSITION

aggregate 1

persistent 2

linear 3

delete 4

schedule 5

NOTES:
All offsets and lengths are given in bytes.

7


