
On Applying Tabling to On Applying Tabling to 
Inductive Logic ProgrammingInductive Logic Programming

Ricardo Rocha – Nuno Fonseca – Vítor Santos Costa
LIACC & Univ. Porto – LIACC & Univ. Porto – Univ. Wisconsin, Madison

Introduction

Tabling

Initial Results: April + YapTab

Conclusions

Acknowledgements

Tabling for ILP

ILP
It is recognized that efficiency and scalability is a major 
obstacle to an increased usage of Inductive Logic 
Programming (ILP) in complex applications with large 
hypotheses spaces. In this work, we focus on improving 
the efficiency and scalability of ILP systems by 
exploring tabling mechanisms available in the 
underlying Logic Programming systems. We present 
two different approaches. Our first approach is a direct 
application of tabling to query execution. The second 
approach is designed to take advantage of the 
redundancy in ILP search. To validate our approaches, 
we ran the April ILP system in the YapTab Prolog 
tabling system using two well-known datasets. The 
results obtained show quite impressive gains without 
changing the theories generated.

Further Work

Tabling is an implementation technique where results 
for subcomputations are stored and then reused when 
a repeated computation appears.
The basic idea behind tabling is straightforward:

• Programs are evaluated by storing newly found 
answers of current subgoals in an appropriate data 
space, called the table space.
• New calls to a predicate check this table to verify 
whether they are repeated. If they are, answers are 
recalled from the table instead of the call being re-
evaluated against the program clauses.
• Meanwhile, as new answers are found, they are 
inserted into the table and returned to all variant 
subgoals.

Tabling has proven to be particularly effective in Prolog 
programs:

• Avoids recomputation
• Avoids infinite loops

Tabling has been successfully applied to real 
applications:

• Model Checking
• Program Analysis
• Deductive Databases
• Non-Monotonic Reasoning

A general ILP system spends most of its time 
evaluating hypotheses, either because the number of 
examples is large or because testing each example is 
computationally hard.
An important characteristic of ILP systems is that they 
generate candidate hypotheses (clauses) which have 
many similarities among them.

• hyp(X):- a(X).
• hyp(X):- a(X), b(Y).
• hyp(X):- a(X), b(Y), c(X,Y).
• hyp(X):- a(X), b(Y), d(Y,Z).

Computing the coverage of an hypothesis requires, in 
general, running all positives and negatives examples 
against the clause. For example, to evaluate if the 
example hyp(e1) is covered by the previous 
hypotheses, the system executes the goals:

• a(e1).
• a(e1), b(Y).
• a(e1), b(Y), c(e1,Y).
• a(e1), b(Y), d(Y,Z).

We can do a lot of recomputation!
• a(e1) is executed 4 times.
• b(Y) is executed 3 times.
• a(e1), b(Y) is executed 3 times.

This suggests two approaches to avoid recomputation:
• We can table subgoals. This requires no changes 
to the ILP system. We simply need the declare the 
predicates to table. This approach will only work if 
the computation for a subgoal is expensive. It will 
bring no benefit if, say, the subgoal reduces to a 
database access.
• We can table conjunction of subgoals. This 
approach is only useful if we repeatedly generate the 
same prefix. If we have a large number of prefixes 
which are only called a few times, we may need 
large amounts of space to store the tables, and gain 
little time-wise.

Tabling conjunction of subgoals requires minimal 
changes to the ILP system. We designed the following 
solution. All clauses defined by a conjunction of N 
subgoals (N>2) are redefined to use two literals. The 
first defines the conjunction of the N-1 initial subgoals. 
The second is the N subgoal.

• hyp(X):- a(X), b(Y), c(X,Y).
→ hyp(X):- a_b(X,Y), c(X,Y).

• hyp(X):- a(X), b(Y), c(X,Y), d(Z).
→ hyp(X):- a_b_c(X,Y,X,Y), d(Z).

• hyp(X):- a(X), b(Y), c(Z,Z), d(Z).
→ hyp(X):- a_b_c(X,Y,Z,Z), d(Z).

The conjunctions are defined in tabled predicates. As 
different conjunctions are generated, the system 
dynamically asserts a new tabled predicate that 
abstracts the set of arguments in the conjunction.

• :- table a_b/2.
a_b(X1,X2):- a(X1), b(X2).

• :- table a_b_c/4.
a_b_c(X1,X2,X3,X4):- a_b(X1,X2), c(X3,X4).

Note that, when calling these predicates, this may 
cause the same variables to appear at several 
positions. In practice, this is not a problem because the 
tabling engine only stores the answers once for each 
different variable.
This idea can be recursively applied as the system 
generates more specific hypothesis. This idea is similar 
to the query packs technique.

A major problem when tabling conjunction of subgoals 
is that we can increase table memory usage arbitrarily.

• A simple solution is to abolish the full set of tables 
from the table space when we run out of memory.
• An alternative would be to abolish the tables 
potentially useless when we backtrack in the 
hypotheses space. This later approach requires 
further study to avoid incorrect deletions.
• Another alternative would be to store all the 
answers in an unique table shared by all tabled 
predicates.

We propose the ability of using tabling mechanisms 
available in the underlying Logic Programming systems 
to minimize recomputation in ILP systems.

• First, tabling can be used to reduce the search 
space by avoiding recomputation for the subgoals 
evaluated during the coverage of the hypotheses.
• Second, by tabling the conjunction of subgoals in 
the hypotheses we can further reduce the search 
space and improve performance.
• Third, because tabling based models are also able 
to avoid infinite loops, they can ensure termination 
for a wider class of programs. The latter can be 
useful when dealing with datasets with recursive 
definitions in the background knowledge.
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Table usage (Mb)Running time (s)

mo6mo236na32,852
Mutagenesis dataset

mo6mo219na26,484
mo6mo197na20,299
2816146169na14,020
2055140162na6,514
629294> 4 hours981

tab conjtab subtab conjtab subno tab# hyps

Table usage (Mb)Running time (s)

mo12mo20922549,869
Carcinogenesis dataset

mo11mo15416139,932
mo11mo12412129,932
mo11mo918119,998
2591113979,998
113111998

tab conjtab subtab conjtab subno tab# hyps

To evaluate the impact of using tabling in real 
application problems, we ran the April ILP system with 
the YapTab Prolog tabling system using two ILP 
datasets. The environment for our experiments was an 
AMD Athlon MP 2600+ processor with 2 GBytes of 
main memory and running the Linux kernel 2.6.11.
To evaluate hypotheses we experimented with three 
different approaches: no tabling; subgoals being 
evaluated using tabling; and subgoals and conjunction 
of subgoals being evaluated using tabling.


