
Efficient and Scalable Induction of Logic Programs Efficient and Scalable Induction of Logic Programs
using a Deductive Database Systemusing a Deductive Database System

Introduction

Deductive Databases

Coverage Computation with a DDB

Acknowledgements

Coverage Computation

ILP – An Example
Inductive Logic Programming (ILP) tries to derive an
intensional representation of data (a theory) from its
extensional one, which includes positive and negative
examples, as well as facts from a background
knowledge. This data is primarily available from
relational database management systems (RDBMS),
and has to be converted to Prolog facts in order to be
used by most ILP systems. Furthermore, the operations
involved in ILP execution are also very database
oriented, including selections, joins and aggregations.
We thus argue that the Prolog implementation of ILP
systems can profit from a hybrid execution between a
logic system and a relational database system, that can
be obtained by using a coupled Deductive Database
(DDB) system. This hybrid execution is completely
transparent for the Prolog programmer, with the
deductive database system abstracting all the Prolog to
relational algebra translation.

Evaluation

In the Michalski train problem the theory to be found
should explain why trains are traveling eastbound.
There are five examples of trains known to be traveling
eastbound, which constitutes the set of positive
examples, and five examples of trains known to be
traveling westbound, which constitutes the set of
negative examples. All our observations about these
trains, such as size, number, position, contents of
carriages, etc, constitutes our background knowledge.

To derive a theory with the desired properties, many
ILP systems follow some kind of generate-and-test
approach to traverse the hypotheses space. A
general ILP system thus spends most of its time
evaluating hypotheses, either because the number of
examples is large or because testing each example is
computationally hard. For instance, a possible
sequence of hypotheses (clauses) for the Michalski
train problem would be:
eastbound(A) :- has_car(A,B).
eastbound(A) :- has_car(A,C).
eastbound(A) :- has_car(A,D).
eastbound(A) :- has_car(A,E).
eastbound(A) :- has_car(A,B), short(B).
eastbound(A) :- has_car(A,B), open_car(B).
eastbound(A) :- has_car(A,B), shape(B,rectangl).
eastbound(A) :- has_car(A,B), wheels(B,2).
eastbound(A) :- has_car(A,B), load(B,circle,1).
...

We restrict the theories we are inducing to non-
recursive theories, so that we can drop the assertion of
the current clause to the program code and use the
db_view/3 predicate with the aggregation operation
count/1 on an attribute of the relation holding the
positive or negative examples. Also, the view now
includes the positive or negative examples relation as a
goal co-joined with the goals in the body of the current
clause. The join should only test for the existence of
one tuple in the body goals for each of the examples.
We introduce a predicate exists/1, extending the
Prolog to SQL compiler, which is translated to a SQL
expression involving an existential sub-query.

coverage(':-'(H,B),SPos,SNeg,Conn) :-
process(pos,H,HPos,KPos),
run_view(count_positive_examples(SPos),

(SPos is count(KPos,(HPos,exists(B)))),
Conn),

process(neg,H,HNeg,KNeg),
run_view(count_negative_examples(SNeg),

(SNeg is count(SNeg,(KNeg,exists(B)))),
Conn).

We used the MYDDAS DDB and the April ILP system to
evaluate all the strategies:

This work has been partially supported by MYDDAS
(POSC/EIA/59154/2004) and by funds granted to
LIACC through the Programa de Financiamento
Plurianual, Fundação para a Ciência e Tecnologia and
Programa POSC. Tiago Soares is funded by FCT PhD
grant SFRH/BD/23906/2005.

Problems Characterization

844,20021200p.m21.l18
603,00015200p.m15.l29
440,00011200p.m11.l15
321,5768200p.m8.l27

2401010train
TuplesRelationsExamplesProblem

Coverage Computation Evaluation

Problem

734.800251.19214.8505.3300.105Aggregation
33,229.2102,975.051628.40999.8370.208View/Once

n.an.an.an.a0.235View
>1 day>1 day>1 day35,583.9840.515Relation
>1 day33,972.22550.44715.3310.002April

p.m21.l18p.m15.l29p.m11.l15p.m8.l27train
Aproach

We propose, implement and evaluate several
approaches of coding ILP coverage computation using
DDB technology, with different distributions of work
between the logic system and the database system:

• Relation-level approach
• View-level approach
• View-level/Once approach
• Aggregation/View approach

One of the main features of DDB is the representation
of data both extensionally and intensionally.

• Extensional representation
edge(10,12).
edge(10,110,15).
edge(12,10).

• Intensional representation
direct_cycle(A,B):- edge(A,B), edge(B,A).

The extensional representation is usually associated
with persistent and secondary storage. It mimics the
data representation used in relational database tables,
using logic facts instead of tuples. The intensional
representation uses logic rules to represent further
data. Applying some type of resolution, such as
Prolog's SLD-resolution, to these rules allows the
derivation of data for which no extensional
representation is kept on the database. This intensional
representation of deductive databases has a limited
parallel on the views definitions of relational
database systems.

Logic System / RDBMS Interface
On a typical coupled deductive database system, the
predicates defined extensionally in database relations
usually require a directive such as:

:- db_import(edge_r,edge,my_conn).

This directive is meant to associate a predicate edge/2
with a relation edge_r that is accessible through a
connection with the database system named my_conn.
What this directive commonly does is asserting a
clause such as:

edge(A,B) :-
translate(proj(A,B),edge(A,B),Query),
db_query(my_conn,Query,ResultSet),
db_row(ResultSet,[A,B]).

The translate/3 predicate, translates a query written
in logic to an SQL expression that is understood by
database systems. For example, the query goal

?- edge(10,B).

will generate the call
translate(proj(10,B),edge(10,B),Query)

exiting with Query bound to
SELECT 10, A.attr2
FROM edge_r A
WHERE A.attr1=10

Views can also be defined using:
:- db_view(direct_cycle(A,B),

(edge(A,B),edge(B,A)),
my_conn).

Which will generate the following SQL query:
SELECT A.source, A.dest
FROM edge_r A, edge_r B
WHERE B.source=A.dest AND B.dest=A.source

has_car(east1,car_11). has_car(east1,car_12).
has_car(east1,car_13). has_car(east1,car_14).
short(car_12). short(car_14).
closed(car_12). long(car_11).
long(car_13). open_car(car_11).
open_car(car_13). open_car(car_14).
shape(car_11,rectangle). shape(car_12,rectangle).
shape(car_13,rectangle). shape(car_14,rectangle).
wheels(car_11,2). wheels(car_12,2).
wheels(car_13,3). wheels(car_14,2).
load(car_11,rectangle,3). load(car_12,triangle,1).
load(car_13,hexagon,1). load(car_14,circle,1).
... ...

eastbound(east1).
eastbound(east2).
eastbound(east3).
eastbound(east4).
eastbound(east5).

Positive Examples Background Knowledge

eastbound(east6).
eastbound(east7).
eastbound(east8).
eastbound(east9).
eastbound(east10).

Negative Examples

To derive a theory with the desired properties, many
ILP systems follow some kind of generate-and-test
approach to traverse the hypotheses space. For each
of these clauses the ILP algorithm computes its
coverage, that is, the number of positive and negatives
examples that can be deduced from it. If a clause
covers all of the positive examples and none of the
negative examples, then the ILP system stops.
Otherwise, an alternative stop criteria should be used,
such as, the number of clauses evaluated, the number
of positive examples covered, or time. A simplified
algorithm for the coverage computation of a clause is
presented next.

coverage(Clause,SPos,SNeg) :-
assert(Clause),
reset_counter(pos,0),
(

positive_examples(X),
process(Clause,X,GoalP),
once(GoalP),
incr_counter(pos),
fail

;
true

),
counter(pos,SPos),
reset_counter(neg,0),
(

negative_examples(Y),
process(Clause,Y,GoalN),
once(GoalN),
incr_counter(neg),
fail

;
true

),
counter(neg,SNeg),
retract(Clause).

Aggregation/View Approach

The performance results in execution speed for
coverage computation are very significant and show a
tendency to improve as the size of the problems grows.
The size of the problems is exactly our most significant
result, as the storage of data-sets in database relations
allows an increase of more than 2 orders of magnitude
in the size of the problems than can be approached by
ILP systems.

Michel Ferreira - Ricardo Rocha – Tiago Soares - Nuno A. Fonseca
LIACC & DCC-FC, UniversityUniversity of Porto

