
This work has been partially supported by the research projects STAMPA (PTDC/EIA/67738/2006) and JEDI (PTDC/EIA/66924/2006) and by Fundação para a Ciência e Tecnologia.

Global Storing Mechanisms
for Tabled Evaluation

Jorge Costa and Ricardo Rocha
DCC-FC & CRACS, University of Porto, Portugal

Arguably, the most successful data structure for tabling is tries. However, while
tries are very efficient for variant based tabled evaluation, they are limited in their
ability to recognize and represent repeated answers for different calls.
We propose a new design for the table space where all tabled subgoal calls and
tabled answers are stored in a common global trie instead of being spread over
several different trie data structures. Our goal is to share data that is structurally
equal, thus saving memory by reducing redundancy in term representation.

A trie is a tree structure where each different path through the trie data units, the
trie nodes, corresponds to a term. Each root-to-leaf path represents a term
described by the tokens labelling the nodes traversed. Two terms with common
prefixes will branch off from each other at the first distinguishing token.
Internally, the trie nodes are 4-field data structures. One field stores the node's
token, one second field stores a pointer to the node's first child, a third field
stores a pointer to the node's parent and a fourth field stores a pointer to the
node's next sibling. Each node's outgoing transitions may be determined by
following the child pointer to the first child node and, from there, continuing
through the list of sibling pointers.
The YapTab tabling system implements tables using two levels of tries - one for
subgoal calls, the other for computed answers. More specifically, the table space
of YapTab is organized in the following way:

• each tabled predicate has a table entry data structure assigned to it, acting
as the entry point for the predicate's subgoal trie.
• each different subgoal call is represented as a unique path in the subgoal
trie, starting at the predicate's table entry and ending in a subgoal frame data
structure, with the argument terms being stored within the path's nodes.
• the subgoal frame data structure acts as an entry point to the answer trie.
• each different subgoal answer is represented as a unique path in the answer
trie. To increase performance, answer trie paths enforce the substitution
factoring mechanism and hold just the substitution terms for the free variables
which exist in the argument terms.
• the subgoal frame has internal pointers to the first and last answer on the
trie and the leaf's child pointer of answers are used to point to the next
available answer, a feature that enables answer recovery in insertion time
order. Answers are loaded by traversing the answer trie nodes bottom-up.

YapTab's original table organization

In the new design, all tabled subgoal calls and answers are stored in a common
global trie (GT) instead of being spread over several different trie data structures.
The GT data structure still is a tree structure where each different path through
the trie nodes corresponds to a subgoal call and/or answer. However, here a
path can end at any internal trie node and not necessarily at a leaf trie node.
The original subgoal and answer trie data structures are now represented by a
unique level of trie nodes that point to the corresponding paths in the GT. For the
subgoal tries, each node now represents a different subgoal call where the
node's token is the pointer to path in the GT that represents the argument terms
for the subgoal call. The organization used in the subgoal tries to maintain the
list of sibling nodes and to access the corresponding subgoal frames remains
unaltered. For the answer tries, each node now represents a different subgoal
answer where the node's token is the pointer to the path in the GT that
represents the substitution terms for the free variables which exist in the
argument terms. The organization used in the answer tries to maintain the list of
sibling nodes and to enable answer recovery in insertion order remains
unaltered. With this organization, answers are now loaded by following the
pointer in the node's token and then by traversing bottom-up the corresponding
nodes in the GT.

YapTab's new table organization

To evaluate the impact of our proposal, we have defined a tabled predicate t/5
that stores in the table space terms defined by term/1 facts, and then we called it
recursively with all combinations of one and two free variables in the arguments.
We experimented with 8 different kinds of 500 term/1 facts: integers, atoms and
functor terms of arity 1 to 6. The environment for our experiments was an Intel(R)
Core(TM)2 Quad 2.66 GHz with 4 GBytes of main memory and running the Linux
kernel 2.6.24.7 with YapTab 5.1.4.

Introduction

Table Space

Global Trie

Experimental Results

1

VAR0

VAR1

subgoal
trie

:- table t/2.
t(X,Y) :- term(X), term(Y).

term(a(1)). term(a(2)).

VAR0

answer
trie

a/1

12

answer
trie

a/1

12

a/1

a/1

12

a/1

12

subgoal frame for
t(a(1),VAR0)

subgoal frame for
t(VAR0,VAR1)

table entry for t/2

0.831.010.25290796294,047500 f/6
0.841.000.28258676245,072500 f/5
0.941.070.33210596196,097500 f/4
0.801.040.41220554147,122500 f/3
0.821.160.5819043098,147500 f/2
0.771.331.0717633649,172500 f/1
1.051.181.088825649,074500 atoms
1.051.291.088823849,074500 ints
LoadStoreMemLoad (ms)Store (ms)Mem (KBytes)

YapTab+GT / YapTabYapTab
Terms

a/1

12

VAR0

VAR0

call1call2

subgoal trie

answer trie

answer3answer4

answer trie

answer1answer2

global
trie

answer1answer2

a/1

12

a/1

12

VAR1

table entry for t/2

subgoal frame for
t(a(1),VAR0)

subgoal frame for
t(VAR0,VAR1)

