
Or-Parallelism within Tabling

Ricardo Rocha Fernando Silva Vı́tor Santos Costa
{ricroc,fds,vsc}@ncc.up.pt

Department of Computer Sciences & LIACC
University of Porto

Portugal



Or-Parallelism within Tabling

Summary

Parallel Execution of Tabled Programs
The fundamental issues in supporting parallelism for tabling systems.

Alternative approaches
Two computational models to combine or-parallelism and tabling.

• Or-Parallelism within Tabling (OPT)

• Tabling unified with Or-Parallelism (TOP)

Implementing the OPT Approach
Data areas, data structures, leader nodes and public completion.

Conclusions

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 1



Or-Parallelism within Tabling

Parallel Execution of Tabled Programs

An important advantage of LP is that parallelism can be exploited implicitly:

• Or-Parallelism

• And-Parallelism

An interesting observation is that tabling is still about exploiting alternatives for
solving goals:

• It should be amenable for parallel execution within traditional parallel models;

• No need to restrict parallelism to tabled or non-tabled subgoals.

Our Goal: exploit maximum parallelism and take maximum advantage of current
technology for parallel and tabling systems.

Problems: synchronization within tabling operations and scheduling strategies.

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 2



Or-Parallelism within Tabling

Or-Parallelism within Tabling (OPT)

OPT = Sequential Tabling Engine + Parallel Component

Tabling is the base component of the system: workers spend most of their time
executing as if they were sequential tabling engines.

Parallel exploitation: all unexploited alternatives should be amenable for parallel
execution, be they from generator, consumer or interior nodes.

Parallel tabling synchronization: accomplished by a new data structure to form a
dependency graph between consumer nodes to efficiently check for resumption and
completion points.

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 3



Or-Parallelism within Tabling

Tabling unified with Or-Parallelism (TOP)

TOP = Standard Prolog + Tabling/Parallel Component

Workers are considered WAM engines: they only manage a logical branch, not a
whole part of the tree.

The notion of suspension is unified: the system handles suspensions from paral-
lelism and from tabling in the same framework. A branch can be suspended because:

• It is speculative;

• It is not leftmost;

• It contains consumer nodes waiting for solutions.

Suspended branches are public branches: when a worker suspends a consumer
node, the corresponding branch becomes shared work that anyone can take.

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 4



Or-Parallelism within Tabling

TOP Advantages

Workers have a clearly defined state
A worker always occupies the tip of a single branch in the search tree.

Less memory should be spent
A suspended branch will only appear once, instead of possibly several times for sev-
eral workers.

TOP Disadvantages

A suspended branch is a public branch
Large amount of tabling suspensions may increase overheads.

A different tabling engine is required
To efficiently support the unified suspension and to reduce the overlap between par-
allelism and tabling.

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 5



Or-Parallelism within Tabling

Overview of OPTYAP

OPTYAP extends the YapOr environment copy or-parallel system to support tabling
in a manner close to the SLG-WAM engine.

A set of workers will execute a tabled program by traversing its search tree, whose
nodes are entry points for parallelism:

• Each worker physically owns a copy of the environment and shares a large area
related to tabling and scheduling;

• The incremental copy technique is used when the workers with unexploited pri-
vate alternatives or unconsumed answers share work;

• Whenever a worker backtracks to a public node it synchronizes to guarantee the
correctness of the sequential tabling execution;

• When there are no alternatives or no unconsumed answers left in a shared node,
the public completion operation may be executed.

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 6



Or-Parallelism within Tabling

Running Example

sg_fr_ptr

sg_fr_ptr

dep_fr_ptr

dep_fr_ptr

subgoal frame

for call

subgoal frame

for call

v(var 0)

t(var 0)

...
...

...

generator node

for first a(X) call

generator node

for first b(Y) call

consumer node

for second b(Y) call

consumer node

for second a(X) call

b(Y)

a(X)

a(X)b(Y)

tabled_subgoal_call a(X)
...

tabled_subgoal_call b(Y)
...

tabled_subgoal_call b(Y)
...

tabled_subgoal_call a(X)

dfn = 1

dfn = 2

dfn = 3

dfn = 4

consumer_node
subgoal_frame

previous_dep_fr

consumer_node
subgoal_frame

previous_dep_fr top_dep_fr

...

...

last_answer

leader_dfn = 1

leader_dfn = 2

last_answer

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 7



Or-Parallelism within Tabling

Dependency Frames

Key data structure to control suspension, resumption and completion of subgoals.

Designed to:

• Save information about suspension points;

• Connect consumer nodes with the table space;

• Search for and pick up new answers;

• Form a dependency graph between consumer nodes;

• Efficiently check for leader nodes and perform completion.

dep_fr_ptr

dfn = 3

consumer_node
subgoal_frame

previous_dep_fr
last_answer

leader_dfn = 2
...

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 8



Or-Parallelism within Tabling

Leader Nodes

Definition
A leader node is a node where a worker can perform completion.

Leader Detection

1

3

4

2

2

1

1

3

4

2

1

1

3

4

2

1

3

1

Remark
In parallel tabling, all kinds of nodes can be leaders in a worker’s branch.

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 9



Or-Parallelism within Tabling

Public Completion

Fundamental Idea
Avoid explicit communication between workers and reduce suspension points.

Basic Consideration
When a leader node is public and contains consumer nodes below it, this means that
it depends on branches explored by other workers.

Consequence
In certain conditions, it becomes neces-
sary to suspend the leader branch.

Completion Conditions

• Be the last worker in the node;

• No hidden workers in the node;

• No suspended branches to resume.

generator

a(X)

generator

a(X)

b(Y)

a(X)

a(X)b(Y)

generator

b(X)

consumer

b(X)

generator

b(X)

consumer

a(X)

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 10



Or-Parallelism within Tabling

Conclusions

Presentation
We suggested two major approaches to combine or-parallelism and tabling.

We presented the fundamental concepts on the design and implementation of the OPT
approach.

Current and Further Work
Currently, we have sequential tabling and or-parallelism functioning separately within
the same system.

We are now working on adjusting the system, mainly the basic or-scheduler, to sup-
port parallel tabling execution.

Practical Significance
“..although I believe that the potential practical significance of the work is substan-
tial, the current practical significance is quite limited.”

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 11



Or-Parallelism within Tabling

OPT Example

Generator Node

Consumer Node

Interior Node

Private Branch

Shared Branch

New Answer

One Worker (W1) Two workers (W1 and W2)

W2

Completed Branch

a(1)

a(X) b(X)

W1

a(X)

X=1

a(1)

a(X) b(X)

W1

a(X)

X=1

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 12



Or-Parallelism within Tabling

TOP Example

Generator Node

Consumer Node

Interior Node

Private Branch

Shared Branch

New Answer

One Worker (W1) Two workers (W1 and W2)

W2

Completed Branch

a(1)

a(X) b(X)

W1

a(X)

X=1

a(1)

a(X) b(X)

W1

a(X)

X=1

a(1)

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 13



Or-Parallelism within Tabling

Public Completion Pseudo-Code

public_completion (node N)

if (last worker in node N)
for all suspension branches SB stored in node N

if (exists unconsumed answers for any consumer node in SB)
collect (SB) /* to be resumed later */

if (N is a leader node)
if (exists unconsumed answers for any consumer node below node N)

backtrack_through_new_answers() /* as in sequential tabling */
if (suspension branches collected)

suspend_current_branch()
resume (a suspension branch)

else if (not last worker in node N)
suspend_current_branch()

else if (hidden workers in node N)
suspend_current_branch()

else
complete_all()

else /* not leader */
if (consumer nodes below node N)

increment hidden workers in node N
backtrack

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 14


