
Efficient Evaluation
of

Deterministic Tabled Calls

Miguel Areias and Ricardo Rocha
DCC-FC & CRACS

University of Porto, Portugal
c0507028@alunos.dcc.fc.up.pt ricroc@dcc.fc.up.pt

CICLOPS 2008, Udine, Italy, December 2008



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Motivation

ä The execution model in which most tabling engines are based allocates a choice
point whenever a new tabled subgoal is called. This happens even when the
call is deterministic, i.e., defined by a single matching clause.



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Motivation

ä The execution model in which most tabling engines are based allocates a choice
point whenever a new tabled subgoal is called. This happens even when the
call is deterministic, i.e., defined by a single matching clause.

ä This is necessary since the information from the choice point is crucial to correctly
implement some tabling operations. However, some of this information is never
used when evaluating deterministic tabled calls with batched scheduling.



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Motivation

ä The execution model in which most tabling engines are based allocates a choice
point whenever a new tabled subgoal is called. This happens even when the
call is deterministic, i.e., defined by a single matching clause.

ä This is necessary since the information from the choice point is crucial to correctly
implement some tabling operations. However, some of this information is never
used when evaluating deterministic tabled calls with batched scheduling.

ä Thus, if tabling is applied to a long deterministic computation, the system may
end up consuming a huge amount of memory inadvertently. In this work, we
propose a solution that reduces this memory overhead.



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Motivation

ä The execution model in which most tabling engines are based allocates a choice
point whenever a new tabled subgoal is called. This happens even when the
call is deterministic, i.e., defined by a single matching clause.

ä This is necessary since the information from the choice point is crucial to correctly
implement some tabling operations. However, some of this information is never
used when evaluating deterministic tabled calls with batched scheduling.

ä Thus, if tabling is applied to a long deterministic computation, the system may
end up consuming a huge amount of memory inadvertently. In this work, we
propose a solution that reduces this memory overhead.

ä We will focus our discussion on a concrete implementation, the YapTab system,
but our proposal can be generalized and applied to other tabling engines.

CICLOPS 2008, Udine, Italy, December 2008 1



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Compilation of Tabled Predicates in YapTab

ä Tabled predicates defined by a single clause are compiled using the ta-
ble try single WAM-like instruction.

ä Tabled predicates defined by several clauses are compiled using the ta-
ble try me, table retry me and table trust me WAM-like instructions in
a similar manner to the generic try me/retry me/trust me WAM sequence.



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Compilation of Tabled Predicates in YapTab

ä Tabled predicates defined by a single clause are compiled using the ta-
ble try single WAM-like instruction.

ä Tabled predicates defined by several clauses are compiled using the ta-
ble try me, table retry me and table trust me WAM-like instructions in
a similar manner to the generic try me/retry me/trust me WAM sequence.

© The table try single and table try me instructions extend the WAM’s
try me instruction to support the tabled subgoal call operation.

© The table retry me and table trust me differ from the generic WAM
instructions in that they restore a generator choice point rather than a
standard WAM choice point.

CICLOPS 2008, Udine, Italy, December 2008 2



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Compilation of Tabled Predicates in YapTab

:- table t/1.
t(X) :- ...



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Compilation of Tabled Predicates in YapTab

:- table t/1.
t(X) :- ...

% compiled code generated by YapTab for predicate t/1
t1_1: table_try_single t1_1a
t1_1a: ‘WAM code for clause t(X) :- ...’



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Compilation of Tabled Predicates in YapTab

:- table t/1.
t(X) :- ...

% compiled code generated by YapTab for predicate t/1
t1_1: table_try_single t1_1a
t1_1a: ‘WAM code for clause t(X) :- ...’

ä As t/1 is a deterministic tabled predicate, the table try single instruction will
be executed for every call to this predicate.

CICLOPS 2008, Udine, Italy, December 2008 3



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Compilation of Tabled Predicates in YapTab

:- table t/3.
t(a1,b1,c1) :- ...
t(a2,b2,c2) :- ...
t(a2,b1,c3) :- ...
t(a3,b1,c2) :- ...



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Compilation of Tabled Predicates in YapTab

:- table t/3.
t(a1,b1,c1) :- ...
t(a2,b2,c2) :- ...
t(a2,b1,c3) :- ...
t(a3,b1,c2) :- ...

% compiled code generated by YapTab for predicate t/3
t3_1: table_try_me t3_2
t3_1a: ‘WAM code for clause t(a1,b1,c1) :- ...’
t3_2: table_retry_me t3_3
t3_2a: ‘WAM code for clause t(a2,b2,c2) :- ...’
t3_3: table_retry_me t3_4
t3_3a: ‘WAM code for clause t(a2,b1,c3) :- ...’
t3_4: table_trust_me
t3_4a: ‘WAM code for clause t(a3,b1,c2) :- ...’

CICLOPS 2008, Udine, Italy, December 2008 4



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Compilation of Tabled Predicates in YapTab

ä t/3 is a non-deterministic tabled predicate, but some calls to this predicate can
be deterministic, i.e., defined by a single matching clause.



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Compilation of Tabled Predicates in YapTab

ä t/3 is a non-deterministic tabled predicate, but some calls to this predicate can
be deterministic, i.e., defined by a single matching clause.

ä For example, the calls t(X,Y,c3) and t(a3,X,Y) are deterministic as they only
match with a single t/3 clause.

:- table t/3.
t(a1,b1,c1) :- ...
t(a2,b2,c2) :- ...
t(a2,b1,c3) :- ...
t(a3,b1,c2) :- ...



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Compilation of Tabled Predicates in YapTab

ä t/3 is a non-deterministic tabled predicate, but some calls to this predicate can
be deterministic, i.e., defined by a single matching clause.

ä For example, the calls t(X,Y,c3) and t(a3,X,Y) are deterministic as they only
match with a single t/3 clause.

:- table t/3.
t(a1,b1,c1) :- ...
t(a2,b2,c2) :- ...
t(a2,b1,c3) :- ...
t(a3,b1,c2) :- ...

ä For this kind of deterministic calls, YapTab uses the demand-driven indexing
mechanism of Yap to dynamically generate table try single instructions.

CICLOPS 2008, Udine, Italy, December 2008 5



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Demand-Driven Indexing in YapTab

ä Yap implements demand-driven indexing (or just-in-time indexing) by buil-
ding an indexing tree using similar building blocks to the WAM but it generates
multi-argument indices based on the instantiation on the current goal.



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Demand-Driven Indexing in YapTab

ä Yap implements demand-driven indexing (or just-in-time indexing) by buil-
ding an indexing tree using similar building blocks to the WAM but it generates
multi-argument indices based on the instantiation on the current goal.

ä Tabled calls matching more than a single clause are dynamically indexed using
the table try, table retry and table trust WAM-like instructions in a similar
manner to the generic try/retry/trust WAM sequence.

% indexed code generated by YapTab for call t(X,b1,Y)
table_try t3_1a
table_retry t3_3a
table_trust t3_4a

t3_1a: ‘WAM code for clause t(a1,b1,c1) :- ...’
t3_2a: ‘WAM code for clause t(a2,b2,c2) :- ...’
t3_3a: ‘WAM code for clause t(a2,b1,c3) :- ...’
t3_4a: ‘WAM code for clause t(a3,b1,c2) :- ...’

CICLOPS 2008, Udine, Italy, December 2008 6



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Demand-Driven Indexing in YapTab

ä Tabled calls matching a single clause are dynamically indexed using the ta-
ble try single instruction.

% indexed code generated by YapTab for call t(X,Y,c3)
table_try_single t3_3a

% indexed code generated by YapTab for call t(a3,X,Y)
table_try_single t3_4a

t3_1a: ‘WAM code for clause t(a1,b1,c1) :- ...’
t3_2a: ‘WAM code for clause t(a2,b2,c2) :- ...’
t3_3a: ‘WAM code for clause t(a2,b1,c3) :- ...’
t3_4a: ‘WAM code for clause t(a3,b1,c2) :- ...’



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Demand-Driven Indexing in YapTab

ä Tabled calls matching a single clause are dynamically indexed using the ta-
ble try single instruction.

% indexed code generated by YapTab for call t(X,Y,c3)
table_try_single t3_3a

% indexed code generated by YapTab for call t(a3,X,Y)
table_try_single t3_4a

t3_1a: ‘WAM code for clause t(a1,b1,c1) :- ...’
t3_2a: ‘WAM code for clause t(a2,b2,c2) :- ...’
t3_3a: ‘WAM code for clause t(a2,b1,c3) :- ...’
t3_4a: ‘WAM code for clause t(a3,b1,c2) :- ...’

ä Note however, that there are situations where a call can be deterministic, but
Yap’s indexing scheme cannot detect it as deterministic in order to generate the
appropriate table try single instruction.

CICLOPS 2008, Udine, Italy, December 2008 7



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Last Matching Clause

ä When evaluating a tabled predicate, the last matching clause of a call is
implemented by one of these instructions:

© table try single: when we have a deterministic predicate or a deterministic
call optimized by indexing code.

© table trust me: when we have a generic call to the predicate (all the
arguments of the call are unbound variables).

© table trust: when we have a more specific call optimized by indexing code
(some of the arguments are at least partially instantiated).



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Last Matching Clause

ä When evaluating a tabled predicate, the last matching clause of a call is
implemented by one of these instructions:

© table try single: when we have a deterministic predicate or a deterministic
call optimized by indexing code.

© table trust me: when we have a generic call to the predicate (all the
arguments of the call are unbound variables).

© table trust: when we have a more specific call optimized by indexing code
(some of the arguments are at least partially instantiated).

ä The computation state that we have when executing a table trust me or
table trust instruction is similar to that one of a table try single instruction,
that is, in both cases the current clause can be seen as deterministic as it is the
last (or single) matching clause for the call at hand.

ä Thus, we can view the table trust me and table trust instructions as a special
case of the table try single instruction and use the same approach to efficiently
deal with deterministic tabled calls.

CICLOPS 2008, Udine, Italy, December 2008 8



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Implementation Details: Generator Nodes

ä A generator node is a WAM choi-
ce point extended with some extra
fields:

© The top section contains the usual
WAM fields needed to restore the
computation on backtracking plus
two extra fields.

© The middle section contains the
argument registers of the call.

© The bottom section contains the
substitution variables, i.e., the
set of free variables which exist in
the terms in the argument regi-
sters of the call.

cp_dep_fr

cp_sg_fr

Dependency frame

Subgoal frame

cp_ap

cp_tr

cp_h

cp_cp

Next unexploit alternative

Top of trail

Top of global stack

Success continuation PC

cp_env Current Environment

An Argument Register n

A1 Argument Register 1

.
.
.
.

.
.
.
.

Number of Substitution Vars

Substitution Variable m

Substitution Variable 1

.
.
.
.

m

Vm

V1

.
.
.
.

cp_b Failure continuation CP

CICLOPS 2008, Udine, Italy, December 2008 9



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Implementation Details: Generator Nodes

ä Turning our attention to how ge-
nerator nodes are handled we find
that, with batched scheduling, the
computation is never resumed in a
deterministic generator node.

ä This allow us to remove some fields:

© The cp cp, cp h, cp env and
cp dep fr fields.

© The argument registers.

cp_dep_fr

cp_sg_fr

Dependency frame

Subgoal frame

cp_ap

cp_tr

cp_h

cp_cp

Next unexploit alternative

Top of trail

Top of global stack

Success continuation PC

cp_env Current Environment

An Argument Register n

A1 Argument Register 1

.
.
.
.

.
.
.
.

Number of Substitution Vars

Substitution Variable m

Substitution Variable 1

.
.
.
.

m

Vm

V1

.
.
.
.

cp_b Failure continuation CP

CICLOPS 2008, Udine, Italy, December 2008 10



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Implementation Details: Generator Nodes

ä The remaining fields are still required
because:

© cp b is needed for failure conti-
nuation.

© cp ap and cp tr are needed when
backtracking to the node.

© cp sg fr is needed by the new
answer and completion operations.

© The substitution variables are
needed by the new answer ope-
ration.

ä In order to avoid extra overheads, we
have rearranged all choice points in
such a way that the top three fields
are now the same as the ones for a
deterministic generator node.

cp_ap

cp_tr

Next unexploit alternative

Top of trail

Subgoal frame

Number of Substitution Vars

Substitution Variable m

Substitution Variable 1

.
.
.
.

m

Vm

V1

.
.
.
.

cp_sg_fr

cp_b Failure continuation CP

CICLOPS 2008, Udine, Italy, December 2008 11



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Implementation Details: Generator Nodes

ä Considering that A is the number of arguments registers and that S is the
number of substitution variables, the percentage of memory saved with the new
representation can be expressed as:

1− 4 + 1 + S

8 + A + 1 + S

ä This memory reduction increases when the number of argument registers is
bigger and the number of substitution variables is smaller.

CICLOPS 2008, Udine, Italy, December 2008 12



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Implementation Details: Tabling Operations

ä The new representation for deterministic generator nodes required small changes
to the tabled subgoal call, new answer and completion operations.

table_try_single(TABLED_CALL tc) {
if (new_tabled_subgoal_call(tc)) {

store_substitution_variables()
if (evaluation_mode(tc) == batched_scheduling) // new
store_deterministic_generator_cp()

else { // local scheduling
store_argument_registers()
store_generic_generator_cp()

}
...

}
...

}

CICLOPS 2008, Udine, Italy, December 2008 13



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Implementation Details: Tabling Operations

ä The new representation for deterministic generator nodes required small changes
to the tabled subgoal call, new answer and completion operations.

table_trust_me(TABLED_CALL tc) {
restore_generic_generator_cp()
if (evaluation_mode(tc) == batched_scheduling && // new

not_frozen(B)) { // B is the current choice point
subs_factor = B + sizeof(generic_generator_cp) + arity(tc)
det_gcp = subs_factor - sizeof(deterministic_generator_cp)
det_gcp->cp_sg_fr = B->cp_sg_fr
det_gcp->cp_tr = B->cp_tr
det_gcp->cp_ap = B->cp_ap
det_gcp->cp_b = B->cp_b
B = det_gcp

}
...

}

CICLOPS 2008, Udine, Italy, December 2008 14



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Implementation Details: Tabling Operations

ä The new representation for deterministic generator nodes required small changes
to the tabled subgoal call, new answer and completion operations.

new_answer(TABLED_CALL tc, ANSWER ans) {
if (is_deterministic_generator_cp(B)) { // new
det_gp = deterministic_generator_cp(B)
sg_fr = det_gcp->cp_sg_fr
subs_factor = det_gcp + sizeof(deterministic_generator_cp)

} else { // generic generator choice point
gcp = generic_generator_cp(B)
sg_fr = gcp->cp_sg_fr
subs_factor = gcp + sizeof(generic_generator_cp) + arity(tc)

}
...

}

CICLOPS 2008, Udine, Italy, December 2008 15



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Implementation Details: Tabling Operations

ä The new representation for deterministic generator nodes required small changes
to the tabled subgoal call, new answer and completion operations.

completion() {
...
// subgoal completely evaluated
if (is_deterministic_generator_cp(B)) { // new
det_gcp = deterministic_generator_cp(B)
sg_fr = det_gcp->cp_sg_fr

} else { // generic generator choice point
gcp = generic_generator_cp(B)
sg_fr = gcp->cp_sg_fr

}
complete_subgoal(sg_fr)
...

}

CICLOPS 2008, Udine, Italy, December 2008 16



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Experimental Results

Args Subs
YapTab (a) YapTab+Det (b) Ratio (1–b/a)

Memory Time Memory Time Memory Time
5 4 9,376 82 5,860 70 0.37 0.15
5 2 8,594 78 5,079 66 0.41 0.15
5 0 7,813 80 4,297 65 0.45 0.19

11 10 14,063 137 8,204 96 0.42 0.30
11 5 12,110 136 6,251 89 0.48 0.35
11 0 10,157 124 4,297 108 0.58 0.13
17 16 18,751 173 10,547 129 0.44 0.25
17 8 15,626 164 7,422 109 0.53 0.34
17 0 12,501 153 4,297 114 0.66 0.25
Average 0.48 0.23

Memory usage in KBytes and running times in milliseconds for three deterministic
tabled predicates (with arities 5, 11 and 17) that call themselves recursively
100,000 times with three different sets of free variables in the arguments.

CICLOPS 2008, Udine, Italy, December 2008 17



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Experimental Results

Version Length
YapTab (a) YapTab+Det (b) Ratio (1–b/a)

Memory Time Memory Time Memory Time

Orig

500 51,774 1,548 44,938 1,264 0.13 0.18
1000 207,063 13,548 179,719 11,212 0.13 0.17
1500 465,868 60,475 404,344 50,631 0.13 0.16
2000 828,188 189,647 718,813 157,213 0.13 0.17

Transf

500 45,915 1,172 39,051 848 0.15 0.28
1000 183,625 10,024 156,227 8,460 0.15 0.16
1500 413,133 45,874 351,528 36,106 0.15 0.21
2000 734,438 140,068 624,953 113,011 0.15 0.19

Average 0.14 0.19

Memory usage in KBytes and running times in milliseconds for two versions of the
sequence comparisons problem (with sequences of length 500, 1000, 1500 and

2000) using the original program and a transformed program that forces all calls
to use the table try single instruction.

CICLOPS 2008, Udine, Italy, December 2008 18



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Experimental Results

Grid
YapTab (a) YapTab+Det (b) Ratio (1–b/a)

Memory Time Memory Time Memory Time
30x30 119 1,304 98 1,464 0.18 -0.12
40x40 211 4,400 175 4,024 0.17 0.09
50x50 330 11,208 273 10,996 0.17 0.02
60x60 476 28,509 393 28,213 0.17 0.01

Average 0.17 0.00

Memory usage in KBytes and running times in milliseconds for a program that
computes the transitive closure of a NxN grid (with 30x30, 40x40, 50x50 and

60x60 nodes) using a right recursive algorithm.

CICLOPS 2008, Udine, Italy, December 2008 19



Efficient Evaluation of Deterministic Tabled Calls Miguel Areias and Ricardo Rocha

Conclusions

ä We have presented a proposal for the efficient evaluation of deterministic tabled
calls with batched scheduling.

ä Our preliminary results are quite promising as they suggest that, for certain class
of applications, it is possible not only to reduce the memory usage overhead but
also the running time of the evaluation.

ä Further work will include exploring the impact of applying our proposal to more
complex problems, seeking real-world experimental results allowing us to improve
and expand our current implementation.

CICLOPS 2008, Udine, Italy, December 2008 20


