Mixed-Strategies for Linear Tabling in Prolog

Miguel Areias and Ricardo Rocha
CRACS \& INESC-Porto LA
Faculty of Sciences, University of Porto, Portugal miguel-areias@dcc.fc.up.pt ricroc@dcc.fc.up.pt

Prolog and SLD Resolution

> Prolog systems are known to have good performances and flexibility, but they are based on SLD resolution, which limits the potential of the Logic Programing paradigm.
$>$ SLD resolution cannot deal properly with the following situations:
\checkmark Positive Infinite Cycles (insufficient expressiveness)
\checkmark Negative Infinite Cycles (inconsistence)
\checkmark Redundant Computations (inefficiency)

SLD Resolution: Infinite Cycles

```
path(X,Z) :- path(X,Y), edge(Y,Z).
path(X,Z) :- edge(X,Z).
edge (1,2).
edge (2, 1).
```

path (1, Z)

SLD Resolution: Infinite Cycles

```
path(X,Z) :- path(X,Y), edge(Y,Z).
path(X,Z) :- edge(X,Z).
edge (1, 2).
edge (2,1).
```


SLD Resolution: Infinite Cycles

```
path(X,Z) :- edge(X,Y), path(Y,Z).
path(X,Z) :- edge(X,Z).
edge (1,2).
edge (2,1).
```

path (1, Z)

SLD Resolution: Infinite Cycles

```
path(X,Z) :- edge(X,Y), path(Y,Z).
path(X,Z) :- edge(X,Z).
edge (1,2).
edge (2, 1).
```


Tabling in Logic Programming

> Tabling is an implementation technique that overcomes some of the limitations of SLD resolution.
> Implementations of tabling are currently available in systems like XSB Prolog, Yap Prolog, B-Prolog, ALS-Prolog, Mercury and more recently Ciao Prolog.

Tabling in Logic Programming

$>$ Tabling is an implementation technique that overcomes some of the limitations of SLD resolution.
> Implementations of tabling are currently available in systems like XSB Prolog, Yap Prolog, B-Prolog, ALS-Prolog, Mercury and more recently Ciao Prolog.
$>$ In these implementations, we can distinguish two main categories of tabling mechanisms:

- Suspension-Based Tabling: can be seen as a sequence of sub-computations that can be suspended and later resumed, when necessary, to compute fixpoints (XSB Prolog, Yap Prolog, Mercury and Ciao Prolog).
Ь Linear Tabling: can be seen as a single execution tree where tabled subgoals use iterative computations, without requiring suspension and resumption, to compute fix-points (B-Prolog and ALS Prolog).

Linear Tabling

$>$ Arguably, the two most well-known linear tabling strategies are:
\diamond DRE (Dynamic Reordering of Execution): repeated calls, the followers, execute from the backtracking point of the former call. A follower is then repeatedly re-executed, until all the available answers and clauses have been exhausted, that is, until a fix-point is reached (B-Prolog).
〉 DRA (Dynamic Reordering of Alternatives): tables not only the answers to tabled subgoals, but also the alternatives leading to repeated calls, the looping alternatives. It then uses the looping alternatives to repeatedly recompute them until reaching a fix-point (ALS Prolog).

Linear Tabling

$>$ Arguably, the two most well-known linear tabling strategies are:
\checkmark DRE (Dynamic Reordering of Execution): repeated calls, the followers, execute from the backtracking point of the former call. A follower is then repeatedly re-executed, until all the available answers and clauses have been exhausted, that is, until a fix-point is reached (B-Prolog).
\checkmark DRA (Dynamic Reordering of Alternatives): tables not only the answers to tabled subgoals, but also the alternatives leading to repeated calls, the looping alternatives. It then uses the looping alternatives to repeatedly recompute them until reaching a fix-point (ALS Prolog).
$>$ In this work, we propose a new linear tabling strategy:
૪ DRS (Dynamic Reordering of Solutions): it can be seen as a variant of the DRA strategy, but applied to the consumption of solutions. The key idea is to memorize the solutions leading to consumer calls, the looping solutions, and use them as the DRA strategy uses the looping alternatives (Yap Prolog).

Our Goal

> Implement a framework on top of the Yap Prolog system, that supports the combination of the three strategies.
> Analyze the advantages and weaknesses of each strategy, when used solely or combined with the others.

Standard Evaluation Example

:- table $a / 1, b / 1$.

```
a(X):- b(X).
a(2)
b(X) :- a(X).
b(1).
(c1)
(c2)
(c3)
(c4)
```

Call	Solutions
$1: a(X)$	$6: X=1$
$7: X=2$	
$2: b(X)$	$4: X=1$
	$12: X=2$

DRA Evaluation Example

DRS Evaluation Example

DRE Evaluation Example

:- table $a / 1, b / 1$.

$a(X):-b(X)$.	$(c 1)$
$a(2)$.	$(c 2)$
$b(X):-a(X)$.	$(c 3)$
$b(1)$.	$(c 4)$

Call	Solutions
$1: a(X)$	$4: X=2$ $9: X=1$
$2: b(X)$	$5: X=2$
$6: X=1$	

Experimental Results

Strategy	Pyramid			Cycle			Grid		
	1000	2000	3000	1000	2000	3000	20	30	40
Path Recursive Clause First									
DRE	1.06	0.99	0.99	0.99	0.97	1.01	1.26	1.02	1.17
DRA	1.61	1.60	1.61	1.28	1.22	1.25	1.55	1.15	1.20
DRS	0.99	0.99	1.02	1.26	1.17	1.27	1.67	1.27	1.38
DRE+DRA	1.66	1.62	1.59	1.29	1.28	1.27	1.25	1.15	1.25
DRE+DRS	1.03	1.00	1.00	1.30	1.17	1.28	1.44	1.28	1.37
DRA+DRS	1.63	1.59	1.55	1.72	1.64	1.64	1.94	1.45	1.51
DRE+DRA+DRS	1.65	1.57	1.55	1.70	1.65	1.62	1.61	1.26	1.44
Path Recursive Clause Last									
DRE	0.98	1.00	0.88	0.94	0.95	1.04	0.83	0.99	0.99
DRA	1.60	1.59	1.58	1.18	1.20	1.22	1.08	1.09	1.07
DRS	0.99	0.98	0.99	1.14	1.18	1.25	1.20	1.20	1.21
DRE+DRA	1.58	1.66	1.63	1.22	1.24	1.22	1.12	1.10	1.07
DRE+DRS	1.00	1.01	1.01	1.22	1.23	1.23	0.95	1.14	1.14
DRA+DRS	1.63	1.64	1.62	1.56	1.59	1.69	1.40	1.32	1.32
DRE+DRA+DRS	1.59	1.57	1.56	1.61	1.55	1.60	1.36	1.33	1.30

Conclusions and Further Work

$>$ We have presented a new framework that integrates all possible combinations of the already existent linear tabling strategies DRA and DRE and the new strategy DRS.
$>$ Our experiments for DRS strategy showed that the strategy of avoiding the consumption of non-looping solutions in re-evaluation rounds can be quite effective for programs that can benefit from it, with insignificant costs for the other programs.
> Further work will include exploring the impact of applying our strategies to more complex problems, seeking real-world experimental results allowing us to improve and consolidate our current implementation.

