
Compact Lists for Tabled Evaluation

João Raimundo and Ricardo Rocha
CRACS & INESC-Porto LA

Faculty of Sciences, University of Porto, Portugal
jraimundo@dcc.fc.up.pt ricroc@dcc.fc.up.pt

PADL 2010, Madrid, Spain, January 2010

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Tabling in Logic Programming

ä Tabling is an implementation technique where answers for subcomputations are
stored and then reused when a repeated computation appears.

© Tabled calls are evaluated by storing their answers in an appropriate data
space, called the table space.

© Variant tabled calls are resolved by consuming the answers already stored in
the table space instead of being re-evaluated against the program clauses.

ä Tabling has proven to be particularly effective in logic (Prolog) programs:

© Avoids recomputation, thus reducing the search space.
© Avoids infinite loops, thus ensuring termination for a wider class of programs.

PADL 2010, Madrid, Spain, January 2010 1

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Motivation

ä A critical component in the implementation of an efficient tabling system is the
table space. Arguably, the most successful data structure for tabling is tries.

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Motivation

ä A critical component in the implementation of an efficient tabling system is the
table space. Arguably, the most successful data structure for tabling is tries.

ä When representing terms in tries, most tabling engines, try to mimic the WAM
representation of these terms in the Prolog stacks in order to avoid unnecessary
transformations when storing/loading these terms to/from the tries.

ä This idea seems straightforward for almost all type of terms but for list terms
we found that we can design even more compact and efficient representations
by eliminating the recursive nature of the WAM representation of list terms.

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Motivation

ä A critical component in the implementation of an efficient tabling system is the
table space. Arguably, the most successful data structure for tabling is tries.

ä When representing terms in tries, most tabling engines, try to mimic the WAM
representation of these terms in the Prolog stacks in order to avoid unnecessary
transformations when storing/loading these terms to/from the tries.

ä This idea seems straightforward for almost all type of terms but for list terms
we found that we can design even more compact and efficient representations
by eliminating the recursive nature of the WAM representation of list terms.

ä We will focus our discussion on a concrete implementation, the YapTab system,
but our proposals can be easy generalized and applied to other tabling systems.

PADL 2010, Madrid, Spain, January 2010 2

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Using Tries to Represent Terms

ä Tries are trees in which com-
mon prefixes are represented
only once.

ä Each different path through
the nodes in the trie corre-
sponds to a term.

ä Terms with common prefixes
branch off from each other at
the first distinguishing token.

root Empty
trie

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Using Tries to Represent Terms

ä Tries are trees in which com-
mon prefixes are represented
only once.

ä Each different path through
the nodes in the trie corre-
sponds to a term.

ä Terms with common prefixes
branch off from each other at
the first distinguishing token.

root Empty
trie

f/1

1

VAR0

t/2

root Inserting
t(f(1),Y)

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Using Tries to Represent Terms

ä Tries are trees in which com-
mon prefixes are represented
only once.

ä Each different path through
the nodes in the trie corre-
sponds to a term.

ä Terms with common prefixes
branch off from each other at
the first distinguishing token.

root Empty
trie

f/1

1

VAR0

t/2

root Inserting
t(f(1),Y)

1

f/1

2

VAR0VAR0

t/2

root Inserting
t(f(2),Y)

PADL 2010, Madrid, Spain, January 2010 3

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Using Tries to Represent the Table Space

ä Subgoal Trie

© Stores the tabled subgoal calls.
© Starts at a table entry and ends with subgoal frames.
© A subgoal frame is the entry point for the subgoal answers.

:- table t/2.

t(X,Y):- term(X),
 term(Y).

term(f(1)).
term(f(2)).

subgoal frame for
t(f(1),VAR0)

1

VAR0

VAR1

subgoal
trie

VAR0

f/1

table entry for t/2

subgoal frame for
t(VAR0,VAR1)

PADL 2010, Madrid, Spain, January 2010 4

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Using Tries to Represent the Table Space

ä Answer Trie

© Stores the subgoal answers.
© Answer tries hold just the substitution terms for the free variables which exist

in the corresponding subgoal call.

f/1

12

answer
trie

f/1

12

f/1

12

f/1

12

subgoal frame for
t(f(1),VAR0)

subgoal frame for
t(VAR0,VAR1)

answer
trie

:- table t/2.

t(X,Y):- term(X),
 term(Y).

term(f(1)).
term(f(2)).

PADL 2010, Madrid, Spain, January 2010 5

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Using Tries to Represent the Table Space

f/1

12

answer
trie

f/1

12

f/1

12

f/1

12

subgoal frame for
t(f(1),VAR0)

1

VAR0

VAR1

subgoal
trie

VAR0

f/1

table entry for t/2

subgoal frame for
t(VAR0,VAR1)

answer
trie

PADL 2010, Madrid, Spain, January 2010 6

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Compiled Tries

ä When a tabled call is completely evaluated we can recover answers by traversing
top-down the completed answer trie and by executing dynamically compiled
WAM-like code from the answer trie nodes.

f/1

12

f/1

12

f/1

2

try_atom

do_struct

try_atom

do_struct

trust_atom

trust_atom

do_struct

try_atom 1trust_atom

PADL 2010, Madrid, Spain, January 2010 7

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Standard Lists

WAM Representation

1

PAIR

...

2

PAIR

...

3

[]

PAIR

...

1

PAIR

...

2

3

...

PAIR

...

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Standard Lists

WAM Representation

1

PAIR

...

2

PAIR

...

3

[]

PAIR

...

1

PAIR

...

2

3

...

PAIR

...

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

WAM Representation

PAIR

PAIR

1

PAIR

3

[]

1

PAIR

...

2

PAIR

...

2

3

[]

PAIR

...

Standard Trie Design

1

PAIR

...

2

3

...

PAIR

...

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

PAIR

3

1

PAIR

2

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

PADL 2010, Madrid, Spain, January 2010 8

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Compact Lists: Initial Approach

BLIST

[]

1

2

ELIST

3

BLIST

ELIST

1

2

3

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

Single Lists

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Compact Lists: Initial Approach

BLIST

[]

1

2

ELIST

3

BLIST

ELIST

1

2

3

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

Single Lists

BLIST

[]

1

2

ELIST

3

BLIST

ELIST

1

2

3

BLIST

[]

1

2

ELIST

3

BLIST

ELIST

1

2

3

[]

ELIST

4

ELIST

4

BLIST

[]

1

2

ELIST

3

[]

ELIST

4

3

2

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

Empty-Ending
[1,2,3]
[2,3,4]

Empty-Ending
[1,2,3]
[1,2,4]

Term-Ending
[1,2|3]
[1,2|4]

Single Lists Multiple Lists

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Compact Lists: Initial Approach

BLIST

[]

1

2

ELIST

3

BLIST

ELIST

1

2

3

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

Single Lists

BLIST

[]

1

2

ELIST

3

BLIST

ELIST

1

2

3

BLIST

[]

1

2

ELIST

3

BLIST

ELIST

1

2

3

[]

ELIST

4

ELIST

4

BLIST

[]

1

2

ELIST

3

[]

ELIST

4

3

2

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

Empty-Ending
[1,2,3]
[2,3,4]

Empty-Ending
[1,2,3]
[1,2,4]

Term-Ending
[1,2|3]
[1,2|4]

Single Lists Multiple Lists

ä N ∗ [E1, ..., ES]: NS + 2N + 1 (1st different) 3N + S (last different)

ä N ∗ [E1, ...|ES]: NS + N + 1 (1st different) 2N + S (last different)

PADL 2010, Madrid, Spain, January 2010 9

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Compact Lists: Second Approach

BLIST

3

1

2

[]

ELIST

BLIST

3

1

ELIST

2

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

Single Lists

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Compact Lists: Second Approach

BLIST

3

1

2

[]

ELIST

BLIST

3

1

ELIST

2

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

Single Lists

BLIST

3

1

2

[]

ELIST

BLIST

3

1

ELIST

2

BLIST

3

1

2

[]

ELIST

BLIST

3

1

ELIST

2

4

[]

4

BLIST

3

1

2

[]

ELIST

4

[]

ELIST

3

2

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

Empty-Ending
[1,2,3]
[2,3,4]

Empty-Ending
[1,2,3]
[1,2,4]

Term-Ending
[1,2|3]
[1,2|4]

Single Lists Multiple Lists

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Compact Lists: Second Approach

BLIST

3

1

2

[]

ELIST

BLIST

3

1

ELIST

2

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

Single Lists

BLIST

3

1

2

[]

ELIST

BLIST

3

1

ELIST

2

BLIST

3

1

2

[]

ELIST

BLIST

3

1

ELIST

2

4

[]

4

BLIST

3

1

2

[]

ELIST

4

[]

ELIST

3

2

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

Empty-Ending
[1,2,3]
[2,3,4]

Empty-Ending
[1,2,3]
[1,2,4]

Term-Ending
[1,2|3]
[1,2|4]

Single Lists Multiple Lists

ä N ∗ [E1, ..., ES]: NS + 2N + 1 (1st different) 2N + S + 1 (last different)

ä N ∗ [E1, ...|ES]: NS + N + 1 (1st different) N + S + 1 (last different)

PADL 2010, Madrid, Spain, January 2010 10

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Compact Lists: Final Approach

BLIST

3

1

2

ELIST

BLIST

3

1

2

EPAIR

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

Single Lists

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Compact Lists: Final Approach

BLIST

3

1

2

ELIST

BLIST

3

1

2

EPAIR

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

Single Lists

BLIST

3

1

2

ELIST

BLIST

3

1

2

EPAIR

BLIST

3

1

2

ELIST

BLIST

3

1

2

EPAIR

4 4

BLIST

3

1

2

ELIST

4

ELIST

3

2

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

Empty-Ending
[1,2,3]
[2,3,4]

Empty-Ending
[1,2,3]
[1,2,4]

Term-Ending
[1,2|3]
[1,2|4]

Single Lists Multiple Lists

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Compact Lists: Final Approach

BLIST

3

1

2

ELIST

BLIST

3

1

2

EPAIR

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

Single Lists

BLIST

3

1

2

ELIST

BLIST

3

1

2

EPAIR

BLIST

3

1

2

ELIST

BLIST

3

1

2

EPAIR

4 4

BLIST

3

1

2

ELIST

4

ELIST

3

2

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

Empty-Ending
[1,2,3]
[2,3,4]

Empty-Ending
[1,2,3]
[1,2,4]

Term-Ending
[1,2|3]
[1,2|4]

Single Lists Multiple Lists

ä N ∗ [E1, ..., ES]: NS + N + 1 (1st different) N + S + 1 (last different)

ä N ∗ [E1, ...|ES]: NS + N + 1 (1st different) N + S + 1 (last different)

PADL 2010, Madrid, Spain, January 2010 11

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Compact Lists: Final Approach

List Terms
Standard Compact

Lists Lists
First different
N ∗ [E1, ..., ES] 2NS + 1 NS + N + 1
N ∗ [E1, ...|ES] 2NS − 2N + 1 NS + N + 1
Last different
N ∗ [E1, ..., ES] 2N + 2S − 1 N + S + 1
N ∗ [E1, ...|ES] N + 2S − 2 N + S + 1

PADL 2010, Madrid, Spain, January 2010 12

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Compact Lists: Compiled Tries

Compiled Tries

BLIST

1

2

ELIST

do_atom_in_list

do_atom_in_list

do_ending_list

do_void

3do_atom

BLIST

1

2

EPAIR

do_atom_in_list

do_atom_in_list

do_void

do_void

3do_atom

WAM Representation

1

PAIR

...

2

PAIR

...

3

[]

PAIR

...

1

PAIR

...

2

3

...

PAIR

...

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

Empty-Ending
[1,2,3]

Term-Ending
[1,2|3]

PADL 2010, Madrid, Spain, January 2010 13

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Experimental Results

Empty-Ending YapTab YapTab+CL / YapTab
100,000 Lists Mem Store Load Cmp Mem Store Load Cmp
First different
[E1, ..., E60] 234,375 1036 111 105 0.51 0.52 0.71 0.69
[E1, ..., E80] 312,500 1383 135 128 0.51 0.52 0.73 0.64
[E1, ..., E100] 390,625 1733 166 170 0.51 0.53 0.67 0.55
Last different
[E1, ..., E60] 3,909 138 50 7 0.50 0.75 0.64 0.56
[E1, ..., E80] 3,909 171 71 8 0.50 0.81 0.61 0.40
[E1, ..., E100] 3,910 211 82 9 0.50 0.76 0.62 0.44

Table memory usage (in KBytes) and store/load times (in milliseconds) for
empty-ending lists using YapTab with and without support for compact lists.

PADL 2010, Madrid, Spain, January 2010 14

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Experimental Results

Term-Ending YapTab YapTab+CL / YapTab
100,000 Lists Mem Store Load Cmp Mem Store Load Cmp
First different
[E1, ...|E60] 230,469 1028 113 97 0.52 0.54 0.67 0.64
[E1, ...|E80] 308,594 1402 138 134 0.51 0.53 0.69 0.63
[E1, ...|E100] 386,719 1695 162 163 0.51 0.55 0.66 0.60
Last different
[E1, ...|E60] 1,956 121 45 4 1.00 0.86 0.82 1.00
[E1, ...|E80] 1,956 150 59 4 1.00 0.88 0.72 1.00
[E1, ...|E100] 1,957 194 96 4 1.00 0.88 0.53 1.00

Table memory usage (in KBytes) and store/load times (in milliseconds) for
term-ending lists using YapTab with and without support for compact lists.

PADL 2010, Madrid, Spain, January 2010 15

Compact Lists for Tabled Evaluation João Raimundo and Ricardo Rocha

Conclusions and Further Work

ä We have presented a new and more compact representation of list terms for
tabled data that avoids the recursive nature of the WAM representation by
removing unnecessary intermediate pair tokens.

ä Our experimental results are quite interesting, they clearly show that with
compact lists, it is possible not only to reduce the memory usage overhead, but
also the running time of the execution for storing and loading list terms.

ä As further work we intend to explore the impact of our proposal in concrete
real-world applications, such as, Inductive Logic Programming and Probabilistic
Logic Learning applications, that heavily use list terms to represent, respectively,
hypotheses and proofs in trie data structures.

PADL 2010, Madrid, Spain, January 2010 16

