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Motivation

I The inherent non-determinism in the way logic programs are
structured makes Prolog very attractive for the exploitation of
implicit parallelism. Prolog offers two major forms of implicit
parallelism:

I Or-Parallelism
I And-Parallelism

I Many parallel Prolog systems have been developed in the
past, however none of them was specially designed to explore
the combination of shared with distributed memory
architectures. Arguably, the most well-know systems are based
on the environment copying model:

I Shared memory: Muse (Yap Prolog)
I Distributed memory: PALS (Yap Prolog)

I Our goal is to design, develop and implement a novel
computational model (on top of the Yap Prolog system) to
efficiently exploit implicit or-parallelism from the recent
architectures based on clusters of multicores.
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Prolog and SLD Resolution
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Prolog and SLD Resolution

sld resolution(Query)
select subgoal(Query, B)
do

select clause(Program, (Head :- Body))
if (mgu = most general unifier(B, Head))

Query = assign(mgu, Query - B + Body)
if (Query)

sld resolution(Query)
else

SUCCESS
until (no clauses left)
FAIL
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Prolog and SLD Resolution

In Prolog, SLD resolution is applied in following way:

I select subgoal(): from left to right

I select clause(): top-down
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Implicit And-Parallelism

sld resolution(Query)
select literal(Query, B) // and-parallelism
do

select clause(Program, (Head :- Body))
if (mgu = most general unifier(B, Head))

Query = assign(mgu, Query - B + Body)
if (Query)

sld resolution(Query)
else

SUCCESS
until (no clauses left)
FAIL
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Implicit Or-Parallelism

sld resolution(Query)
select literal(Query, B)
do

select clause(Program, (Head :- Body)) //or-parallelism
if (mgu = most general unifier(B, Head))

Query = assign(mgu, Query - B + Body)
if (Query)
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else

SUCCESS
until (no clauses left)
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Multiple Bindings Problem

When implementing or-parallelism, a main difficulty is how to
efficiently represent the multiple bindings for the same variable
produced by the parallel execution of alternative matching clauses.
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Multiple Bindings Problem: Binding Arrays
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Multiple Bindings Problem: Environment Copy

With environment copying model, each worker keeps a separate
copy of its own environment, thus the bindings to shared variables
are done as usual and without conflicts.

a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

creation of var X

a(X):- ..., X=3, ...
a(X):- ..., X=5, ...  ?- a(X)

..., X=3, ...

creation of var X

 ?- a(X)

..., X=5, ...

worker 0 worker 1

Advantages:

I each worker acts like an independent Prolog machine

I requires minimal synchronization
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Scheduling and Environment Copying

Two of the most successful systems using environment copying are:

I Muse (shared memory architectures)

I PALS (distributed memory architectures)

The main difference between both systems is on how scheduling is
done:

I Muse uses dynamic distribution of work (or-frames)

I PALS uses static distribution of work (stack splitting)
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Dynamic Distribution of Work: Or-Frames

Choice Point
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Static Distribution of Work: Stack Splitting

Before sharing
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Static Distribution of Work: Stack Splitting

After sharing (vertical splitting)
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Static Distribution of Work: Stack Splitting

After sharing (horizontal splitting)
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Our Proposal

The goal behind our proposal is to implement the concept of
teams and the ability to exploit different scheduling strategies for
distributing work among teams and among the workers inside a
team (two-level scheduler).

We define a team as a set of workers (processes or threads) who
share the same memory address space and cooperate to solve a
certain part of the main problem.

Since all workers inside a team share the same address space this
implies that all workers should be in the same computer node. On
the other hand, we also want to be possible to have several teams
in a computer node or distributed by other nodes.
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Our Proposal

For (shared memory) multicores, we can thus have any
combination of strategies, and distribute work using both dynamic
or static scheduling of work.

For (distributed memory) clusters of multicores, we can only have
static scheduling of work for distributing work among teams, but
we can still have dynamic or static scheduling of work for
distributing work among the workers inside a team.

This idea is similar to the MPI/OpenMP hybrid programming
pattern, where MPI is usually used to communicate work among
workers in different computer nodes and OpenMP is used to
communicate work among workers in the same node.
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Our Proposal
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Work Sharing Process

To distribute work inside a team, we can use, with minor
adaptations, any of Yap’s current dynamic or static schedulers for
shared memory.

For work sharing among teams, our approach is to implement a
layered approach, and for that a second-level scheduler will be used.

I We will only ask for work to other teams when no more work
exists in a team.

I However, the sharing process between teams will still be done
between two workers.

I The selected worker of the idle team is then the responsible
for sharing the new work with its teammates.
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Work Sharing Process

WorkerGetWork(W,T)
while (TeamNotFinished(T))

while (TeamWithWork(T))
B = SelectBusyWorker(T)
if (SendShareRequest(W,B) = ACCEPTED)

ShareWork(W,B)
return TRUE

if (W = SelectMasterWorker(T))
if (TeamGetWork(W,T))

return TRUE
else

SetTeamAsFinished(T)
return FALSE
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Work Sharing Process

TeamGetWork(W,T)
while (not AllTeamsWithoutWork())

U = SelectBusyTeam()
if (SendShareRequest(T,U) = ACCEPTED)

S = GetSharingWorker(U)
ShareWork(W,S)
return TRUE

return FALSE
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Second-Level Scheduler
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Current State and Future Work

Current state:

I We have a new memory layout to deal with teams

I Most code is already adapted to deal with teams

I Currently, it is possible to have two teams with one worker
each sharing work

Future Work:

I Finish the first running version of our proposal

I Study alternative protocols to implement the sharing work
process between teams

I Explore different load balancing strategies in order to achieve
optimal resource utilization when distributing work across
teams

I Avoid speculative work
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