
Or-Parallel Prolog Execution
on Clusters of Multicores

João Santos and Ricardo Rocha

CRACS & INESC TEC
Faculty of Sciences, University of Porto

SLATE’13 – June 20, 2013

João Santos and Ricardo Rocha 1/ 23

Motivation

I The inherent non-determinism in the way logic programs are
structured makes Prolog very attractive for the exploitation of
implicit parallelism. Prolog offers two major forms of implicit
parallelism:

I Or-Parallelism
I And-Parallelism

I Many parallel Prolog systems have been developed in the
past, however none of them was specially designed to explore
the combination of shared with distributed memory
architectures. Arguably, the most well-know systems are based
on the environment copying model:

I Shared memory: Muse (Yap Prolog)
I Distributed memory: PALS (Yap Prolog)

I Our goal is to design, develop and implement a novel
computational model (on top of the Yap Prolog system) to
efficiently exploit implicit or-parallelism from the recent
architectures based on clusters of multicores.

João Santos and Ricardo Rocha 2/ 23

Motivation

I The inherent non-determinism in the way logic programs are
structured makes Prolog very attractive for the exploitation of
implicit parallelism. Prolog offers two major forms of implicit
parallelism:

I Or-Parallelism
I And-Parallelism

I Many parallel Prolog systems have been developed in the
past, however none of them was specially designed to explore
the combination of shared with distributed memory
architectures. Arguably, the most well-know systems are based
on the environment copying model:

I Shared memory: Muse (Yap Prolog)
I Distributed memory: PALS (Yap Prolog)

I Our goal is to design, develop and implement a novel
computational model (on top of the Yap Prolog system) to
efficiently exploit implicit or-parallelism from the recent
architectures based on clusters of multicores.

João Santos and Ricardo Rocha 2/ 23

Motivation

I The inherent non-determinism in the way logic programs are
structured makes Prolog very attractive for the exploitation of
implicit parallelism. Prolog offers two major forms of implicit
parallelism:

I Or-Parallelism
I And-Parallelism

I Many parallel Prolog systems have been developed in the
past, however none of them was specially designed to explore
the combination of shared with distributed memory
architectures. Arguably, the most well-know systems are based
on the environment copying model:

I Shared memory: Muse (Yap Prolog)
I Distributed memory: PALS (Yap Prolog)

I Our goal is to design, develop and implement a novel
computational model (on top of the Yap Prolog system) to
efficiently exploit implicit or-parallelism from the recent
architectures based on clusters of multicores.

João Santos and Ricardo Rocha 2/ 23

Prolog and SLD Resolution

?- a(X), b(Y), X==Y.

a(1). b(3).
a(2). b(2).

a(X)

b(Y)

X=1 X=2

Y=3 Y=2

fail fail

b(Y)

Y=3 Y=2

fail true

?- a(X), b(Y), X==Y.

a(1). b(3).
a(2). b(2).

a(X)

b(Y)

X=1 X=2

Y=3 Y=2

fail fail

b(Y)

Y=3 Y=2

fail true

b(Y)

a(X)

Y=3 Y=2

Y=1 Y=2

fail fail

a(X)

Y=1 Y=2

fail true

João Santos and Ricardo Rocha 3/ 23

Prolog and SLD Resolution

?- a(X), b(Y), X==Y.

a(1). b(3).
a(2). b(2).

a(X)

b(Y)

X=1 X=2

Y=3 Y=2

fail fail

b(Y)

Y=3 Y=2

fail true

?- a(X), b(Y), X==Y.

a(1). b(3).
a(2). b(2).

a(X)

b(Y)

X=1 X=2

Y=3 Y=2

fail fail

b(Y)

Y=3 Y=2

fail true

b(Y)

a(X)

Y=3 Y=2

Y=1 Y=2

fail fail

a(X)

Y=1 Y=2

fail true

João Santos and Ricardo Rocha 3/ 23

Prolog and SLD Resolution

sld resolution(Query)
select subgoal(Query, B)
do

select clause(Program, (Head :- Body))
if (mgu = most general unifier(B, Head))

Query = assign(mgu, Query - B + Body)
if (Query)

sld resolution(Query)
else

SUCCESS
until (no clauses left)
FAIL

João Santos and Ricardo Rocha 4/ 23

Prolog and SLD Resolution

In Prolog, SLD resolution is applied in following way:

I select subgoal(): from left to right

I select clause(): top-down

1

2 3

4

5

fail fail

b(Y)

a(X)

b(Y)

X=1

Y=3 Y=2

?- a(X), b(Y), X==Y.

a(1). b(3).
a(2). b(2).

X=2

fail fail

Y=3 Y=2

João Santos and Ricardo Rocha 5/ 23

Implicit And-Parallelism

sld resolution(Query)
select literal(Query, B) // and-parallelism
do

select clause(Program, (Head :- Body))
if (mgu = most general unifier(B, Head))

Query = assign(mgu, Query - B + Body)
if (Query)

sld resolution(Query)
else

SUCCESS
until (no clauses left)
FAIL

João Santos and Ricardo Rocha 6/ 23

Implicit Or-Parallelism

sld resolution(Query)
select literal(Query, B)
do

select clause(Program, (Head :- Body)) //or-parallelism
if (mgu = most general unifier(B, Head))

Query = assign(mgu, Query - B + Body)
if (Query)

sld resolution(Query)
else

SUCCESS
until (no clauses left)
FAIL

João Santos and Ricardo Rocha 7/ 23

Multiple Bindings Problem

When implementing or-parallelism, a main difficulty is how to
efficiently represent the multiple bindings for the same variable
produced by the parallel execution of alternative matching clauses.

a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

 ?- a(X)

..., X=3,, X=5, ...

creation of var X

worker 0 worker 1

a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

 ?- a(X)

..., X=3,, X=5, ...

creation of var X

worker 0 worker 1

a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

 ?- a(X)

..., X=3,, X=5, ...

creation of var X

worker 0 worker 1

João Santos and Ricardo Rocha 8/ 23

Multiple Bindings Problem

When implementing or-parallelism, a main difficulty is how to
efficiently represent the multiple bindings for the same variable
produced by the parallel execution of alternative matching clauses.

a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

 ?- a(X)

..., X=3,, X=5, ...

creation of var X

worker 0 worker 1

a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

 ?- a(X)

..., X=3,, X=5, ...

creation of var X

worker 0 worker 1

a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

 ?- a(X)

..., X=3,, X=5, ...

creation of var X

worker 0 worker 1

João Santos and Ricardo Rocha 8/ 23

Multiple Bindings Problem

When implementing or-parallelism, a main difficulty is how to
efficiently represent the multiple bindings for the same variable
produced by the parallel execution of alternative matching clauses.

a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

 ?- a(X)

..., X=3,, X=5, ...

creation of var X

worker 0 worker 1

a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

 ?- a(X)

..., X=3,, X=5, ...

creation of var X

worker 0 worker 1

a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

 ?- a(X)

..., X=3,, X=5, ...

creation of var X

worker 0 worker 1

João Santos and Ricardo Rocha 8/ 23

Multiple Bindings Problem: Binding Arrays

a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

 ?- a(X)

..., X=3,, X=5, ...

creation of var X

worker 0 worker 1

.
.
.

1

0

n

3

Binding
Array

.
.
.

1

0

n

5

Binding
Array

counter=0

a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

 ?- a(X)

..., X=3,, X=5, ...

creation of var X

worker 0 worker 1

.
.
.

1

0

n

3

Binding
Array

.
.
.

1

0

n

5

Binding
Array

counter=0a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

 ?- a(X)

..., X=3,, X=5, ...

creation of var X

worker 0 worker 1

.
.
.

1

0

n

3

Binding
Array

.
.
.

1

0

n

5

Binding
Array

counter=1

João Santos and Ricardo Rocha 9/ 23

Multiple Bindings Problem: Binding Arrays

a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

 ?- a(X)

..., X=3,, X=5, ...

creation of var X

worker 0 worker 1

.
.
.

1

0

n

3

Binding
Array

.
.
.

1

0

n

5

Binding
Array

counter=0a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

 ?- a(X)

..., X=3,, X=5, ...

creation of var X

worker 0 worker 1

.
.
.

1

0

n

3

Binding
Array

.
.
.

1

0

n

5

Binding
Array

counter=0

a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

 ?- a(X)

..., X=3,, X=5, ...

creation of var X

worker 0 worker 1

.
.
.

1

0

n

3

Binding
Array

.
.
.

1

0

n

5

Binding
Array

counter=1

João Santos and Ricardo Rocha 9/ 23

Multiple Bindings Problem: Binding Arrays

a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

 ?- a(X)

..., X=3,, X=5, ...

creation of var X

worker 0 worker 1

.
.
.

1

0

n

3

Binding
Array

.
.
.

1

0

n

5

Binding
Array

counter=0a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

 ?- a(X)

..., X=3,, X=5, ...

creation of var X

worker 0 worker 1

.
.
.

1

0

n

3

Binding
Array

.
.
.

1

0

n

5

Binding
Array

counter=0a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

 ?- a(X)

..., X=3,, X=5, ...

creation of var X

worker 0 worker 1

.
.
.

1

0

n

3

Binding
Array

.
.
.

1

0

n

5

Binding
Array

counter=1

João Santos and Ricardo Rocha 9/ 23

Multiple Bindings Problem: Environment Copy

With environment copying model, each worker keeps a separate
copy of its own environment, thus the bindings to shared variables
are done as usual and without conflicts.

a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

creation of var X

a(X):- ..., X=3, ...
a(X):- ..., X=5, ... ?- a(X)

..., X=3, ...

creation of var X

 ?- a(X)

..., X=5, ...

worker 0 worker 1

Advantages:

I each worker acts like an independent Prolog machine

I requires minimal synchronization

João Santos and Ricardo Rocha 10/ 23

Multiple Bindings Problem: Environment Copy

With environment copying model, each worker keeps a separate
copy of its own environment, thus the bindings to shared variables
are done as usual and without conflicts.

a(X):- ..., X=3, ...
a(X):- ..., X=5, ...

creation of var X
a(X):- ..., X=3, ...
a(X):- ..., X=5, ... ?- a(X)

..., X=3, ...

creation of var X

 ?- a(X)

..., X=5, ...

worker 0 worker 1

Advantages:

I each worker acts like an independent Prolog machine

I requires minimal synchronization

João Santos and Ricardo Rocha 10/ 23

Scheduling and Environment Copying

Two of the most successful systems using environment copying are:

I Muse (shared memory architectures)

I PALS (distributed memory architectures)

The main difference between both systems is on how scheduling is
done:

I Muse uses dynamic distribution of work (or-frames)

I PALS uses static distribution of work (stack splitting)

João Santos and Ricardo Rocha 11/ 23

Dynamic Distribution of Work: Or-Frames

Choice Point
Stack

Worker Space

Choice Point
Stack

Worker SpaceGlobal Space

Or-frames

João Santos and Ricardo Rocha 12/ 23

Dynamic Distribution of Work: Or-Frames

Choice Point
Stack

Worker Space

Choice Point
Stack

Worker SpaceGlobal Space

Or-frames

João Santos and Ricardo Rocha 12/ 23

Static Distribution of Work: Stack Splitting

Before sharing

QP

c1

c2 c3

c4

b2 b3

b4

a2
a3

a4

b1

a1

c1

c2 c3

c4

b2 b3

b4

a2
a3

a4

b1

a1

João Santos and Ricardo Rocha 13/ 23

Static Distribution of Work: Stack Splitting

After sharing (vertical splitting)

QP

c1

c2 c3

c4

b2 b3

b4

a2
a3

a4

b1

a1

c1

c2 c3

c4

b2 b3

b4

a2
a3

a4

b1

a1

João Santos and Ricardo Rocha 14/ 23

Static Distribution of Work: Stack Splitting

After sharing (horizontal splitting)

QP

c1

c2 c3

c4

b2 b3

b4

a2
a3

a4

b1

a1

c1

c2 c3

c4

b2 b3

b4

a2
a3

a4

b1

a1

João Santos and Ricardo Rocha 15/ 23

Our Proposal

The goal behind our proposal is to implement the concept of
teams and the ability to exploit different scheduling strategies for
distributing work among teams and among the workers inside a
team (two-level scheduler).

We define a team as a set of workers (processes or threads) who
share the same memory address space and cooperate to solve a
certain part of the main problem.

Since all workers inside a team share the same address space this
implies that all workers should be in the same computer node. On
the other hand, we also want to be possible to have several teams
in a computer node or distributed by other nodes.

João Santos and Ricardo Rocha 16/ 23

Our Proposal

The goal behind our proposal is to implement the concept of
teams and the ability to exploit different scheduling strategies for
distributing work among teams and among the workers inside a
team (two-level scheduler).

We define a team as a set of workers (processes or threads) who
share the same memory address space and cooperate to solve a
certain part of the main problem.

Since all workers inside a team share the same address space this
implies that all workers should be in the same computer node. On
the other hand, we also want to be possible to have several teams
in a computer node or distributed by other nodes.

João Santos and Ricardo Rocha 16/ 23

Our Proposal

The goal behind our proposal is to implement the concept of
teams and the ability to exploit different scheduling strategies for
distributing work among teams and among the workers inside a
team (two-level scheduler).

We define a team as a set of workers (processes or threads) who
share the same memory address space and cooperate to solve a
certain part of the main problem.

Since all workers inside a team share the same address space this
implies that all workers should be in the same computer node. On
the other hand, we also want to be possible to have several teams
in a computer node or distributed by other nodes.

João Santos and Ricardo Rocha 16/ 23

Our Proposal

For (shared memory) multicores, we can thus have any
combination of strategies, and distribute work using both dynamic
or static scheduling of work.

For (distributed memory) clusters of multicores, we can only have
static scheduling of work for distributing work among teams, but
we can still have dynamic or static scheduling of work for
distributing work among the workers inside a team.

This idea is similar to the MPI/OpenMP hybrid programming
pattern, where MPI is usually used to communicate work among
workers in different computer nodes and OpenMP is used to
communicate work among workers in the same node.

João Santos and Ricardo Rocha 17/ 23

Our Proposal

For (shared memory) multicores, we can thus have any
combination of strategies, and distribute work using both dynamic
or static scheduling of work.

For (distributed memory) clusters of multicores, we can only have
static scheduling of work for distributing work among teams, but
we can still have dynamic or static scheduling of work for
distributing work among the workers inside a team.

This idea is similar to the MPI/OpenMP hybrid programming
pattern, where MPI is usually used to communicate work among
workers in different computer nodes and OpenMP is used to
communicate work among workers in the same node.

João Santos and Ricardo Rocha 17/ 23

Our Proposal

For (shared memory) multicores, we can thus have any
combination of strategies, and distribute work using both dynamic
or static scheduling of work.

For (distributed memory) clusters of multicores, we can only have
static scheduling of work for distributing work among teams, but
we can still have dynamic or static scheduling of work for
distributing work among the workers inside a team.

This idea is similar to the MPI/OpenMP hybrid programming
pattern, where MPI is usually used to communicate work among
workers in different computer nodes and OpenMP is used to
communicate work among workers in the same node.

João Santos and Ricardo Rocha 17/ 23

Our Proposal

Node N1

W
(B,0)

Team B

W
(B,1)

W
(B,2)

W
(B,3)

Node N2

stack splitting

W
(C,0)

Team C

W
(C,1)

W
(C,2)

W
(C,3)

or-frames

W
(A,0)

Team A

W
(A,1)

W
(A,2)

W
(A,3)

or-frames

W
(C,4)

W
(C,5)

W
(C,6)

W
(C,7)

stack
 splittingstack

splitting

João Santos and Ricardo Rocha 18/ 23

Work Sharing Process

To distribute work inside a team, we can use, with minor
adaptations, any of Yap’s current dynamic or static schedulers for
shared memory.

For work sharing among teams, our approach is to implement a
layered approach, and for that a second-level scheduler will be used.

I We will only ask for work to other teams when no more work
exists in a team.

I However, the sharing process between teams will still be done
between two workers.

I The selected worker of the idle team is then the responsible
for sharing the new work with its teammates.

João Santos and Ricardo Rocha 19/ 23

Work Sharing Process

To distribute work inside a team, we can use, with minor
adaptations, any of Yap’s current dynamic or static schedulers for
shared memory.

For work sharing among teams, our approach is to implement a
layered approach, and for that a second-level scheduler will be used.

I We will only ask for work to other teams when no more work
exists in a team.

I However, the sharing process between teams will still be done
between two workers.

I The selected worker of the idle team is then the responsible
for sharing the new work with its teammates.

João Santos and Ricardo Rocha 19/ 23

Work Sharing Process

WorkerGetWork(W,T)
while (TeamNotFinished(T))

while (TeamWithWork(T))
B = SelectBusyWorker(T)
if (SendShareRequest(W,B) = ACCEPTED)

ShareWork(W,B)
return TRUE

if (W = SelectMasterWorker(T))
if (TeamGetWork(W,T))

return TRUE
else

SetTeamAsFinished(T)
return FALSE

João Santos and Ricardo Rocha 20/ 23

Work Sharing Process

TeamGetWork(W,T)
while (not AllTeamsWithoutWork())

U = SelectBusyTeam()
if (SendShareRequest(T,U) = ACCEPTED)

S = GetSharingWorker(U)
ShareWork(W,S)
return TRUE

return FALSE

João Santos and Ricardo Rocha 21/ 23

Second-Level Scheduler

b3
b2

W
(A,0)

W
(A,1)

shared
region

private
region

null

b2

c3

null

b2

null

d2

W
(C,0)

Team A Team Cor-frames

b3
b2

c3

d2

d3 d3

null

e3

e3

f3

f2

b3
b2

W
(A,0)

W
(A,1)

shared
region

private
region

null

b2

c3

null

b2

null

d2

W
(C,0)

Team A Team Cor-frames

b3
b2

c3

d2

d3 d3

null

e3

e3

f3

f2

null
b3

b2

W
(A,0)

W
(A,1)

shared
region

private
region

null

b2

c3

null

b2

null

d2

W
(C,0)

Team A Team Cor-frames

b3
b2

c3

d2

d3 d3

null

e3

e3

f3

f2

null

João Santos and Ricardo Rocha 22/ 23

Second-Level Scheduler

b3
b2

W
(A,0)

W
(A,1)

shared
region

private
region

null

b2

c3

null

b2

null

d2

W
(C,0)

Team A Team Cor-frames

b3
b2

c3

d2

d3 d3

null

e3

e3

f3

f2

b3
b2

W
(A,0)

W
(A,1)

shared
region

private
region

null

b2

c3

null

b2

null

d2

W
(C,0)

Team A Team Cor-frames

b3
b2

c3

d2

d3 d3

null

e3

e3

f3

f2

null

b3
b2

W
(A,0)

W
(A,1)

shared
region

private
region

null

b2

c3

null

b2

null

d2

W
(C,0)

Team A Team Cor-frames

b3
b2

c3

d2

d3 d3

null

e3

e3

f3

f2

null

João Santos and Ricardo Rocha 22/ 23

Second-Level Scheduler

b3
b2

W
(A,0)

W
(A,1)

shared
region

private
region

null

b2

c3

null

b2

null

d2

W
(C,0)

Team A Team Cor-frames

b3
b2

c3

d2

d3 d3

null

e3

e3

f3

f2

b3
b2

W
(A,0)

W
(A,1)

shared
region

private
region

null

b2

c3

null

b2

null

d2

W
(C,0)

Team A Team Cor-frames

b3
b2

c3

d2

d3 d3

null

e3

e3

f3

f2

null
b3

b2

W
(A,0)

W
(A,1)

shared
region

private
region

null

b2

c3

null

b2

null

d2

W
(C,0)

Team A Team Cor-frames

b3
b2

c3

d2

d3 d3

null

e3

e3

f3

f2

null

João Santos and Ricardo Rocha 22/ 23

Current State and Future Work

Current state:

I We have a new memory layout to deal with teams

I Most code is already adapted to deal with teams

I Currently, it is possible to have two teams with one worker
each sharing work

Future Work:

I Finish the first running version of our proposal

I Study alternative protocols to implement the sharing work
process between teams

I Explore different load balancing strategies in order to achieve
optimal resource utilization when distributing work across
teams

I Avoid speculative work

João Santos and Ricardo Rocha 23/ 23

Current State and Future Work

Current state:

I We have a new memory layout to deal with teams

I Most code is already adapted to deal with teams

I Currently, it is possible to have two teams with one worker
each sharing work

Future Work:

I Finish the first running version of our proposal

I Study alternative protocols to implement the sharing work
process between teams

I Explore different load balancing strategies in order to achieve
optimal resource utilization when distributing work across
teams

I Avoid speculative work

João Santos and Ricardo Rocha 23/ 23

