
On the Implementation of an Or-Parallel Prolog
System for Clusters of Multicores

João Santos and Ricardo Rocha

CRACS & INESC TEC and Faculty of Sciences
University of Porto, Portugal

ICLP’16 – October 20, 2016

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 1 / 29



Motivation

The inherent non-determinism in the way Prolog programs are
structured makes it very attractive for the exploitation of implicit
parallelism. Prolog offers two major forms of implicit parallelism:

And-Parallelism
Or-Parallelism

Many parallel Prolog systems/models have been developed in the
past. However, none of them was specially designed to explore both
shared and distributed memory in order to take advantage of the
recent and popular architectures based on clusters of multicores.

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 2 / 29



Motivation

The inherent non-determinism in the way Prolog programs are
structured makes it very attractive for the exploitation of implicit
parallelism. Prolog offers two major forms of implicit parallelism:

And-Parallelism
Or-Parallelism

Many parallel Prolog systems/models have been developed in the
past. However, none of them was specially designed to explore both
shared and distributed memory in order to take advantage of the
recent and popular architectures based on clusters of multicores.

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 2 / 29



Previous Work

In previous work [ComSIS 2014], we have proposed a novel
or-parallel model to address the problem of efficiently exploit the
combination of shared and distributed memory architectures.

It introduces a layered model with two scheduling levels:
One for workers sharing memory resources, named a team of workers
Another for teams of workers (not sharing memory resources)

But, it only describes the high-level algorithms that support the key
aspects of the layered model (not any implementation).

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 3 / 29



Previous Work

In previous work [ComSIS 2014], we have proposed a novel
or-parallel model to address the problem of efficiently exploit the
combination of shared and distributed memory architectures.

It introduces a layered model with two scheduling levels:
One for workers sharing memory resources, named a team of workers
Another for teams of workers (not sharing memory resources)

But, it only describes the high-level algorithms that support the key
aspects of the layered model (not any implementation).

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 3 / 29



Previous Work

In previous work [ComSIS 2014], we have proposed a novel
or-parallel model to address the problem of efficiently exploit the
combination of shared and distributed memory architectures.

It introduces a layered model with two scheduling levels:
One for workers sharing memory resources, named a team of workers
Another for teams of workers (not sharing memory resources)

But, it only describes the high-level algorithms that support the key
aspects of the layered model (not any implementation).

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 3 / 29



Main Contributions

In this work, we describe a first implementation of the layered
model and focus the description on the operational aspects of our
specific implementation of the model:

How a parallel engine is created
How a parallel goal is launched
How the team scheduler is structured in different modules
How we have implemented the sharing work process between teams
How we deal with load balancing and termination
...

We propose a new set of built-in predicates that constitute the
syntax to interact with an or-parallel engine in our implementation.

We show experimental results with different configurations of teams
up to 32 workers.

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 4 / 29



Main Contributions

In this work, we describe a first implementation of the layered
model and focus the description on the operational aspects of our
specific implementation of the model:

How a parallel engine is created
How a parallel goal is launched
How the team scheduler is structured in different modules
How we have implemented the sharing work process between teams
How we deal with load balancing and termination
...

We propose a new set of built-in predicates that constitute the
syntax to interact with an or-parallel engine in our implementation.

We show experimental results with different configurations of teams
up to 32 workers.

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 4 / 29



Main Contributions

In this work, we describe a first implementation of the layered
model and focus the description on the operational aspects of our
specific implementation of the model:

How a parallel engine is created
How a parallel goal is launched
How the team scheduler is structured in different modules
How we have implemented the sharing work process between teams
How we deal with load balancing and termination
...

We propose a new set of built-in predicates that constitute the
syntax to interact with an or-parallel engine in our implementation.

We show experimental results with different configurations of teams
up to 32 workers.

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 4 / 29



Background: Environment Copying

When implementing or-parallelism, a main difficulty is how to
efficiently represent the multiple bindings for the same variable
produced by the parallel execution of alternative matching clauses.

One of the most successful or-parallel models that solves the multiple
bindings problem is environment copying, which has been efficiently
used in the implementation of or-parallel systems both on shared
memory and on distributed memory architectures.

With environment copying model, each worker keeps a separate
copy of its own environment, thus the bindings to shared variables
are done as usual and without conflicts. Advantages:

Each worker acts like an independent Prolog engine
Requires minimal synchronization between workers

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 5 / 29



Background: Environment Copying

When implementing or-parallelism, a main difficulty is how to
efficiently represent the multiple bindings for the same variable
produced by the parallel execution of alternative matching clauses.

One of the most successful or-parallel models that solves the multiple
bindings problem is environment copying, which has been efficiently
used in the implementation of or-parallel systems both on shared
memory and on distributed memory architectures.

With environment copying model, each worker keeps a separate
copy of its own environment, thus the bindings to shared variables
are done as usual and without conflicts. Advantages:

Each worker acts like an independent Prolog engine
Requires minimal synchronization between workers

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 5 / 29



Background: Environment Copying

When implementing or-parallelism, a main difficulty is how to
efficiently represent the multiple bindings for the same variable
produced by the parallel execution of alternative matching clauses.

One of the most successful or-parallel models that solves the multiple
bindings problem is environment copying, which has been efficiently
used in the implementation of or-parallel systems both on shared
memory and on distributed memory architectures.

With environment copying model, each worker keeps a separate
copy of its own environment, thus the bindings to shared variables
are done as usual and without conflicts. Advantages:

Each worker acts like an independent Prolog engine
Requires minimal synchronization between workers

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 5 / 29



Background: Environment Copying

Arguably, the most successful systems/models using environment
copying are:

Muse [Ali and Karlsson, 1990] for shared memory architectures
PALS [Villaverde, Pontelli, Guo and Gupta, 2001] for distributed
memory architectures

The main difference between both is on how scheduling is done:
Muse uses dynamic distribution of work (or-frames)
PALS uses static distribution of work (stack splitting)

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 6 / 29



Background: Environment Copying

Arguably, the most successful systems/models using environment
copying are:

Muse [Ali and Karlsson, 1990] for shared memory architectures
PALS [Villaverde, Pontelli, Guo and Gupta, 2001] for distributed
memory architectures

The main difference between both is on how scheduling is done:
Muse uses dynamic distribution of work (or-frames)
PALS uses static distribution of work (stack splitting)

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 6 / 29



Background: Or-Frames

c2

b2

NULL

b3
b2

c3

Worker 0

c4

Worker 0

CP stack

c2

c2

b2

NULL

Worker 1

b3
b2

c3

Worker 0

c4

NULL

b2

c2

Worker 0

CP stack CP stack

c2

c2

b2

NULL

Worker 1

b3
b2

c3

Worker 0

c4

NULL

b2

c3

Worker 0 Worker 1

CP stack CP stack

Worker 1

NULL

b2

or-frames

b3
b2

c3

Worker 0

c4

Worker 0 Worker 1

c3

or-frames CP stack CP stack

Worker 1

NULL

b2

or-frames

b3
b2

c3
f3

Worker 0

c4

Worker 0

shared
region

private
region

d2

d3

e3

e2

f2

d2 f2

e2Worker 1

c3

or-frames CP stack CP stack

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 7 / 29



Background: Or-Frames

c2

b2

NULL

b3
b2

c3

Worker 0

c4

Worker 0

CP stack

c2

c2

b2

NULL

Worker 1

b3
b2

c3

Worker 0

c4

NULL

b2

c2

Worker 0

CP stack CP stack

c2

c2

b2

NULL

Worker 1

b3
b2

c3

Worker 0

c4

NULL

b2

c3

Worker 0 Worker 1

CP stack CP stack

Worker 1

NULL

b2

or-frames

b3
b2

c3

Worker 0

c4

Worker 0 Worker 1

c3

or-frames CP stack CP stack

Worker 1

NULL

b2

or-frames

b3
b2

c3
f3

Worker 0

c4

Worker 0

shared
region

private
region

d2

d3

e3

e2

f2

d2 f2

e2Worker 1

c3

or-frames CP stack CP stack

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 7 / 29



Background: Or-Frames

c2

b2

NULL

b3
b2

c3

Worker 0

c4

Worker 0

CP stack

c2

c2

b2

NULL

Worker 1

b3
b2

c3

Worker 0

c4

NULL

b2

c2

Worker 0

CP stack CP stack

c2

c2

b2

NULL

Worker 1

b3
b2

c3

Worker 0

c4

NULL

b2

c3

Worker 0 Worker 1

CP stack CP stack

Worker 1

NULL

b2

or-frames

b3
b2

c3

Worker 0

c4

Worker 0 Worker 1

c3

or-frames CP stack CP stack

Worker 1

NULL

b2

or-frames

b3
b2

c3
f3

Worker 0

c4

Worker 0

shared
region

private
region

d2

d3

e3

e2

f2

d2 f2

e2Worker 1

c3

or-frames CP stack CP stack

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 7 / 29



Background: Or-Frames

c2

b2

NULL

b3
b2

c3

Worker 0

c4

Worker 0

CP stack

c2

c2

b2

NULL

Worker 1

b3
b2

c3

Worker 0

c4

NULL

b2

c2

Worker 0

CP stack CP stack

c2

c2

b2

NULL

Worker 1

b3
b2

c3

Worker 0

c4

NULL

b2

c3

Worker 0 Worker 1

CP stack CP stack

Worker 1

NULL

b2

or-frames

b3
b2

c3

Worker 0

c4

Worker 0 Worker 1

c3

or-frames CP stack CP stack

Worker 1

NULL

b2

or-frames

b3
b2

c3
f3

Worker 0

c4

Worker 0

shared
region

private
region

d2

d3

e3

e2

f2

d2 f2

e2Worker 1

c3

or-frames CP stack CP stack

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 7 / 29



Background: Or-Frames

c2

b2

NULL

b3
b2

c3

Worker 0

c4

Worker 0

CP stack

c2

c2

b2

NULL

Worker 1

b3
b2

c3

Worker 0

c4

NULL

b2

c2

Worker 0

CP stack CP stack

c2

c2

b2

NULL

Worker 1

b3
b2

c3

Worker 0

c4

NULL

b2

c3

Worker 0 Worker 1

CP stack CP stack

Worker 1

NULL

b2

or-frames

b3
b2

c3

Worker 0

c4

Worker 0 Worker 1

c3

or-frames CP stack CP stack

Worker 1

NULL

b2

or-frames

b3
b2

c3
f3

Worker 0

c4

Worker 0

shared
region

private
region

d2

d3

e3

e2

f2

d2 f2

e2Worker 1

c3

or-frames CP stack CP stack

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 7 / 29



Background: Stack Splitting

After environment copying

worker 1worker 0

c2 c3

c4

b2 b3

b4

a2
a3

a4

c2 c3

c4

b2 b3

b4

a2
a3

a4

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 8 / 29



Background: Stack Splitting

Vertical splitting

worker 1worker 0

c2 c3

c4

b2 b3

b4

a2
a3

a4

c2 c3

c4

b2 b3

b4

a2
a3

a4

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 9 / 29



Background: Stack Splitting

Vertical splitting

worker 1worker 0

c2 c3

c4

a2
a3

a4

b2 b3

b4

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 10 / 29



Background: Stack Splitting

Horizontal splitting

c2

c4

b3

a2

a4

b2

b4

a3

worker 1worker 0

c2 c3

c4

b3

a2

a4

c3

b2

b4

a3

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 11 / 29



Background: Stack Splitting

Horizontal splitting

worker 1worker 0

c2

c4

b3

a2

a4

c3

b2

b4

a3

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 12 / 29



Layered Model

Introduces the concept of teams and the ability to exploit different
scheduling strategies for distributing work among teams and among
the workers inside a team (two-level scheduler).

Defines a team as a set of workers (processes or threads) who share
the same memory address space and cooperate to solve a certain
part of the main problem.

Inside a team we may use or-frames or stack splitting to distribute
work.

Between teams we use a new layer to distribute work using stack
splitting between teams, but we can still use or-frames for distributing
work among the workers inside a team.

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 13 / 29



Layered Model

Introduces the concept of teams and the ability to exploit different
scheduling strategies for distributing work among teams and among
the workers inside a team (two-level scheduler).

Defines a team as a set of workers (processes or threads) who share
the same memory address space and cooperate to solve a certain
part of the main problem.

Inside a team we may use or-frames or stack splitting to distribute
work.

Between teams we use a new layer to distribute work using stack
splitting between teams, but we can still use or-frames for distributing
work among the workers inside a team.

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 13 / 29



Layered Model

Introduces the concept of teams and the ability to exploit different
scheduling strategies for distributing work among teams and among
the workers inside a team (two-level scheduler).

Defines a team as a set of workers (processes or threads) who share
the same memory address space and cooperate to solve a certain
part of the main problem.

Inside a team we may use or-frames or stack splitting to distribute
work.

Between teams we use a new layer to distribute work using stack
splitting between teams, but we can still use or-frames for distributing
work among the workers inside a team.

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 13 / 29



Layered Model

Introduces the concept of teams and the ability to exploit different
scheduling strategies for distributing work among teams and among
the workers inside a team (two-level scheduler).

Defines a team as a set of workers (processes or threads) who share
the same memory address space and cooperate to solve a certain
part of the main problem.

Inside a team we may use or-frames or stack splitting to distribute
work.

Between teams we use a new layer to distribute work using stack
splitting between teams, but we can still use or-frames for distributing
work among the workers inside a team.

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 13 / 29



Layered Model

Host Node N1

W
(B,0)

Team B

W
(B,1)

W
(B,2)

W
(B,3)

Host Node N2

W
(C,0)

Team C

W
(C,1)

W
(C,2)

W
(C,3)

W
(A,0)

Team A

W
(A,1)

W
(A,2)

W
(C,4)

W
(C,5)

W
(C,6)

W
(C,7)

stack
splitting

or-frames

Or-Parallel Engine

YAP 6.3.4
?-

Console

send
parallel goal

retrieve
answers

stack splitting

or-frames

stack
splitting

stack
splitting

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 14 / 29



New Syntax

Our proposal for the syntax to interact with an or-parallel engine
follows two important design rules:

Avoid blocking mechanisms for interacting with an or-parallel engine
Delegate to the programmer the responsibility of explicitly annotate
which parts of the program should be run in an or-parallel engine

Predicates:
par_create_parallel_engine(EngName, ListTeams)
par_run_goal(EngName, Goal, Template)
par_probe_answers(EngName)
par_get_answers(EngName, Mode, ListAnswers, NumAnswers)
par_free_parallel_engine(EngName)

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 15 / 29



New Syntax

Our proposal for the syntax to interact with an or-parallel engine
follows two important design rules:

Avoid blocking mechanisms for interacting with an or-parallel engine
Delegate to the programmer the responsibility of explicitly annotate
which parts of the program should be run in an or-parallel engine

Predicates:
par_create_parallel_engine(EngName, ListTeams)
par_run_goal(EngName, Goal, Template)
par_probe_answers(EngName)
par_get_answers(EngName, Mode, ListAnswers, NumAnswers)
par_free_parallel_engine(EngName)

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 15 / 29



Our Implementation

To implement the layered model, we extended the YapOr system to
efficiently exploit parallelism between teams of workers running on top
of clusters of multicores.

YapOr is an or-parallel engine based on the environment copying
(or-frames) model that extends the Yap Prolog system to exploit
implicit or-parallelism in shared memory architectures
Our implementation takes full advantage of Yap’s state-of-the-art
engine and reuses the underlying execution environment, scheduler and
part of the data structures used to support parallelism in YapOr.

Each team is implemented as an independent YapOr engine using
or-frames. For sharing work among teams, we implemented a
second-layer that may use vertical or horizontal splitting.

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 16 / 29



Our Implementation

To implement the layered model, we extended the YapOr system to
efficiently exploit parallelism between teams of workers running on top
of clusters of multicores.

YapOr is an or-parallel engine based on the environment copying
(or-frames) model that extends the Yap Prolog system to exploit
implicit or-parallelism in shared memory architectures
Our implementation takes full advantage of Yap’s state-of-the-art
engine and reuses the underlying execution environment, scheduler and
part of the data structures used to support parallelism in YapOr.

Each team is implemented as an independent YapOr engine using
or-frames. For sharing work among teams, we implemented a
second-layer that may use vertical or horizontal splitting.

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 16 / 29



Execution Model

In order to allow the parallel execution of goals, it is necessary to
create beforehand, at least, one or-parallel engine (we can create
several or-parallel engines and run different parallel goals on each).

The worker 0 of each team is named the master worker of the team
and it is responsible for launching the execution inside the team and for
the communication with the other teams.
The first team to be launched is named the master team and its
master worker is also responsible for launching the execution of the
parallel goals and for returning the found answers.

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 17 / 29



Execution Model

When the predicate par_run_goal/3 is called in the client worker
(Yap’s console) then a message with the goal to be run in parallel is
sent to the master worker of the master team.

It then notifies all the other master workers about the new parallel goal
and then start its execution.
The other teams are now aware that a parallel computation has begun
and thus they enter in team scheduling mode.

When a team has work, the execution behaves like an independent
YapOr engine.

A team is considered to be out of work when every worker inside the
team is idle. The execution ends when all teams are idle.

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 18 / 29



Execution Model

When the predicate par_run_goal/3 is called in the client worker
(Yap’s console) then a message with the goal to be run in parallel is
sent to the master worker of the master team.

It then notifies all the other master workers about the new parallel goal
and then start its execution.
The other teams are now aware that a parallel computation has begun
and thus they enter in team scheduling mode.

When a team has work, the execution behaves like an independent
YapOr engine.

A team is considered to be out of work when every worker inside the
team is idle. The execution ends when all teams are idle.

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 18 / 29



Team Scheduler

The team scheduler is divided in two modules:
The team idle scheduler is run by the master worker when a team is
out of work and its goal is to find a busy team willing to share work.
The team busy scheduler is run from time to time by all workers
inside a busy team and it is responsible for handling the sharing
requests sent by the idle teams.

W
(A,0)

Team A Team B

W
(B,0)

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

W
(B,1)

Team Busy Scheduler 

W
(A,0)

Team A Team B

W
(B,0)

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

W
(B,1)

Team Busy Scheduler 

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

DELEGATE_REQUEST
SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()
DELEGATE_REQUEST

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

TS_process_delegation_ready()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()

TS_share_work()
DELEGATE_REQUEST

DEL
EGA

TE_
ACC

EPT

SHARE_REQUEST

W
(A,0)

Team A Team B

TS_process_message()

W
(B,0)

TS_process_message()

TS_delegate_request()

TS_process_delegation_ready()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()

TS_share_work()

TS_install_stacks()

DELEGATE_REQUEST

DEL
EGA

TE_
ACC

EPT

SHARE_REQUEST

SHARE_ACCEPT

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 19 / 29



Team Scheduler

The team scheduler is divided in two modules:
The team idle scheduler is run by the master worker when a team is
out of work and its goal is to find a busy team willing to share work.
The team busy scheduler is run from time to time by all workers
inside a busy team and it is responsible for handling the sharing
requests sent by the idle teams.

W
(A,0)

Team A Team B

W
(B,0)

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

W
(B,1)

Team Busy Scheduler 

W
(A,0)

Team A Team B

W
(B,0)

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

W
(B,1)

Team Busy Scheduler 

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

DELEGATE_REQUEST
SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()
DELEGATE_REQUEST

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

TS_process_delegation_ready()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()

TS_share_work()
DELEGATE_REQUEST

DEL
EGA

TE_
ACC

EPT

SHARE_REQUEST

W
(A,0)

Team A Team B

TS_process_message()

W
(B,0)

TS_process_message()

TS_delegate_request()

TS_process_delegation_ready()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()

TS_share_work()

TS_install_stacks()

DELEGATE_REQUEST

DEL
EGA

TE_
ACC

EPT

SHARE_REQUEST

SHARE_ACCEPT

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 19 / 29



Team Scheduler

The team scheduler is divided in two modules:
The team idle scheduler is run by the master worker when a team is
out of work and its goal is to find a busy team willing to share work.
The team busy scheduler is run from time to time by all workers
inside a busy team and it is responsible for handling the sharing
requests sent by the idle teams.

W
(A,0)

Team A Team B

W
(B,0)

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

W
(B,1)

Team Busy Scheduler 

W
(A,0)

Team A Team B

W
(B,0)

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

W
(B,1)

Team Busy Scheduler 

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

DELEGATE_REQUEST
SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()
DELEGATE_REQUEST

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

TS_process_delegation_ready()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()

TS_share_work()
DELEGATE_REQUEST

DEL
EGA

TE_
ACC

EPT

SHARE_REQUEST

W
(A,0)

Team A Team B

TS_process_message()

W
(B,0)

TS_process_message()

TS_delegate_request()

TS_process_delegation_ready()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()

TS_share_work()

TS_install_stacks()

DELEGATE_REQUEST

DEL
EGA

TE_
ACC

EPT

SHARE_REQUEST

SHARE_ACCEPT

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 19 / 29



Team Scheduler

The team scheduler is divided in two modules:
The team idle scheduler is run by the master worker when a team is
out of work and its goal is to find a busy team willing to share work.
The team busy scheduler is run from time to time by all workers
inside a busy team and it is responsible for handling the sharing
requests sent by the idle teams.

W
(A,0)

Team A Team B

W
(B,0)

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

W
(B,1)

Team Busy Scheduler 

W
(A,0)

Team A Team B

W
(B,0)

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

W
(B,1)

Team Busy Scheduler 

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

DELEGATE_REQUEST
SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()
DELEGATE_REQUEST

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

TS_process_delegation_ready()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()

TS_share_work()
DELEGATE_REQUEST

DEL
EGA

TE_
ACC

EPT

SHARE_REQUEST

W
(A,0)

Team A Team B

TS_process_message()

W
(B,0)

TS_process_message()

TS_delegate_request()

TS_process_delegation_ready()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()

TS_share_work()

TS_install_stacks()

DELEGATE_REQUEST

DEL
EGA

TE_
ACC

EPT

SHARE_REQUEST

SHARE_ACCEPT

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 19 / 29



Team Scheduler

The team scheduler is divided in two modules:
The team idle scheduler is run by the master worker when a team is
out of work and its goal is to find a busy team willing to share work.
The team busy scheduler is run from time to time by all workers
inside a busy team and it is responsible for handling the sharing
requests sent by the idle teams.

W
(A,0)

Team A Team B

W
(B,0)

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

W
(B,1)

Team Busy Scheduler 

W
(A,0)

Team A Team B

W
(B,0)

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

W
(B,1)

Team Busy Scheduler 

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

DELEGATE_REQUEST
SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()
DELEGATE_REQUEST

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

TS_process_delegation_ready()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()

TS_share_work()
DELEGATE_REQUEST

DEL
EGA

TE_
ACC

EPT

SHARE_REQUEST

W
(A,0)

Team A Team B

TS_process_message()

W
(B,0)

TS_process_message()

TS_delegate_request()

TS_process_delegation_ready()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()

TS_share_work()

TS_install_stacks()

DELEGATE_REQUEST

DEL
EGA

TE_
ACC

EPT

SHARE_REQUEST

SHARE_ACCEPT

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 19 / 29



Team Scheduler

The team scheduler is divided in two modules:
The team idle scheduler is run by the master worker when a team is
out of work and its goal is to find a busy team willing to share work.
The team busy scheduler is run from time to time by all workers
inside a busy team and it is responsible for handling the sharing
requests sent by the idle teams.

W
(A,0)

Team A Team B

W
(B,0)

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

W
(B,1)

Team Busy Scheduler 

W
(A,0)

Team A Team B

W
(B,0)

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

W
(B,1)

Team Busy Scheduler 

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

DELEGATE_REQUEST
SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()
DELEGATE_REQUEST

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

TS_process_delegation_ready()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()

TS_share_work()
DELEGATE_REQUEST

DEL
EGA

TE_
ACC

EPT

SHARE_REQUEST

W
(A,0)

Team A Team B

TS_process_message()

W
(B,0)

TS_process_message()

TS_delegate_request()

TS_process_delegation_ready()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()

TS_share_work()

TS_install_stacks()

DELEGATE_REQUEST

DEL
EGA

TE_
ACC

EPT

SHARE_REQUEST

SHARE_ACCEPT

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 19 / 29



Team Scheduler

The team scheduler is divided in two modules:
The team idle scheduler is run by the master worker when a team is
out of work and its goal is to find a busy team willing to share work.
The team busy scheduler is run from time to time by all workers
inside a busy team and it is responsible for handling the sharing
requests sent by the idle teams.

W
(A,0)

Team A Team B

W
(B,0)

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

W
(B,1)

Team Busy Scheduler 

W
(A,0)

Team A Team B

W
(B,0)

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

W
(B,1)

Team Busy Scheduler 

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

DELEGATE_REQUEST
SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()
DELEGATE_REQUEST

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

TS_process_delegation_ready()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()

TS_share_work()
DELEGATE_REQUEST

DEL
EGA

TE_
ACC

EPT

SHARE_REQUEST

W
(A,0)

Team A Team B

TS_process_message()

W
(B,0)

TS_process_message()

TS_delegate_request()

TS_process_delegation_ready()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()

TS_share_work()

TS_install_stacks()

DELEGATE_REQUEST

DEL
EGA

TE_
ACC

EPT

SHARE_REQUEST

SHARE_ACCEPT

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 19 / 29



Team Scheduler

The team scheduler is divided in two modules:
The team idle scheduler is run by the master worker when a team is
out of work and its goal is to find a busy team willing to share work.
The team busy scheduler is run from time to time by all workers
inside a busy team and it is responsible for handling the sharing
requests sent by the idle teams.

W
(A,0)

Team A Team B

W
(B,0)

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

W
(B,1)

Team Busy Scheduler 

W
(A,0)

Team A Team B

W
(B,0)

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

W
(B,1)

Team Busy Scheduler 

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

DELEGATE_REQUEST
SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()
DELEGATE_REQUEST

SHARE_REQUEST

W
(A,0)

Team A Team B

W
(B,0)

TS_process_message()

TS_delegate_request()

TS_process_delegation_ready()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()

TS_share_work()
DELEGATE_REQUEST

DEL
EGA

TE_
ACC

EPT

SHARE_REQUEST

W
(A,0)

Team A Team B

TS_process_message()

W
(B,0)

TS_process_message()

TS_delegate_request()

TS_process_delegation_ready()

W
(B,2)

W
(B,3)

W
(A,1)

W
(A,2)

W
(A,3)

Team Idle Scheduler 

TS_request_work()

Team Busy Scheduler 

W
(B,1)

Team Busy Scheduler 

TS_process_delegation_request()

TS_share_work()

TS_install_stacks()

DELEGATE_REQUEST

DEL
EGA

TE_
ACC

EPT

SHARE_REQUEST

SHARE_ACCEPT

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 19 / 29



Vertical Stack Splitting Between Teams

shared
region

private
region

null

b2

c3

Sharing
Worker

b3
b2

c3

c2

d2

d3

e2

e3

or-frames

b3
b2

Auxiliary
Sharing Area

shared
region

private
region

null

null

c3

Sharing
Worker

c3

c2

e2

e3

or-frames

d3

Before splitting After splitting

shared
region

private
region

null

b2

c3

Sharing
Worker

b3
b2

c3

c2

d2

d3

e2

e3

or-frames

b3
b2

Auxiliary
Sharing Area

shared
region

private
region

null

null

c3

Sharing
Worker

c3

c2

e2

e3

or-frames

d3

Before splitting After splitting

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 20 / 29



Vertical Stack Splitting Between Teams

shared
region

private
region

null

b2

c3

Sharing
Worker

b3
b2

c3

c2

d2

d3

e2

e3

or-frames

b3
b2

Auxiliary
Sharing Area

shared
region

private
region

null

null

c3

Sharing
Worker

c3

c2

e2

e3

or-frames

d3

Before splitting After splitting

shared
region

private
region

null

b2

c3

Sharing
Worker

b3
b2

c3

c2

d2

d3

e2

e3

or-frames

b3
b2

Auxiliary
Sharing Area

shared
region

private
region

null

null

c3

Sharing
Worker

c3

c2

e2

e3

or-frames

d3

Before splitting After splitting

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 20 / 29



Load Balancing With Timestamps

Team
A

Team
B

TS Load

A

B

C

A

B

C

2 3

4 1

4 4

3 7

5 X

3 5

TS Load

Team
A

Team
B

TS Load

A

B

C

A

B

C

2 3

4 1

4 4

3 7

5 X

3 5

A

B

C

2 3

4 1

5 X

TS Load TS Load
A

B

C

2 3

4 1

5 X

TS Load

Team
A

Team
B

TS Load

A

B

C

A

B

C

2 3

4 1

4 4

3 7

5 X

3 5

A

B

C

2 3

4 1

5 X

A

B

C

5

4 1

3 5

X

TS Load TS Load

TS Load

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 21 / 29



Load Balancing With Timestamps

Team
A

Team
B

TS Load

A

B

C

A

B

C

2 3

4 1

4 4

3 7

5 X

3 5

TS Load

Team
A

Team
B

TS Load

A

B

C

A

B

C

2 3

4 1

4 4

3 7

5 X

3 5

A

B

C

2 3

4 1

5 X

TS Load TS Load
A

B

C

2 3

4 1

5 X

TS Load

Team
A

Team
B

TS Load

A

B

C

A

B

C

2 3

4 1

4 4

3 7

5 X

3 5

A

B

C

2 3

4 1

5 X

A

B

C

5

4 1

3 5

X

TS Load TS Load

TS Load

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 21 / 29



Load Balancing With Timestamps

Team
A

Team
B

TS Load

A

B

C

A

B

C

2 3

4 1

4 4

3 7

5 X

3 5

TS Load

Team
A

Team
B

TS Load

A

B

C

A

B

C

2 3

4 1

4 4

3 7

5 X

3 5

A

B

C

2 3

4 1

5 X

TS Load TS Load
A

B

C

2 3

4 1

5 X

TS Load

Team
A

Team
B

TS Load

A

B

C

A

B

C

2 3

4 1

4 4

3 7

5 X

3 5

A

B

C

2 3

4 1

5 X

A

B

C

5

4 1

3 5

X

TS Load TS Load

TS Load

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 21 / 29



Termination With Timestamps

Team
A

Team
B

Team
C

A

B

C

2

4

5

A

B

C

4

5 3

4

A

B

C

3 2

6

4

X

X

4

4

8

3

10

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

A

B

C

2

4

5

A

B

C

4

5 3

4

A

B

C

3 2

6

5

X

X

X

4

8

3

10

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUESTSHARE_REFUSE

A

B

C

3

6

5

A

B

C

4

5 3

4

A

B

C

3 2

6

5

X

X

X

4

8

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

5

7 3

5

A

B

C

5 5

7

5

3

X

X

X

5

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

2

X

TS Load

TS Load

TS Load

SHA
RE_

REQ
UES

T

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

SHA
RE_

REQ
UES

T

SHA
RE_

REF
USE

A

B

C

6

7

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

x

3

TS Load

TS Load

TS Load

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 22 / 29



Termination With Timestamps

Team
A

Team
B

Team
C

A

B

C

2

4

5

A

B

C

4

5 3

4

A

B

C

3 2

6

4

X

X

4

4

8

3

10

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

A

B

C

2

4

5

A

B

C

4

5 3

4

A

B

C

3 2

6

5

X

X

X

4

8

3

10

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUESTSHARE_REFUSE

A

B

C

3

6

5

A

B

C

4

5 3

4

A

B

C

3 2

6

5

X

X

X

4

8

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

5

7 3

5

A

B

C

5 5

7

5

3

X

X

X

5

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

2

X

TS Load

TS Load

TS Load

SHA
RE_

REQ
UES

T

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

SHA
RE_

REQ
UES

T

SHA
RE_

REF
USE

A

B

C

6

7

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

x

3

TS Load

TS Load

TS Load

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 22 / 29



Termination With Timestamps

Team
A

Team
B

Team
C

A

B

C

2

4

5

A

B

C

4

5 3

4

A

B

C

3 2

6

4

X

X

4

4

8

3

10

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

A

B

C

2

4

5

A

B

C

4

5 3

4

A

B

C

3 2

6

5

X

X

X

4

8

3

10

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUESTSHARE_REFUSE

A

B

C

3

6

5

A

B

C

4

5 3

4

A

B

C

3 2

6

5

X

X

X

4

8

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

5

7 3

5

A

B

C

5 5

7

5

3

X

X

X

5

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

2

X

TS Load

TS Load

TS Load

SHA
RE_

REQ
UES

T

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

SHA
RE_

REQ
UES

T

SHA
RE_

REF
USE

A

B

C

6

7

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

x

3

TS Load

TS Load

TS Load

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 22 / 29



Termination With Timestamps

Team
A

Team
B

Team
C

A

B

C

2

4

5

A

B

C

4

5 3

4

A

B

C

3 2

6

4

X

X

4

4

8

3

10

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

A

B

C

2

4

5

A

B

C

4

5 3

4

A

B

C

3 2

6

5

X

X

X

4

8

3

10

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUESTSHARE_REFUSE

A

B

C

3

6

5

A

B

C

4

5 3

4

A

B

C

3 2

6

5

X

X

X

4

8

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

5

7 3

5

A

B

C

5 5

7

5

3

X

X

X

5

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

2

X

TS Load

TS Load

TS Load

SHA
RE_

REQ
UES

T

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

SHA
RE_

REQ
UES

T

SHA
RE_

REF
USE

A

B

C

6

7

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

x

3

TS Load

TS Load

TS Load

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 22 / 29



Termination With Timestamps

Team
A

Team
B

Team
C

A

B

C

2

4

5

A

B

C

4

5 3

4

A

B

C

3 2

6

4

X

X

4

4

8

3

10

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

A

B

C

2

4

5

A

B

C

4

5 3

4

A

B

C

3 2

6

5

X

X

X

4

8

3

10

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUESTSHARE_REFUSE

A

B

C

3

6

5

A

B

C

4

5 3

4

A

B

C

3 2

6

5

X

X

X

4

8

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

5

7 3

5

A

B

C

5 5

7

5

3

X

X

X

5

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

2

X

TS Load

TS Load

TS Load

SHA
RE_

REQ
UES

T

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

SHA
RE_

REQ
UES

T

SHA
RE_

REF
USE

A

B

C

6

7

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

x

3

TS Load

TS Load

TS Load

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 22 / 29



Termination With Timestamps

Team
A

Team
B

Team
C

A

B

C

2

4

5

A

B

C

4

5 3

4

A

B

C

3 2

6

4

X

X

4

4

8

3

10

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

A

B

C

2

4

5

A

B

C

4

5 3

4

A

B

C

3 2

6

5

X

X

X

4

8

3

10

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUESTSHARE_REFUSE

A

B

C

3

6

5

A

B

C

4

5 3

4

A

B

C

3 2

6

5

X

X

X

4

8

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

5

7 3

5

A

B

C

5 5

7

5

3

X

X

X

5

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

2

X

TS Load

TS Load

TS Load

SHA
RE_

REQ
UES

T

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

SHA
RE_

REQ
UES

T

SHA
RE_

REF
USE

A

B

C

6

7

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

x

3

TS Load

TS Load

TS Load

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 22 / 29



Termination With Timestamps

Team
A

Team
B

Team
C

A

B

C

2

4

5

A

B

C

4

5 3

4

A

B

C

3 2

6

4

X

X

4

4

8

3

10

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

A

B

C

2

4

5

A

B

C

4

5 3

4

A

B

C

3 2

6

5

X

X

X

4

8

3

10

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUESTSHARE_REFUSE

A

B

C

3

6

5

A

B

C

4

5 3

4

A

B

C

3 2

6

5

X

X

X

4

8

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

5

7 3

5

A

B

C

5 5

7

5

3

X

X

X

5

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

2

X

TS Load

TS Load

TS Load

SHA
RE_

REQ
UES

T

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

A

B

C

3

6

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

2

X

TS Load

TS Load

TS Load

Team
A

Team
B

Team
C

SHARE_REQUEST

S
H
A
R
E
_
R
E
Q
U
E
S
T

SHARE_REFUSE

S
H
A
R
E
_
A
C
C
E
P
T

SHA
RE_

REQ
UES

T

SHA
RE_

REF
USE

A

B

C

6

7

5

A

B

C

6

7 3

5

A

B

C

5 5

7

5

3

X

X

X

X

x

3

TS Load

TS Load

TS Load

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 22 / 29



Performance Evaluation

2 parallel machines, each one with 4 AMD SixCore Opteron TM
8425 HE @ 2.1 GHz (24 cores per machine, 48 cores in total) and
64 GBytes of main memory each, running Fedora 20 with the Linux
kernel 3.19.8-100 64 bits.

10 well-known benchmark programs. All together, the 10
benchmarks take around 1800 seconds (30 minutes) to run with
YapOr with a single worker. All results are the average of 10 runs.

We assume that each team runs in a different machine:
Configured OpenMPI to use the loopback interface and the TCP
protocol for all communications
Used tc command to add more 0.06 milliseconds latency in the
loopback interface (to simulate the latency observed between the
physical machines)

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 23 / 29



Performance Evaluation

16 Workers 16W 2T 8W 4T 4W 8T 2W 16T 1W
YapOr VS HS VS HS VS HS VS HS

Average 14.60 13.20 13.46 12.64 12.93 10.29 11.75 7.04 7.94

24 Workers 2T 12W 4T 6W 6T 4W 12T 2W 16T 1W
VS HS VS HS VS HS VS HS VS HS

Average 18.84 19.08 18.16 18.48 16.90 17.56 12.15 14.35 7.59 8.37

32 Workers 2T 16W 4T 8W 8T 4W 16T 2W 32T 1W
VS HS VS HS VS HS VS HS VS HS

Average 24.10 23.94 22.98 23.35 20.26 21.40 13.08 15.35 7.70 8.86

Speedup results against YapOr execution with a single worker for different
configurations of teams using vertical (VS) and horizontal (HS)

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 24 / 29



Performance Evaluation

16 Workers 16W 2T 8W 4T 4W 8T 2W 16T 1W
YapOr VS HS VS HS VS HS VS HS

Average 14.60 13.20 13.46 12.64 12.93 10.29 11.75 7.04 7.94

24 Workers 2T 12W 4T 6W 6T 4W 12T 2W 16T 1W
VS HS VS HS VS HS VS HS VS HS

Average 18.84 19.08 18.16 18.48 16.90 17.56 12.15 14.35 7.59 8.37

32 Workers 2T 16W 4T 8W 8T 4W 16T 2W 32T 1W
VS HS VS HS VS HS VS HS VS HS

Average 24.10 23.94 22.98 23.35 20.26 21.40 13.08 15.35 7.70 8.86

#1: HS achieves better speedups than VS and the difference seems
to increase as we increase the number of teams (probably as a result
of more stack splitting operations)

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 25 / 29



Performance Evaluation

16 Workers 16W 2T 8W 4T 4W 8T 2W 16T 1W
YapOr VS HS VS HS VS HS VS HS

Average 14.60 13.20 13.46 12.64 12.93 10.29 11.75 7.04 7.94

24 Workers 2T 12W 4T 6W 6T 4W 12T 2W 16T 1W
VS HS VS HS VS HS VS HS VS HS

Average 18.84 19.08 18.16 18.48 16.90 17.56 12.15 14.35 7.59 8.37

32 Workers 2T 16W 4T 8W 8T 4W 16T 2W 32T 1W
VS HS VS HS VS HS VS HS VS HS

Average 24.10 23.94 22.98 23.35 20.26 21.40 13.08 15.35 7.70 8.86

#2: fixing the total number of workers, speedups increase as we
increase the number of workers per team (thus taking advantage of
the maximum number of cores in a machine)

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 26 / 29



Performance Evaluation

16 Workers 16W 2T 8W 4T 4W 8T 2W 16T 1W
YapOr VS HS VS HS VS HS VS HS

Average 14.60 13.20 13.46 12.64 12.93 10.29 11.75 7.04 7.94

24 Workers 2T 12W 4T 6W 6T 4W 12T 2W 16T 1W
VS HS VS HS VS HS VS HS VS HS

Average 18.84 19.08 18.16 18.48 16.90 17.56 12.15 14.35 7.59 8.37

32 Workers 2T 16W 4T 8W 8T 4W 16T 2W 32T 1W
VS HS VS HS VS HS VS HS VS HS

Average 24.10 23.94 22.98 23.35 20.26 21.40 13.08 15.35 7.70 8.86

#3: fixing the number of workers per team, speedups increase as we
increase the number of teams (thus taking advantage of adding more
computer nodes to a cluster)

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 27 / 29



Main Contributions and Further Work

Main Contributions
Implementation of the layered model
New syntax
Performance study

Further Work
Support incremental copy between teams
Support dynamic teams
Support dynamic code compilation
Support cut semantics
Avoid speculative work (new scheduling strategies)
Integrate with other YapOr extensions (ThOr, stack splitting)
...

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 28 / 29



Thank You!

Ricardo Rocha
CRACS & INESC TEC and Faculty of Sciences

University of Porto, Portugal

ricroc@dcc.fc.up.pt
http://www.dcc.fc.up.pt/∼ricroc

J. Santos and R. Rocha (U. Porto) Or-Parallel Prolog for Clusters of Multicores ICLP’16 – October 20, 2016 29 / 29


