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Abstract

One of the major challenges in knowledge discovery is
how to extract meaningful and useful knowledge from the
complex structured data that one finds in Scientific and
Technological applications. One approach is to explore the
logic relations in the database and using, say, an Inductive
Logic Programming (ILP) algorithm find descriptive and
expressive patterns. These patterns can then be used as fea-
tures to characterize the target concept. The effectiveness of
these algorithms depends both upon the algorithm we use to
generate the patterns and upon the classifier. Rule mining
provides an excellent framework for efficiently mining the
interesting patterns that are relevant. We propose a novel
method to select discriminative patterns and evaluate the
effectiveness of this method on a complex discovery appli-
cation of practical interest.

1. Introduction

One of major challenges in knowledge discovery is how
to extract meaningful and useful knowledge from the com-
plex structured data that one finds in Scientific and Tech-
nological applications. Such data may be structured, may
stem from a number of very different sources with different
reliability, and may be incomplete. We may have to deal
with both huge amounts of data on some concepts and little
data on other concepts, within the same dataset.

Work in this research area such as RSD [18], SAYU [19],
nFOIL [12], kFOIL [11] suggests that an effective approach
to tackle such a problem is what is called as proposition-
alization, where one searches for properties of interest in
the data and uses the huge amount of research in feature-
based learning to build a model for classification or de-
scriptive purposes. More precisely, we explore the logic

relations in the database and using an, say, Inductive Logic
Programming (ILP) algorithm we find descriptive and ex-
pressive patterns. These patterns will be used as features
to characterize the target concept. These patterns will then
be used on their own or together with features originally
known about the target concept, as input to a propositional
learner or toolkit.

The effectiveness of these algorithms depends both upon
the algorithm we use to generate the patterns and upon the
classifier. There is an extensive body of work on proposi-
tional classifiers, so much of the novel contribution in this
area results from addressing the first issue. The problem
here is that the number of patterns we can generate from
most interesting and powerful languages grows exponen-
tially. On the one hand, if all these patterns are fed to the
propositional learner, the learning task becomes very vul-
nerable to over-fitting. On the other hand, if we constrain
the patterns, we risk to miss important patterns that may be
extremely useful to the learning task.

The RUSE algorithm is motivated by the excellent re-
sults of Inductive Logic Programming pattern miners, such
as WARMR, namely in terms of efficiency and robustness.
In contrast to systems such as nFOIL or SAYU, where the
pattern mining task is tightly integrated with classifier con-
struction, and therefore is heavily dependent on the training
examples, rule mining provides an excellent framework for
efficiently mining the interesting patterns that are relevant
on their own and that can scale very effectively on large
datasets.

The contributions of this work are therefore:

• We develop a methodology that address multi-
relational problems through mining the logic relations
in the database.

• We propose a novel method to select discriminative
patterns using a relaxed version of θ-subsumption.
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• We evaluate the effectiveness of this method on a com-
plex discovery application of practical interest.

Our work is motivated by a challenging application in the
area of health informatics. We therefore start by presenting
this application and discussing why multi-relational classi-
fication is relevant to this domain. In section 4 we give a
detailed description of our algorithm and present an illus-
trative example. In section 5 we demonstrate and discuss
the effectiveness of our work with experimental results. Fi-
nally, in section 6 we concluded with an overview of this
work and present future research directions.

2. Motivating Application

Hepatitis is a virus infection that inflames the human
liver. This disease can produce liver fibrosis that could be
more or less severe according to virus subtype. Of special
interest are patients with B and C virus subtypes since these
subtypes have more probability to evolve to liver cirrhosis
or liver cancer.

The mechanisms of disease progression and diagno-
sis are intricate and there is substantial search for new
knowledge and ways of diagnosis. Currently, diagnosis is
grounded in biopsy examination, an invasive technique, but
other data such as blood tests and urinalysis exists that can
give some insights into the disease.

Our work is grounded on the Hepatitis dataset donated
by Dr. Katsuhiko Takabayaski and Dr. Hideto Yokoi from
the Chiba University Hospital, Japan.

The dataset consists of seven tables registering a long
term, between 1982 and 1990, monitoring of 771 patients
with hepatitis B and C. In this dataset there are two levels
of information, one is administrative information and the
other is clinical information concerning blood tests, urine
analysis and biopsy examinations. The data is organized in
a logical entity-relational model( see figure 1).

The patient table ptData, contains patient masked iden-
tification, sex and date of birth. Other useful tables contain
information on blood and urinalysis examinations. One of
them, the inHospRes table, registers in hospital urinalysis
results and one other, hematRes table, the blood results. A
third table, the labDesc, has background information about
in hospital examinations, like the reference values of each
exam. The bioRes table, that register patient biopsy results,
contains among other, the date of examination, the hepatite
type verified, and the degree of fibrosis results. We will use
these results to label patients. We did not use the table out-
LabRes that describes out hospital urinalysis examinations
neither the results of interferon treatment, table interfRes.
All records of these tables, except labDesc, have the exam-
ination date and patient masked identification. This later
field will be used as a foreign key.

 Pa t ient  Data
   (p tData )

  In Hospital
 (inHospRes)

 Biopsy
(bioRes)

Blood Examinations
      (hematRes)

Interferon treatment
     (interfRes)

Out Hospital Examinations
        (outLabRes)

Hospital Exams Description
              (labDesc)

Figure 1. Hepatitis relational model

To the best of our knowledge, few works have explored
the relations between tables in this dataset. Namely, we are
aware of the work of Ohara et al. [3], that uses a time rela-
tion window to convert the dataset to graphs in which they
search for frequent patterns using DT-GBI.

One interesting aspect of multi-relational datasets is that
they are often source to a number of very different tasks. In
this work we study two important classification problems.
Our first task is to discriminate between Hepatitis B and C
subtypes. The second task is to determine the degree of liver
fibrosis. In both cases, the blood and urinalysis results taken
before the classification date, the date of the first ground
biopsy, are the most relevant information.

3. Methods and Related Work

ILP is a powerful relational formalism, where input is
described by relations and learned theory is represented in a
first order language. One interesting problem is how to best
combine such clauses. One can construct clauses assuming
one has to build a classifier [18, 16], or one can perform
a two step algorithm where one first learn rules and then
builds a classifier [17]. In a different vein, one can approach
this problem as upgrading from propositional to a relational
learner [4].

Recent work in systems such as SAYU [19], nFOIL [12],
kFOIL [11] addresses some of the problems in proposi-
tionalition by doing greedy search in the space of clauses.
SAYU and nFOIL use a Bayesian classifier to compose
clauses, whereas kFOIL uses a kernel computed by calcu-
lating which examples match.

Our work is grounded on the excellent results obtained
with frequent propositional logic patterns. This work is
grounded on a number of algorithms that find frequent
item-sets and association rules using a level-wise search.
Apriori[1] is arguably the best known. There is also
a substantial number of algorithms that use frequent at-
tribute value patterns to achieve results that are undeniable
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ex.[2]. But these algorithms have some drawbacks, espe-
cially when data has a more complex structure and is not
well suited to propositional representation. The direct con-
version of this complex data to a flat representation means
that some important relational information will be lost. Also
some irrelevant and redundant data could be created and
consequently the computation of some measures of interest,
like support and confidence measures, could be distorted.

Dehaspe [6] present WARMR the algorithm that discov-
ers frequent DATALOG patterns on DATALOG databases
in a levelwise way that is closest to APRIORI algorithm, it
could be seen as an upgrade to first-order logic represen-
tation of the later. The user must specify what to count
using a key predicate. The frequency of each generated
query is the number of individuals, records in the key ta-
ble, for which there are query bindings in the database.
The search for frequent queries uses a levelwise strategy
guided by a declarative language bias, mode and type dec-
larations, and background knowledge. In the generation
phase the algorithm uses θ-subsumption to define a order
and equivalence relation across queries. This way the algo-
rithm prunes infrequent and redundant queries. Queries that
are θ-specializations of infrequent queries and generated
queries that are θ-equivalent to previous generated clauses
are removed.

Notice that non-ILP approaches have also been used to
find frequent patterns in multi-relational data. One popular
approach is graph mining. T. Matsuda upgrade the origi-
nal GBI(Graph-based Induction) to deal direct or undirect
graphs, with or without loops, colored or uncolored nodes
and links. GBI tries to minimize the graph size using step-
wise pair expansion (pairwise chunking), at each step a fre-
quent pattern is compressed to a node.

4. The RUSE Algorithm

In this section we present our classifier. We first intro-
duce some fundamental concepts. Then, we introduce our
algorithm that cascades an ILP algorithm designed to dis-
cover frequent queries with a decision tree induction algo-
rithm in order to produce a descriptive, easy to interpret and
accurate classifier.

4.1. Concepts

When searching a database, r, for frequent queries, Q,
we define a bias language, L, that restricts size of the search
space and guides the search. We then aim to find theory of
frequent queries Q = {q ∈ L : sup(q, r) > λ}, where
sup(q, r) is the number of times a query q succeeds in
database r, and λ is a user-defined support threshold. A
query is said to succeed in a database if there are bindings,

in the database, for all variables in the query, such that query
holds true.

A special case is defined when exploring a database par-
tition. There we define Qk = {q ∈ L : sup(q, rk) > λ},
where rk is a database partition.

When searching for frequent patterns within and across
partition databases there is a need to introduce an equiv-
alence relation. One of the most used is Plotkin’s [7] θ-
subsumption query equivalence.

Definition 1: Let q1 and q2 be two queries. If there ex-
ists a substitution θ such that q1θ ⊂ q2, we say that q1 θ-
subsumes q2.

Definition 2: Let q1 and q2 be two queries. We say that q1

is θ-equivalent to q2 iff q1 θ-subsumes q2 and q2 θ-subsumes
q1.

In our work we need to select discriminative patterns.
Notice that we will usually learn queries from different data
partitions of the data. Queries of interest are queries that
have different supports in different partitions, and queries
that have support in a single partition.

The next definition formalizes the concept. We define
two queries q1 and q2 to be agreeing queries, and write
q1
∼=θ q2, if

1. q1 is θ-subsumption equivalent to q2, and,

2. |sup(q1, ri)− sup(q2, rj)| < λ

where sup(q1, ri) and sup(q2, rj) are the support values
of the queries in different, i �= j, dababase partitions and λ
is a threshold value. In our algorithm we define λ equal to
the WARMR support threshold.

This definition was motivated by the support value de-
fined to search for frequent patterns. We consider that
clauses with a support value above a given threshold are
interesting, and we further argue that equivalent queries
whose threshold differs by at least a pre-specified amount
can be interesting and discriminative.

4.2. Architecture

In a nutshell, our algorithm proceeds in three steps. First,
we use WARMR an ILP algorithm that finds frequent pat-
terns, more precisely DATALOG queries. Second, we se-
lect discriminative and interesting patterns using two fil-
ters. Then we project selected patterns in the target table
obtaining an enlarged table with Boolean attributes. Third,
using this enlarged table as input to a propositional classi-
fier, Quinlan’s C4.5 algorithm [8], we induce a decision tree
classifier.

At phase 1 we explore the database relations to find fre-
quent queries. In this phase we search for relational knowl-
edge aiming to find frequent patterns that summarize infor-
mation from a multi-relational database of prolog facts.
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input : a dataset r; two thresholds λ and δ;
output: a decision tree model
r1, . . . , rk ← partition (r)1

for i to k do2

Qk ← WARMR(ri,λ)3

Qdisc ← discriminate(Q1, . . . , Qc,λ)4

Qsel ← chi-square(Qdisc,δ)5

renltarget ← Propositionalization(Qsel, r)6

return(C4.5(renltarget))7

Algorithm 1: Algorithm pseudo-code

Then, at phase 2, we select discriminative and interesting
queries using two filters. One removes non-discriminative
patterns using discriminative θ-subsumption. The other
uses chi-square statistical test and the class labels of each
patient to remove class uncorrelated patterns. Next we use
the selected patterns and build an enlarged target table. This
step is known as Propositionalisation.

At phase 3 we take the enlarged set as input to the C4.5
algorithm and build a decision tree.

Next we present algorithm 1 in more detail. The al-
gorithm has three input parameters: the dataset of ground
facts, r; and two thresholds, the λ support threshold defines
the minimum query frequency and is used in testing relaxed
θ-subsumption equivalence; and δ value that specifies the
confidence level for the chi-square test selection.

4.2.1 Phase 1 - Search for First Order Descriptors

In algorithm step 1 we split the dataset according to the
number of classes, building a partition, rk, for each class.

At step 2, using domain specific knowledge we use
mode and type declarations, defined in the settings file
of WARMR algorithm, and eventually background knowl-
edge, specified as Prolog procedures, to run WARMR in
each partition of database rk. We obtain for each partition
k a set of frequent queries Qk.

4.2.2 Phase 2 - Filter Selection

The goal of steps 4 and 5 is to filter uninteresting queries
before running the tree induction algorithm. In step 4
we remove non-discriminative queries using relaxed θ-
subsumption equivalent queries across all dataset partitions,
and get a tighter set

Qdisc = {qi|∀qi∈Qi ∀qk∈Qk �=i
qi �θ qk} of discrimina-

tive patterns.
Even so, we still have redundant queries among the

Qdisc set. In the next step we use a selection filter (step
5) to remove patterns that are independent or unrelated to
the query. The filter uses a chi-square hypothesis test with
a user defined confidence level, input parameter δ.

Table 1. Enlarged target table
MID subtype sex bornDate q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

1 b m 19540304 1 1 1 0 0 0 0 0 0 0 0
2 c m 19590220 1 1 1 0 1 0 0 0 1 0 0

Last, in step 6 we project/propositionalize the data in the
target table. For each interesting and discriminative pat-
terns/queries we add one new Boolean attribute to the target
table obtaining an enlarged table. For each instance in the
enlarged target table we set the value of each new attribute
according to existence of query bindings. If there exists a
binding of the primitive attributes for which the all query
succeeds, the attribute takes value one for this individual.
Otherwise it takes value zero.

4.2.3 Phase 3 - Induce using a Propositional Classifier

At this level we have an enlarged target table extended with
new descriptors. Using this enlarged propositional dataset
we learn(step 7) a model that besides being accurate should
be easily understandable and give insight into underlying
concepts. To this, we build a decision tree model by running
C4.5 algorithm in the enlarged target table. The generated
model can use all attributes of the enlarged target table.

4.3. Illustrative Example

Toward obtaining some intuition on our algorithm we
present in some detail a specific run, in this case the 5th
run of a ten fold stratified cross validation experiment.

As a result of a pre-processing step, we have a dataset
with a total of 503 labeled patients, 206 examples labeled
as B subtype and 297 labeled as C subtype. Next, we split
the training set in two partitions, one for hepatitis subtype
B, r1, and the other for hepatitis subtype C, r2 .

We then run WARMR in each partition. In this exam-
ple, we define a support threshold to be λ = 20%. This
way WARMR algorithm founded 107 frequent queries in
the train r1 partition and 100 in the train r2 partition.

Next, we join these WARMR findings obtaining 207 fre-
quent queries. Among these there are low discriminative
and redundant queries which we aim to eliminate. We elim-
inate using agreeing queries and obtain 63 queries only.

Among these 63 queries some remain that are uncorre-
lated with class labels. To eliminate them we use a chi-
square statistic test setting δ = 5% and selected 11 patterns.
We use these patterns to create new attributes on the target
table, the table ptBioData that is the result of joining tables
ptData and bioRes, this later table is used to lable patients.

In table 1 we present two records of the enlarged target
table. In this table we have 11 new attribute, one for each
query. For illustrative purposes we present two of the
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generated queries:
q1: ptBioData(A,B,C,D), aggregate(avg, hematRes(A, E, F,
G, H, I, J, K, L, M, N),J,R), R > 46.4
q2: ptBioData(A,B,C,D), inHospRes(A,E,F,’g-gtp’,G),
labDesc( ’g-gtp’, H, I, J, K, L, M), G > J

For each target table record, the attribute q1 takes value
1 if the average of all J parameter values, the R value, in
this case the percentage of hematocrit, recorded on table
hematRes, before biopsy, have a value higher than the 46.4
threshold. Otherwise the attribute takes value zero. The
attribute q2 takes value one if the patient urinanalysis g-gtp
examination result, G, is larger than the upper bound of a
normal examination.

Using this procedure, known as propositionalization, we
enlarged the target table.

Now that we have an enlarged table we use the C4.5
propositional learner to induce a decision tree, figure 2.

ptBioData(A,B,C,D),inHospRes(A,E,F,cre,G), 
 labDesc(cre,H,I,J,K,L,M),G<I

bornDate

= 0

b (77.0/13.0)

= 1

c (228.0/41.0)

<= 19450305

ptBioData(A,B,C,D),inHospRes(A,E,F,’g-gtp’,G), 
 labDesc(’g-gtp’,H,I,J,K,L,M),G>J

> 19450305

sex

= 0

ptBioData(A,B,C,D),inHospRes(A,E,F,’ig-m’,G),
 labDesc(’ig-m’,H,I,J,K,L,M),G>J

= 1

ptBioData(A,B,C,D),
 aggregate(avg,hematRes(A,E,F,G,H,I,J,K,L,M,N),H,R),

 R>4.93

= f

b (51.0/10.0)

= m

b (21.0/5.0)

= 0

c (7.0/1.0)

= 1

c (59.0/15.0)

= 0

b (9.0/2.0)

= 1

Figure 2. RUSE-WARMR induced decision
tree for the subtype problem

5. Experimental Evaluation

In this section we evaluate our algorithm with a number
of tasks in the multi-relational hepatitis dataset.

First we will describe the configuration of the experi-
ments. Then we will discuss the preprocessing required for
this dataset, and the results obtained for each problem. At
the end of this section we analyze and compare the obtained
results.

5.1. Experimental Configuration

As mentioned at the Introduction, our algorithm arqui-
tecture is based on a framework that can couple a wide
range of algorithms. In this experiments we choose to
couple two pairs of algorithms. We present experiments
combining WARMR and C4.5 algorithms, and experiments
combining WARMR and a linear kernel SVM - Support
Vector Machine [15].

We test our algorithm by defining the input parameter λ
to be 20% and δ equal to be either 5% or 25%. These values
allow us to study filter effectiveness.

We further study the effectiveness of the discriminative
θ-subsumption and of the chi-square filters by discarding
steps 4 and 5 of our algorithm pseudo-code( Algorithm 1).
In the tables below, that describe our results, we write No-θ
when we do not use any of the two filters and No-chi when
we only remove agreeing clauses. We also present results
when using a Standard algorithm, an algorithm that takes
the full training set as input (no partitions!) and uses no
filter to prune WARMR findings. These descriptions appear
in the δ column.

To best analyze the contribution of the algorithm used in
phase 3, we test two different classifiers: C4.5 and a linear
kernel SVM - Support Vector Machine.

We obtained results by running tenfold stratified cross-
validation test. Using these results we compute the mean
and standard deviation of the generalization error across all
runs.

We use Wilcoxon signed ranked pair-test, with a 95%
confidence level, to evaluate how significantly our algo-
rithms differ from a standard approach, WARMR + C4.5 or
WARMR +SVM. The null hypothesis is that the median of
the differences is zero.

To implemented our work we use ACE [13], data min-
ing System and WEKA [14], a collection of data mining
algorithms.

5.2. Dataset Pre-processing

Our first step was to build a new table, named ptBio-
Data, that merges all information from the patient table and
the hepatitis type and fibrosis degree from the biopsy table.
This new table will be our target table. We also use all the
information in inHospRes, labDesc and hematRes tables.
We further observe that biopsy examination results could
imply the prescription of medication, namely interferon,
and change patient habits. We thus chose to select only ex-
aminations recorded before the date of the first biopsy. Fur-
thermore, all patients that have missing information on the
biopsy examination, subtype and degree of fibrosis, were
discarded and all related tables were also removed from the
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database. Note that even after this preprocessing we still
have 503 examples.

In order to run WARMR, we discretize all the re-
sults in the hematRes table, we used equal frequency bins
metodologie [9] with three thresholds. These thresholds are
then used in WARMR’s mode and type declarative bias. We
set the maximum level of refinement to 2.

WARMR specifies bias through the rmode formalism.
We use the same bias for every problem. Our bias incor-
porates background knowledge such as the fact that each
parameter of a normal urinalysis examination should be in-
side a reference interval. Since one patient can do the same
exam in different time periods, we also introduce a refine-
ment that aggregates, for each patient and exam, all the re-
sults using average [10].

We define two main styles of refinements. The first uses
the reference values of an examination to generate rules
that describe if patient exams are within or out of the refer-
ence bounds. The second uses the average operator and the
thresholds obtained at the discretization to generate queries.
The queries obtained using this later refinement express the
knowledge that the average of results obtained by a patient
in one parameter/exam is above or below a certain thresh-
old.

5.3. Classification Problems

We address two classification problems in the hepatitis
dataset. First we address the hepatitis subtype problem,
were we aim to distinguish patients with B and C virus. Sec-
ond we address the fibrosis problem, to distinguish among
patients having diferent levels of fibrosis [3].

5.3.1 Hepatitis subtypes B and C

In the hepatitis subtype problem we used all 206 patients
with subtype B and 297 with subtype C hepatitis.

When running WARMR with support threshold
λ = 20% the algorithm founded an average of 206 queries
in each run. Then, when we apply the discriminative filter
we selected an average of 62.4 queries. The number of
patterns selected to enlarge the target table after applying
the chi-square filter is shown in table 2(the number of
presented patterns includes primitive attributes). In this
table we also present the results obtained using the C4.5
algorithm at phase 3 of the algorithm. For comparison
purposes we also show results using a linear kernel SVM
algorithm at phase 3.

The tree presented in the illustrative example was the ob-
tained by C4.5 at the best run with λ = 20% and δ = 5%.

ptBioData(A,B,C,D),inHospRes(A,E,F,cre,G), 
 labDesc(cre,H,I,J,K,L,M),G<I

ptBioData(A,B,C,D),
 aggregate(avg,hematRes(A,E,F,G,H,I,J,K,L,M,N),K,R),R>97.8

= 0

f23 (44.0/1.0)

= 1

f23 (164.0/42.0)

= 0

sex

= 1

bornDate

= f

bornDate

= m

f4 (2.0)

<= 19381125

f23 (3.0/1.0)

> 19381125

f23 (20.0/4.0)

<= 19390117

f4 (15.0/3.0)

> 19390117

Figure 3. Best decision tree for the fibrosis
problem

5.3.2 Figrose degree {F2,F3} vs {F4}
In this experiment we address the problem of distinguishing
between patients having no liver cirrhosis, stages F2 and F3,
and patients having liver cirrhosis, stage F4, again following
Ohara [3]. We discarded patients having degree level 0 and
1. Thus we selected 276 patients, 67 patients labeled F4 and
209 patients labeled F2 or F3.

When running WARMR with λ = 20% we found an
average of 212.8 queries in each run. Then, when we ap-
ply the discriminative filter we selected 11.6 queries. The
number of patterns selected using chi-square filter and the
results obtained using C4.5 algorithm at phase 3 are shown
in table 3(the number of presented patterns includes primi-
tive attributes). For comparison purpose we also show the
results obtained when using SVM algorithm at phase 3.

Figure 3 presents the tree generated in the best run ob-
tained using λ = 20% and δ = 5%, and was generated in
4th run.

5.4. Analysis

The Hepatitis dataset is a difficult dataset. Our results are
somewhat better than base accuracy, with the best results
being obtained through the RUSE algorithm. In both cases,
there seems to be a substantial benefit in using the RUSE
rule selection steps. This is particularly clear when using
the C4.5 classifier, and is unsurprising, given that SVMs
are known to be more robust to extra parameters. It is very
interesting to notice the effectiveness of the filters. Using
both filters we pruned the WARMR findings by more than
30%, in some cases we get a reduction of 97%.

Also our algorithm proved to be accurate and produce
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λ δ Mean Number of Patterns and Mean Error (Std. Deviation) Wilcoxon Test p-palue
Std. deviation after both filters C4.5 SVMs C4.5 SVMs

20

5 15.3(3.3) 34.87 (8.48) 38.87 (8.38) 0.015 1
25 30.7(4.19) 37.39 (7.19) 36.6 (6.83) 0.192 0.529
No-Chi 65.4(2.37) 37.76 (5.85) 37.87 (7.35) 0.232 0.624
No-θ 211(1.33) 39.64 (9.54) 41.67 (10.76) 0.106 0.081
Standard 109.1(1.1) 41.63 (9.2) 39.25 (10.52) - -

Table 2. Generalization Error using C4.5 and SVMs for the B vs C subtype problem

λ δ Mean Number of Patterns and Mean Error (Std. Deviation) Wilcoxon Test p-value
Std. deviation after both filters C4.5 SVMs C4.5 SVMs

20

5 6.5(1.14) 24.95 (4.28) 24.23 (1.86) 0.012 0.006
25 8.3(1.7) 25.66 (6.36) 24.23 (1.86) 0.012 0.006
No-Chi 14.6(2.5) 32.99 (8.44) 36.15 (8.56) 0.102 0.114
No-θ 196(2.33) 37.66 (9.71) 35.41 (8.55) 0.557 0.04
Standard 109.2(1.75) 42.06 (13.54) 47.97 (12.56) - -

Table 3. Generalization Error using C4.5 and SVMs for the fibrosis stage problem

compact and understandable trees. The analysis of the gen-
eralization error and standard deviation shows that the filter
methodologies can improve the performance of the classi-
fier by more than 10%. This is because the system always
selects very few rules, the most interesting ones. This again
suggests that our tests are removing uncorrelated features
effectively.

When we analyze the p-value of the Wilcoxon hypothe-
sis test, we observe that our algorithm differ from the stan-
dard approach algorithm. This is specially clear in the fi-
brosis stage problem. One interesting issue is the differ-
ence between the No − θ algorithm and the standard ap-
proach. None of the algorithms use any kind of filter, the
only difference between then is that the first takes as in-
put the dataset partitions whereas the other takes the full
dataset. This can be explained by the number of patterns
founded by WARMR. In the standard algorithm this number
is approximately half of our algorithm. This was expected
because our algorithm uses the same bias refinements to
search in both partitions.

To the best of our knowledge, best results on this dataset
were obtained by Ohara [3]. Unfortunately, we cannot com-
pare with their results because they use different preprocess-
ing that we could not repeat. Namely, our results focus on
early diagnosis and are thus based on data prior to the biop-
sies. Thus, we did not use the hospital examination out-
LabRes table, and we discarded all examination done later
than the first biopsy.

One interesting issue that will be the focus of our atten-
tion in the future is the run time of our classifier. Because
of the parallel nature of our classifier we get results faster
than is usual in ILP algorithms.

We try to compare our algorithm against TILDE [5], but
we get out of memory in a 4 GB machine.

Some patterns that we present in this work, and the gen-
erated trees, represent current knowledge on the hepatitis
disease. Other patterns, also some that we found and did
not present here, need to be analyzed by a clinical techni-
cian.

6. Conclusions and Future Work

In this work we present a general classification algorithm
for complex structured data. In contrast to the classical ap-
proach that propositionalizes data as a preprocessing step,
our algorithm explores the logical relational structure in the
database to produce more expressive and accurate classi-
fiers.

We developed a three phase arquitecture that combines
sequentially two algorithms and a selection filter. In the
first phase we search for frequent first-order logic patterns
using WARMR algorithm. In the second phase we intro-
duce two filters to remove non discriminative and select in-
teresting class correlated patterns. To do so we introduce a
new equivalence relation and we use the chi-square statis-
tics test. Then, we use this patterns to extend the target ta-
ble with new Boolean attributes. In the third phase we use a
standard classifier, such as a decision tree model or a SVM.

One interesting contribution is that we do not run the
WARMR algorithm in the full dataset. Instead, we search
for frequent patterns in each class partion of the available
dataset. We select discriminative patterns using all frequent
patterns found in every partition. With this we achieve effi-
ciency and a natural parallelized algorithm.

The models generated by our classifier proof to be ex-
pressive/readable. The methodology seems to be effective
since all obtained models have both ILP patterns and prim-
itive attributes from the target table at the inner nodes. An
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interesting observation is that in specific runs all tree inner
nodes have only ILP patterns.

Though our algorithm uses WARMR at phase 1 and C4.5
(or SVM) at phase 3, Wilcoxon significance test prove that
our algorithm differs from the classical approach, whereas
both algorithms are combined without using any pattern
pruning/selection strategy.

In the future we aim to improve the quality of rules
we generate and study other problems from this and other
datasets. Regardless, the hepatitis dataset is complex and
challenging dataset that will continue to be the subject of
our attention. We will try other discretization and aggrega-
tion methodologies. We will also explore time-dependent
changes by introducing change detection and concept drift
techniques. We are already searching for a clinical techni-
cian to analyze the results obtained in the experiments.
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