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Summary. We present a new, efficient and scalable tool, named BIORED, for pattern dis-
covery in proteomic and genomic sequences. It uses a geneticalgorithm to find interesting
patterns in the form of regular expressions, and a new efficient pattern matching procedure to
count pattern occurrences. We studied the performance, scalability and usefulness of BIORED
using several databases of biosequences. The results show that BIORED was successful in
finding previously known patterns, thus an excellent indicator for its potential. BIORED is
available for download under the GNU Public License athttp://www.dcc.fc.up.pt/
biored/ . An online demo is available at the same address.
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1 Introduction

The identification of interesting patterns (or subsequences) in biosequences has an
important role in computational biology. Databases of genomic and proteomic se-
quences have grown exponentially, and therefore pattern discovery still is a hard
problem requiring clever algorithmic to achieve manageable levels of efficiency and
powerful pattern languages to be useful.

Patterns often have an important biological significance, hence pattern discovery
is an important problem in computational biology. It is, however, a computationally
hard task, given the combinatorial involved. The rationalebehind pattern discovery
in biosequences (proteomic and genomic) is that the patterns correspond to subse-
quences preserved through evolution, and the reason for being preserved is because
they are important to the function or structure of the molecule.

In this paper we describe BIORED, a new efficient and scalabletool to discover
interesting patterns in genomic and proteomic sequences. It accepts a powerful pat-
tern language that is a subset of regular expressions and uses a novel genetic algo-
rithm to discover patterns together with a new efficient pattern matching procedure
to count pattern occurrences in the sequences. We validate BIORED by applying it to
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several databases in order to try to rediscover previous known patterns and we study
its sequential performance. BIORED is capable of efficiently finding patterns in very
large sequence databases and be used to find considerably large patterns.

2 Background

The problem of pattern discovery here addressed can be stated as follows. LetΣ be
an alphabet of residues (proteomic or genomic). Given a set of sequencesS, each
sequence composed with characters not restricted to the alphabetΣ, and a pattern
sizek, the goal is to find the best interesting patternp with sizek accordingly to
some evaluation function.

We consider deterministic patterns with wild-cards and ambiguous characters.
More specifically, the pattern language is a subset of regular expressions. Every po-
sition in the regular expression can be only composed by classes of characters be-
longing toΣ. A class is represented within brackets. The “. ” (referred to as don’t
care character) is used to denote a class of characters composed by all elements inΣ.
For compactness of representation, it is also possible to negate the class. In this case,
all characters belonging to the alphabet and not shown in theclass, are the ones that
compose the class. The negation is denoted by “ˆ ”. For instance, the pattern with
length 3 “[GT].A ” has two matches in the sequenceAATAAGTTAA.

The chosen pattern language is a compromise between simplicity and power. The
idea is to allow the discovery of complex patterns while having a sufficiently fast
matching algorithm. Although interesting patterns may have gaps, which may be the
result of deletions or insertions, many others have undergone smaller mutations and
have an equal length. The principle is that we can usually findsub-patterns of larger
patterns and later extend them. Another advantage of using (a subset) of regular
expressions is that the resulting language is well supported by a considerable number
of programs (e.g., grep, sed, emacs, etc) and programming languages (e.g., Perl, PHP,
etc).

3 A Genetic Algorithm for Pattern Discovery in Biosequences

BIORED uses a genetic algorithm (GA) [1] to perform pattern discovery. It receives
as input a database containing a set of sequences, the lengthof a patternk, and some
other parameters (such as the maximum number of generationsi), and tries to find
an interesting pattern of lengthk.

The implementation of a GA requires the prior definition of a (1) a genetic rep-
resentation of a pattern (solution), and (2) a fitness function to evaluate the patterns.
The implementation of the fitness function involves counting the number of matches
of a pattern in the input sequences. This can be a limiting performance factor for the
algorithm, therefore we devised an efficient matching procedure.

We next describe the genetic operators used, the fitness function (interestingness
metric) and a sequential algorithm for counting the matches.
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3.1 Genetic Operators

A genetic operator [1] is a process that aims at maintaining genetic diversity. The
operators are analogous to those that occur in the natural world: survival of the fittest,
or selection; sexual or asexual reproduction, or crossover; and mutation.

BIORED implements a rank selection operator that sorts the individuals in the
population by comparing their fitness value. Each individual is then given a proba-
bility of being chosen for reproduction depending on its position. Forn individuals,
an(n + 1)/2 slots roulette-wheel is constructed, with the fittest individual receiving
n slots, the second fittestn − 1, and so on, with the least fit individual receiving just
one slot.

During the alternation (or reproduction) phase of the GA, weuse three classical
genetic operators: mutation, crossover and elitism. The crossover operator selects a
character position in the individual to be generated. It then sets the first part with the
contents of the first individual and the second part with the contents of the second
individual (both selected using a rank selection operator). The mutation operator
randomly flips some of the bits that compose the chromosome. The elitism operator
selects some of the best individuals to be copied verbatim tothe next generation,
without suffering any mutation.

3.2 Interestingness based on statistical significance

To guide the search for a pattern and for ranking a set of patterns one needs some
measure to assess, in some way, their quality or interestingness. In a GA context,
such measure is called fitness function. In complex problems, such as pattern dis-
covery, GAs have a tendency to converge towards local optimarather than the global
optimum of the problem. This problem may be alleviated by using a different fit-
ness function, or by using techniques to maintain a diverse population of solutions.
Therefore, two fitness functions were considered based on statistical interestingness.

Several approaches have been proposed to determine if a pattern is statistically
interesting [2, 3, 4], i.e., if the number of occurrences of apattern in a set of se-
quences is greater than the expected value. A pattern is considered statistically in-
teresting if it is overrepresented in the sequences where itoccurs. To measure the
over-representation, we need to consider the expected number of occurrences and
the standard deviation of this value. Equivalently, we needto know how the values
are distributed.

We assumed that the probability of the symbols (fromΣ) to appear inS are inde-
pendent and identically distributed. Under these assumptions, the word probability
follows a Binomial distribution. The Binomial distribution gives the discrete proba-
bility b(x; n, p) of obtaining exactlyx successes (matches) out ofn Bernoulli trials
(pattern positions). We consider every character position, that can be a possible place
for the word occurrence, as a Bernoulli trial. For example, if we have the sequence
ACGATCAGTACAand the pattern that we are computing the statistics for has length
5 then there are exactly8 places where the pattern can occur. Generalizing, having a
sequence and a word of lengthSn andWn respectively, there areSn−Wn +1 places
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where the word can appear ifSn≥Wn or zero otherwise. Each Bernoulli trial is true
with probabilityp. The probabilityp is the multiplication of the probabilities of the
individual pattern positions. In turn, the pattern positions probabilities is the sum of
the probabilities of the symbols that compose the position.For efficiency reasons,
the binomial distribution is approximated by the Poisson distribution for large values
of n and small values ofp, with λ = np, or equivalentlyp(x; λ) ≈ b(x; n, λ/n)
[5].

We are interested to know if the pattern is overrepresented,therefore we cal-
culate the probability of the pattern to appear at least the same number of times
in a database as it effectively appears. Equivalently, we compute the complemen-
tary cumulative distribution function (Fc) of the Poisson distribution forx − 1:
Z = Fc(x−1) = P (X > x−1). Since, theZ can take very small values we use the
negative logarithmic ofZ, more specifically,− log(Z). We next denote− log(Z) as
I.

The first fitness function relates the interestingness of thepattern with its com-
plexity,

f1 =
I

complexityx

for x = 0, 1, 2, 3. Thecomplexity is the sum of the number of characters recognized
by each pattern position. For instance,ACGThas complexity4, while [AC]CGT
has complexity5 and[AC][CG][GT][TA] has complexity8. The parameterx is
used to reduce the patterns complexity, thus improving their quality. Generally, the
low quality patterns are a direct result of being too general.

The second fitness function (f2) borrows ideas from the evaluation function F-
measure,

f2 =
2 × logpn× cpx

logpn+ cpx

wherep is the probability of the pattern,m is the maximum complexity with same

length and alphabet can have, cpx= 1 −
complexity

m
, logpn= I/10000. A ceiling

of 10000 is assumed to the value ofI.
In general, it is not possible to determine which fitness function behaves better

in a set of sequences without some kind of experimentation. This experimentation
needs only to be done once for each sequence, and can be done automatically by
executing the programs for all the possible fitness functions and choosing the one
that achieves the best results.

3.3 Counting Matches

The fitness function, or interestingness metric, requires knowing the number of (over-
lapping) occurrences of every pattern in the sequence. For example, in the sequence
AAATAA, the patternAAoccurs three times and the patternAA[AT] occurs twice.

Counting the number of occurrences of a single pattern can betroublesome. For
instance, if the sequences have total length ofn and the pattern is composed by either
symbols or unit-length don’t care characters with lengthm, the best algorithm runs
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in O(n log m) time (worst-case) [6]. If we could come up with an algorithm with
an equal complexity for the worst-case, the best we could do would beO(ni log m),
wherei is the number of different patterns (number of individuals of the population).
However, since unit-length don’t care characters are a subset of classes of charac-
ters, the chosen pattern language is more powerful than the pattern language referred
in [6].

Since the GA generates several individuals (patterns) in each generation that need
to be evaluated, we tried to devise an efficient method to evaluate them simultane-
ously.

If the algorithm could only handle a single pattern, then it is possible to use a
linear solution based on bit-parallelism [7] if the patternlength is small (only a few
machine words are needed). The bits are used to simulate a non-deterministic finite
automaton (NFA) that describes the pattern.

To expand the algorithm to evaluate several patterns at once, a window with
lengthk is moved through the sequence. Note that all patterns have the same length
k. For each window position every pattern is checked for a match. In a sequence with
sizen, the number of window positions (window size isk) is n − k + 1 (assuming
thatn ≥ k).

The counting matches algorithm worst-case complexity isO(nik) with the input
sizen, i the number of individuals in the population, andk the length of the pat-
terns. However, the algorithm is on average much faster, achieving a complexity of
O(ni/w), wherew is the number of bits in a machine word. The average complexity
is directly linked to the average case of the naive string matching.

In spite of the effort to have an efficient counting operation, it remains the bottle-
neck of the matching algorithm. A parallel version of BIOREDwas thus developed
that achieved linear speedup up to 22 processors [8].

3.4 Implementation

The BIORED was implemented using the C language because the speed was crucial
and to perform an extreme control on memory usage. For the statistic functions we
used the R [9] library. Note that BIORED can be executed in a variety of platforms,
such as clusters and in GRIDs.

The alphabet letters (representing nucleotides or residues) are implemented using
an unsigned integer with 32 bits. This representation has the advantage of being
simple to apply the genetic operators, namely the crossoverand the mutation. This
means that a population withi individuals, each having lengthk, uses exactly4ik
bytes of memory using the DNA alphabet. In general, the algorithm uses|Σ|ik/8
bytes of memory, whereΣ is the alphabet used.

We use a binary vector as a chromosome to represent a pattern.The binary vector
can, conceptually, be seen as signaling if a character belonging toΣ is present or not
at a determinate pattern position. For example, the DNA pattern [AC]T[ACGT]G
is represented as1100,0001,1111,0010 , if A is represented with the bit-mask
1000 , C 0100, G 0010 andT 0001 .
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The initial population (set of patterns) is randomly initialized. Each bit in an
individual has the probability0.7 of being activated (this value was selected after
performing several experiments). The probability was empirically chosen to guaran-
tee the diversity of the population, representing patternsthat actually occur in the
data.

The probability of undergoing crossover was set to0.75 and the mutation prob-
ability to 0.01. Only the fittest individual is considered an elite. These values were
chosen after some experiments with DNA and residue sequences and are the val-
ues that proved to work better. By default, the program haltsafter completing500
generations. This value was chosen based on the performanceexperiments done.

Finally, it is worth mention that BIORED includes an option setting to allow
the use of symbol probabilities (distribution) different from those observed in the
sequences. This requires the user to give an extra file (with sequences) to the program
from where the distribution is computed. An example of the usefulness of this option
is demonstrated in Section 5.

4 Performance Evaluation

We study the performance of BIORED and the behavior of the GA in terms of con-
vergence and execution time. The databases used in the experiments are indicated
in Table 1 and were obtained from the release 38 of the Ensemblproject [10]. All
experiments were ran in a Cluster with Dual core “AMD OpteronProcessor 250”
computers, with4 gigabytes of RAM (but only600 Mb free) running the Linux op-
erating system (kernel 2.6).

Organism Length (bp)
Saccharomyces cerevisiae (whole genome)12156606

Anopheles gambiae (chromosome 2R) 61545105
Drosophila melanogaster (whole genome)144141726

Table 1.Organisms used for evaluation.

Figure 1 shows the effect on the runtime when we alter a singleparameter, such
as the population size or the pattern length. Theoretically, the runtime is expected to
double when the population size is doubled. However, the optimizations performed
in the algorithm makes the runtime vary.

The three organisms used (see Table 1) can be processed in about (largest to
smallest) 27, 10 and 4 hours, running for one-thousand generations with a population
size of128 individuals and searching for patterns with length of64. These values for
running times are, in our view, excellent for a sequential execution, considering the
relative large size of the data used. In fact, other pattern discovery tools failed to cope
with the same data, thus making it impossible to compare relative efficiency (details
are discussed in Section 6).

When the pattern length is increased something apparently strange happens. Un-
til a certain pattern length the runtime increases and then it decreases. This is, once
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Fig. 1. Run time variation with different populations and pattern lengths (in seconds).

again, related to the size of the search space. When the search space grows too much,
the genetic algorithm has difficulty in finding an admissiblepattern. A possible solu-
tion to this problem could be to initialize the population with statistically interesting
words (naturally, found with another tool).

The results show a very small variation on the runtimes when the population
sizes increase from32 to 64 individuals. This effect is a direct consequence of the
implemented bit-parallelism technique and the execution on 64-bit architectures.

We evaluated BIORED’s convergence and discovered that whenthe pattern
length increases, the population size must also be increased for the convergence to
be smoother. This happens because it is more difficult to obtain an admissible large
pattern. This was expected, since the search space of a DNA pattern with length 64 is
24×64. Furthermore, as the size of the pattern decreases, the faster the algorithm con-
verges. This was also expected since the search space becomes exponentially smaller
as the size of the pattern decreases.

5 Validation

We demonstrate the usefulness of BIORED in two case studies.The goal is to redis-
cover some already known patterns.

Human Gene for Proinsulin

In the first case study we chose a database with the human gene for proinsulin from
chromosome 11 [11]. BIORED was configured to run with a population of 32 indi-
viduals, pattern length of14, and to stop after one-thousand generations. It yielded
the pattern[CG][AT]GGGG[AT][CG][AT]GGGG[AT] with a score of381.6, occurring
48 times and with a probability of0.00000133. The pattern found is very similar to
a previously reported patternACAGGGGTGTGGGG[12].
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Drosophila Melanogaster

In the second case study, we used a database with the whole genome of the Drosophila
melanogaster. More concretly, we used the organism disjoint introns (sections of
DNA that are spliced out after transcription but before the RNA is used) as input
to BIORED, and configured it to use a population of64 individuals, and a pattern
length of27. The symbols probabilities were gathered from the whole genome. The
best pattern after4096 generations wasATTGTAAGTCTTTAAATATATTCGTGTwith a score
of 7309.4, occurs256 times and has a probability smaller than10−9. Curiously, this
pattern is a sub-word of the consensus described in [13]. Theconsensus was manu-
ally converted to a regular expression producing (after some simplification) the fol-
lowing pattern:[ˆG][AG]AGTT[CT]GT[ˆA][GT]C[CT]T[AG]AGTCTTT[CT]GTTT . Note
that the original pattern, as it is, achieves a score of904.2 on the entire genome, i.e.,
the entire genome was used to compute the distribution of thesymbols, while the
pattern found by BIORED achieves a score of7309.4

6 Related Work

Several pattern discovery tools and algorithms have been developed [14, 15, 4]. Some
approaches are based on exhaustive search that guarantee that the best pattern (ac-
cordingly to some specifications) is found. An heuristic approach does not guarantee
that the best pattern is found, instead it finds a good “enough” pattern. The advantage
of the heuristic approach is that it is often faster than the exhaustive search, but may
not find the best solution (pattern).

The Teiresias [14] is closely related to our proposal in terms of the pattern lan-
guage. It is based on well-organized exhaustive search based on combinations of
shorter patterns. The Teiresias algorithm guarantees thatall maximal [14] patterns
are reported. The algorithm needs to receive as input the minimum number of lit-
erals that a pattern can contain,L. Another required parameter isW that indicates
the maximum distance between any consecutiveL literals. In general, if we use the
sameL parameter and increase theW parameter, the execution time of the scan-
ning phase, which is the phase where the algorithm gathers seed patterns with the
desiredL andW characteristics, greatly increases. In the worst case the algorithm is
O(n3log n), but it is reported to work very well when the inputs are highly regular
and the parametersW andL are small.

The admissible patterns are similar to the ones we consider.The original Teire-
sias algorithm only supported one wild card equivalent to our “ . ”. Newer versions
support equivalency classes. In an equivalency class the user needs to specify the
characters that are to be treated as equal in the actual pattern discovery process.
These are similar to the classes of characters supported by BIORED.

A critical problem with Teiresias is that it has a very high memory usage. In
an attempt to compare the performance of Teiresias with BIORED we configured
Teiresias to support the same classes of characters as BIORED, and tried to identify
the previously discovered pattern in the human gene of proinsulin. Teiresias crashed
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after8 minutes with a memory consumption of several gigabytes. These parameters
were chosen to verify if it could identify the previously discovered pattern in the
human gene of proinsulin using the BIORED.

In conclusion, Teiresias seems to be unable to cope with classes that overlap each
other (which is exactly the classes supported by BIORED) since it has an extremely
high memory consumption that prevents any empirical comparison since it crashes
even for small sequences.

Pratt [15] is another tool to discover patterns conserved insets of unaligned pro-
tein sequences. The patterns that can be found are a subset ofthe patterns that can
be described using Prosite notation [16]. In particular, variable length gaps are al-
lowed. Pratt is very memory intensive, contrasting to BIORED, which is pretty light
in memory consumption. Pratt tries to find a pattern that occurs in the greatest num-
ber of sequences as possible, while the program presented here considers the total
number of occurrences in all sequences.

MEME (Multiple EM for Motif Elicitation) [17] uses a stochastic search to dis-
cover patterns. It does not require a pattern length parameter, which can be estimated
by the algorithm itself. The algorithm is based on expectation maximization tech-
nique. Individual MEME patterns cannot contain gaps, and thus are equivalent to the
patterns we consider. The overall complexity of MEME is quadratic in the size of the
database and linear in the length of the pattern [17], while our proposal is linear in
the size of the database and in the length of the pattern.

7 Conclusion

We presented a new pattern discovery tool that discovers interesting patterns, in the
form of a regular expression. using a genetic algorithm. Thealgorithm has a con-
servative memory usage ofO(ik|Σ|) and a worst-case time complexity ofO(nikg),
whereΣ is the alphabet used,i is the number of individuals of the population,k is
the length of the pattern,n is the size of the input, andg is the number of genera-
tions. However, the algorithm is on average much faster, achieving a complexity of
O(gni/w), wherew is the number of bits in a machine word. The average complex-
ity is directly linked to the average case of the naive stringmatching. Experiments
showed the usefulness of the algorithm, by demonstrating that it is capable of dis-
covering previously known patterns.

The contributions of this paper are three-fold. First, we describe and evaluate a
tool that uses a genetic algorithm to discover patterns in genomic and proteomic se-
quences. Second, we also propose an efficient pattern matching procedure, a crucial
component for achieving high performance in any pattern discovery tool. Finally, for
a practitioner we provide a pattern discovery tool that is efficient (in terms of exe-
cution time and memory usage), has a powerful pattern language, does not impose
restrictions on the pattern length, is general (can handle proteomic and genomic se-
quences), and can handle large databases of sequences, and can be used in a with
number of settings (personal computers, clusters, and grids).
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Finally, there is still space for improvement. For instance, BIORED implements
a simple and fast statistical approach to determine the interestigness of a pattern. In
order to improve the statistical accuracy, we plan to include, as an option, more rigor-
ous tests such us the recently proposed complementary statistical tests for accessing
exceptionalities of motif counts [18].
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