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Summary. We present a new, efficient and scalable tool, named BIOREDpdttern dis-
covery in proteomic and genomic sequences. It uses a geaaigtiathm to find interesting
patterns in the form of regular expressions, and a new effigiattern matching procedure to
count pattern occurrences. We studied the performandabiis and usefulness of BIORED
using several databases of biosequences. The results BROBIORED was successful in
finding previously known patterns, thus an excellent indicédor its potential. BIORED is
available for download under the GNU Public Licensétp://www.dcc.fc.up.pt/

biored/ . An online demo is available at the same address.
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1 Introduction

The identification of interesting patterns (or subsequghicebiosequences has an
important role in computational biology. Databases of geicoand proteomic se-
quences have grown exponentially, and therefore pattescodery still is a hard
problem requiring clever algorithmic to achieve manage#blels of efficiency and
powerful pattern languages to be useful.

Patterns often have an important biological significaneeagck pattern discovery
is an important problem in computational biology. It is, lew&r, a computationally
hard task, given the combinatorial involved. The ratioriaaind pattern discovery
in biosequences (proteomic and genomic) is that the patmrmmespond to subse-
quences preserved through evolution, and the reason fog Ipeéserved is because
they are important to the function or structure of the malecu

In this paper we describe BIORED, a new efficient and scalaloleto discover
interesting patterns in genomic and proteomic sequentcascépts a powerful pat-
tern language that is a subset of regular expressions asdausevel genetic algo-
rithm to discover patterns together with a new efficientgratimatching procedure
to count pattern occurrences in the sequences. We valid@iED by applying it to
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several databases in order to try to rediscover previoug’kpatterns and we study
its sequential performance. BIORED is capable of efficiefiiding patterns in very
large sequence databases and be used to find considergelyp#dterns.

2 Background

The problem of pattern discovery here addressed can be stat®llows. Let™ be
an alphabet of residues (proteomic or genomic). Given afss¢quences, each
sequence composed with characters not restricted to thatzdpy’, and a pattern
size k, the goal is to find the best interesting patterwith size k accordingly to
some evaluation function.

We consider deterministic patterns with wild-cards and ignnbus characters.
More specifically, the pattern language is a subset of regxiaressions. Every po-
sition in the regular expression can be only composed byetasf characters be-
longing to Y. A class is represented within brackets. Thé (referred to as don't
care character) is used to denote a class of characters sethpy all elements i%v.
For compactness of representation, it is also possiblegatadhe class. In this case,
all characters belonging to the alphabet and not shown iol#ss, are the ones that
compose the class. The negation is denoted"By For instance, the pattern with
length 3 {GT].A " has two matches in the sequendd TAAGTT AA.

The chosen pattern language is a compromise between sityplicd power. The
idea is to allow the discovery of complex patterns while hgva sufficiently fast
matching algorithm. Although interesting patterns mayehgaps, which may be the
result of deletions or insertions, many others have undergmaller mutations and
have an equal length. The principle is that we can usuallydirdpatterns of larger
patterns and later extend them. Another advantage of usirsylfset) of regular
expressions is that the resulting language is well suppdiea considerable number
of programs (e.g., grep, sed, emacs, etc) and programnmggéayes (e.g., Perl, PHP,
etc).

3 A Genetic Algorithm for Pattern Discovery in Biosequences

BIORED uses a genetic algorithm (GA) [1] to perform patteigtdvery. It receives
as input a database containing a set of sequences, the tdrsgplatternt, and some
other parameters (such as the maximum number of generajicansd tries to find
an interesting pattern of length

The implementation of a GA requires the prior definition ofla 4 genetic rep-
resentation of a pattern (solution), and (2) a fitness fondib evaluate the patterns.
The implementation of the fitness function involves coumtime number of matches
of a pattern in the input sequences. This can be a limitinfpp@ance factor for the
algorithm, therefore we devised an efficient matching pdoce.

We next describe the genetic operators used, the fithessdnrmterestingness
metric) and a sequential algorithm for counting the matches
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3.1 Genetic Operators

A genetic operator [1] is a process that aims at maintainigmgetjc diversity. The
operators are analogous to those that occur in the naturld vgarvival of the fittest,
or selection; sexual or asexual reproduction, or crossewel mutation.

BIORED implements a rank selection operator that sortsrid&iduals in the
population by comparing their fitness value. Each individsighen given a proba-
bility of being chosen for reproduction depending on itsipos. Forn individuals,
an(n + 1)/2 slots roulette-wheel is constructed, with the fittest imdlial receiving
n slots, the second fittest— 1, and so on, with the least fit individual receiving just
one slot.

During the alternation (or reproduction) phase of the GAuse three classical
genetic operators: mutation, crossover and elitism. Thesaver operator selects a
character position in the individual to be generated. Ihtbets the first part with the
contents of the first individual and the second part with thietents of the second
individual (both selected using a rank selection operafbing mutation operator
randomly flips some of the bits that compose the chromosoimeelitism operator
selects some of the best individuals to be copied verbatithéanext generation,
without suffering any mutation.

3.2 Interestingness based on statistical significance

To guide the search for a pattern and for ranking a set of p&tiene needs some
measure to assess, in some way, their quality or interestsgy In a GA context,
such measure is called fitness function. In complex prohlemsh as pattern dis-
covery, GAs have a tendency to converge towards local optith@r than the global
optimum of the problem. This problem may be alleviated byhgs different fit-
ness function, or by using techniques to maintain a diveogifation of solutions.
Therefore, two fitness functions were considered basedatistgtal interestingness.

Several approaches have been proposed to determine ifesimpististatistically
interesting [2, 3, 4], i.e., if the number of occurrences gfadtern in a set of se-
guences is greater than the expected value. A pattern isdeved statistically in-
teresting if it is overrepresented in the sequences wheveciirs. To measure the
over-representation, we need to consider the expected euofiloccurrences and
the standard deviation of this value. Equivalently, we nieekihow how the values
are distributed.

We assumed that the probability of the symbols (frbrto appear irs are inde-
pendent and identically distributed. Under these assumgtithe word probability
follows a Binomial distribution. The Binomial distributiogives the discrete proba-
bility b(x; n,p) of obtaining exactlyr successes (matches) outoBernoulli trials
(pattern positions). We consider every character positiat can be a possible place
for the word occurrence, as a Bernoulli trial. For examglgyé have the sequence
ACGATCAGTAGC#d the pattern that we are computing the statistics fordragth
5 then there are exactB/places where the pattern can occur. Generalizing, having a
sequence and a word of length andW,, respectively, there aig, — 1W,, + 1 places
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where the word can appearSf,>W,, or zero otherwise. Each Bernoulli trial is true
with probabilityp. The probabilityp is the multiplication of the probabilities of the
individual pattern positions. In turn, the pattern posiggrobabilities is the sum of
the probabilities of the symbols that compose the positinr. efficiency reasons,
the binomial distribution is approximated by the Poissatritiution for large values
of n and small values of, with A = np, or equivalentlyp(z; A) =~ b(z; n,A\/n)
[5].

We are interested to know if the pattern is overrepreseritedefore we cal-
culate the probability of the pattern to appear at least #mesnumber of times
in a database as it effectively appears. Equivalently, wapzde the complemen-
tary cumulative distribution functionf) of the Poisson distribution fox — 1:

Z =F.(x—1)=P(X > x—1). Since, theZ can take very small values we use the
negative logarithmic o, more specifically;- log(Z). We next denote- log(Z) as
7.

The first fitness function relates the interestingness op#teern with its com-
plexity,
B T
hi= complexity’
forz = 0,1, 2, 3. Thecomplexity is the sum of the number of characters recognized
by each pattern position. For instan@e&;GThas complexityd, while [AC]CGT
has complexityp and[AC][CG][GT][TA] has complexity8. The parameter is
used to reduce the patterns complexity, thus improving tpedlity. Generally, the
low quality patterns are a direct result of being too general
The second fitness functiorfy) borrows ideas from the evaluation function F-
measure,
2 x logpnx cpx
o= logpn+ cpx
wherep is the probability of the pattermy is the maximum complexity with same

length and alphabet can have, cpxl — %!e)('ty, logpn= Z/10000. A ceiling
of 10000 is assumed to the value &f

In general, it is not possible to determine which fitness fiamcbehaves better
in a set of sequences without some kind of experimentatibis &xperimentation
needs only to be done once for each sequence, and can be dormeatcally by
executing the programs for all the possible fithess funest@mmd choosing the one
that achieves the best results.

3.3 Counting Matches

The fitness function, or interestingness metric, requinessing the number of (over-
lapping) occurrences of every pattern in the sequence.X@mgle, in the sequence
AAATAA the patterrAAoccurs three times and the patté&tA[AT] occurs twice.
Counting the number of occurrences of a single pattern cdrobblesome. For
instance, if the sequences have total length ahd the pattern is composed by either
symbols or unit-length don't care characters with lengththe best algorithm runs
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in O(nlogm) time (worst-case) [6]. If we could come up with an algorithrithw
an equal complexity for the worst-case, the best we couldaldabeO(nilog m),
wherei is the number of different patterns (number of individudlithe population).
However, since unit-length don’t care characters are aetudfsclasses of charac-
ters, the chosen pattern language is more powerful tharetiterp language referred
in [6].

Since the GA generates several individuals (patterns)ih ganeration that need
to be evaluated, we tried to devise an efficient method tauewalthem simultane-
ously.

If the algorithm could only handle a single pattern, thersipossible to use a
linear solution based on bit-parallelism [7] if the pattégngth is small (only a few
machine words are needed). The bits are used to simulate-deterministic finite
automaton (NFA) that describes the pattern.

To expand the algorithm to evaluate several patterns at, aneggndow with
lengthk is moved through the sequence. Note that all patterns havgatine length
k. For each window position every pattern is checked for a maitca sequence with
sizen, the number of window positions (window sizekisis n — k + 1 (assuming
thatn > k).

The counting matches algorithm worst-case complexi§y(isik) with the input
sizen, i the number of individuals in the population, ahdhe length of the pat-
terns. However, the algorithm is on average much fasteieegicly a complexity of
O(ni/w), wherew is the number of bits in a machine word. The average complexit
is directly linked to the average case of the naive stringchiag.

In spite of the effort to have an efficient counting operatibremains the bottle-
neck of the matching algorithm. A parallel version of BIORERs thus developed
that achieved linear speedup up to 22 processors [8].

3.4 Implementation

The BIORED was implemented using the C language becausediee svas crucial
and to perform an extreme control on memory usage. For thistgtdunctions we
used the R [9] library. Note that BIORED can be executed inreetsaof platforms,
such as clusters and in GRIDs.

The alphabet letters (representing nucleotides or res)dure implemented using
an unsigned integer with 32 bits. This representation hasattvantage of being
simple to apply the genetic operators, namely the crossaweithe mutation. This
means that a population withindividuals, each having length, uses exactlyik
bytes of memory using the DNA alphabet. In general, the #lyoruses Y|ik/8
bytes of memory, wher&' is the alphabet used.

We use a binary vector as a chromosome to represent a pdtterbinary vector
can, conceptually, be seen as signaling if a character pglgiho X' is present or not
at a determinate pattern position. For example, the DNAepafAC]T[ACGT]G
is represented &k100,0001,1111,0010 , if Ais represented with the bit-mask
1000, C 0100, G 0010 andT 0001.
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The initial population (set of patterns) is randomly irnitad. Each bit in an
individual has the probability.7 of being activated (this value was selected after
performing several experiments). The probability was eitally chosen to guaran-
tee the diversity of the population, representing pattéinas actually occur in the
data.

The probability of undergoing crossover was sef .fth and the mutation prob-
ability to 0.01. Only the fittest individual is considered an elite. Theskiea were
chosen after some experiments with DNA and residue seqeearue are the val-
ues that proved to work better. By default, the program redlesr completings00
generations. This value was chosen based on the perforregapeements done.

Finally, it is worth mention that BIORED includes an optiogtting to allow
the use of symbol probabilities (distribution) differenbrin those observed in the
sequences. This requires the user to give an extra file (@ffhences) to the program
from where the distribution is computed. An example of thefuless of this option
is demonstrated in Section 5.

4 Performance Evaluation

We study the performance of BIORED and the behavior of the G#ims of con-
vergence and execution time. The databases used in theiragpés are indicated
in Table 1 and were obtained from the release 38 of the Ensprofdct [10]. All
experiments were ran in a Cluster with Dual core “AMD OpteRnocessor 250"
computers, witht gigabytes of RAM (but onlys00 Mb free) running the Linux op-
erating system (kernel 2.6).

Organism Length (bp
Saccharomyces cerevisiae (whole gengmé&215660¢
Anopheles gambiae (chromosome 2R) 61545104
Drosophila melanogaster (whole genoméx4141726

Table 1.Organisms used for evaluation.

Figure 1 shows the effect on the runtime when we alter a sipglameter, such
as the population size or the pattern length. Theoretidhlé/runtime is expected to
double when the population size is doubled. However, thempations performed
in the algorithm makes the runtime vary.

The three organisms used (see Table 1) can be processedun(&rgest to
smallest) 27, 10 and 4 hours, running for one-thousand géoes with a population
size of128 individuals and searching for patterns with lengtlé¢f These values for
running times are, in our view, excellent for a sequentialoexion, considering the
relative large size of the data used. In fact, other pattegosdery tools failed to cope
with the same data, thus making it impossible to comparéivelefficiency (details
are discussed in Section 6).

When the pattern length is increased something apparerdalyge happens. Un-
til a certain pattern length the runtime increases and thdadreases. This is, once
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Fig. 1. Run time variation with different populations and patteendths (in seconds).

again, related to the size of the search space. When thénsggace grows too much,
the genetic algorithm has difficulty in finding an admissibéttern. A possible solu-
tion to this problem could be to initialize the populatiortlwstatistically interesting
words (naturally, found with another tool).

The results show a very small variation on the runtimes wienpopulation
sizes increase from2 to 64 individuals. This effect is a direct consequence of the
implemented bit-parallelism technique and the executimédebit architectures.

We evaluated BIORED’s convergence and discovered that viherpattern
length increases, the population size must also be inaldas¢he convergence to
be smoother. This happens because it is more difficult tomhataadmissible large
pattern. This was expected, since the search space of a Ditkipwith length 64 is
24x64 FEyrthermore, as the size of the pattern decreases, tiee flastalgorithm con-
verges. This was also expected since the search space eerpomentially smaller
as the size of the pattern decreases.

5 Validation

We demonstrate the usefulness of BIORED in two case stutiesgoal is to redis-
cover some already known patterns.

Human Gene for Proinsulin

In the first case study we chose a database with the human gepinsulin from
chromosome 11 [11]. BIORED was configured to run with a pojaeof 32 indi-
viduals, pattern length af4, and to stop after one-thousand generations. It yielded
the patterrnCG]ATIGGGGIAT][CG]ATIGGGGIAT]  with a score 0f381.6, occurring

48 times and with a probability ¢f.00000133. The pattern found is very similar to

a previously reported patteACAGGGGTGTGGHZ].



8 Pereira, Silva, and Fonseca
Drosophila Melanogaster

In the second case study, we used a database with the whaolmgerithe Drosophila
melanogaster. More concretly, we used the organism disjpirons (sections of
DNA that are spliced out after transcription but before tH¢ARs used) as input
to BIORED, and configured it to use a populationcdfindividuals, and a pattern
length of27. The symbols probabilities were gathered from the wholeogen The
best pattern aftet096 generations wasTTGTAAGTCTTTAAATATATTCGT®ith a score
of 7309.4, occurs256 times and has a probability smaller theoT°. Curiously, this
pattern is a sub-word of the consensus described in [13]cbheensus was manu-
ally converted to a regular expression producing (afteressimplification) the fol-
lowing pattern:"G][AGIAGTT[CTIGT['A][GTIC[CT]T[AG]JAGTCTTT[CT|GTTT . Note
that the original pattern, as it is, achieves a scor@df2 on the entire genome, i.e.,
the entire genome was used to compute the distribution ofyhebols, while the
pattern found by BIORED achieves a scoreraf9.4

6 Related Work

Several pattern discovery tools and algorithms have beesialged [14, 15, 4]. Some
approaches are based on exhaustive search that guaraattéeetbest pattern (ac-
cordingly to some specifications) is found. An heuristicraggh does not guarantee
that the best pattern is found, instead it finds a good “entpattern. The advantage
of the heuristic approach is that it is often faster than ttteastive search, but may
not find the best solution (pattern).

The Teiresias [14] is closely related to our proposal in geohthe pattern lan-
guage. It is based on well-organized exhaustive searctdlmseombinations of
shorter patterns. The Teiresias algorithm guaranteesathataximal [14] patterns
are reported. The algorithm needs to receive as input thexmam number of lit-
erals that a pattern can contaiin, Another required parameter i that indicates
the maximum distance between any conseculiVigerals. In general, if we use the
samel parameter and increase thé parameter, the execution time of the scan-
ning phase, which is the phase where the algorithm gatherk g&tterns with the
desiredl andW characteristics, greatly increases. In the worst caseldioeitam is
O(n3log n), but it is reported to work very well when the inputs are hygtdgular
and the paramete#$ and L are small.

The admissible patterns are similar to the ones we conditieroriginal Teire-
sias algorithm only supported one wild card equivalent to“oti. Newer versions
support equivalency classes. In an equivalency class thieneeds to specify the
characters that are to be treated as equal in the actualrpdisEovery process.
These are similar to the classes of characters supportetigED.

A critical problem with Teiresias is that it has a very highmuy usage. In
an attempt to compare the performance of Teiresias with BIDRve configured
Teiresias to support the same classes of characters as BIC#R#E tried to identify
the previously discovered pattern in the human gene of putiim Teiresias crashed
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after8 minutes with a memory consumption of several gigabytessélparameters
were chosen to verify if it could identify the previously disvered pattern in the
human gene of proinsulin using the BIORED.

In conclusion, Teiresias seems to be unable to cope witbesdabat overlap each
other (which is exactly the classes supported by BIOREDjesinhas an extremely
high memory consumption that prevents any empirical coreparsince it crashes
even for small sequences.

Pratt [15] is another tool to discover patterns conservesgta of unaligned pro-
tein sequences. The patterns that can be found are a sulibetdtterns that can
be described using Prosite notation [16]. In particularialde length gaps are al-
lowed. Pratt is very memory intensive, contrasting to BI@QR®hich is pretty light
in memory consumption. Pratt tries to find a pattern that ccizuthe greatest num-
ber of sequences as possible, while the program presentedtesiders the total
number of occurrences in all sequences.

MEME (Multiple EM for Motif Elicitation) [17] uses a stochéis search to dis-
cover patterns. It does not require a pattern length paeanvettich can be estimated
by the algorithm itself. The algorithm is based on expectatnaximization tech-
nique. Individual MEME patterns cannot contain gaps, aung tre equivalent to the
patterns we consider. The overall complexity of MEME is gaid in the size of the
database and linear in the length of the pattern [17], whileppoposal is linear in
the size of the database and in the length of the pattern.

7 Conclusion

We presented a new pattern discovery tool that discovegsdsting patterns, in the
form of a regular expression. using a genetic algorithm. dlgerithm has a con-
servative memory usage 6f(ik|X|) and a worst-case time complexity @{nikg),
whereX is the alphabet used,s the number of individuals of the populatidnjs
the length of the patterm, is the size of the input, anglis the number of genera-
tions. However, the algorithm is on average much fasteiigaoiy a complexity of
O(gni/w), wherew is the number of bits in a machine word. The average complex-
ity is directly linked to the average case of the naive strimgiching. Experiments
showed the usefulness of the algorithm, by demonstratiagitlis capable of dis-
covering previously known patterns.

The contributions of this paper are three-fold. First, wealibe and evaluate a
tool that uses a genetic algorithm to discover patterns imogec and proteomic se-
guences. Second, we also propose an efficient pattern mgtotocedure, a crucial
component for achieving high performance in any patteroadisry tool. Finally, for
a practitioner we provide a pattern discovery tool that feieit (in terms of exe-
cution time and memory usage), has a powerful pattern lageyudoes not impose
restrictions on the pattern length, is general (can hanaie2pmic and genomic se-
guences), and can handle large databases of sequencegnabd ased in a with
number of settings (personal computers, clusters, and)grid
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Finally, there is still space for improvement. For instgr8E€ORED implements

a simple and fast statistical approach to determine theastigness of a pattern. In
order to improve the statistical accuracy, we plan to inelas$ an option, more rigor-
ous tests such us the recently proposed complementastist@itiests for accessing
exceptionalities of motif counts [18].
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