
On Just In Time Indexing of Dynamic
Predicates in Prolog

Vı́tor Santos Costa

DCC-FCUP & CRACS-INESC Porto LA
Universidade do Porto, Portugal

vsc@dcc.fc.up.pt

Abstract. Prolog is the most well-known and widely used logic pro-
gramming language. A large number of Prolog applications maintains
information by asserting and retracting clauses from the database. Such
dynamic predicates raise a number of issues for Prolog implementations,
such as what are the semantics of a procedure where clauses can be
retracted and asserted while the procedure is being executed. One ad-
vantage of Logical Update semantics is that it allows indexing. In this
paper, we discuss how one can implement just-in-time indexing with
Logical Update semantics. Our algorithm is based on two ideas: stable
structure and fragmented index trees. By stable structure one means that
we define a structure for the indexing tree that not change, even as we
assert and as we retract clauses. Second, by fragmented index tree we
mean that the indexing tree will be built in such a way that the updates
will be local to each fragment. The algorithm was implemented and re-
sults indicate significant speedups and reduction of memory usage in test
applications.

1 Introduction

Prolog is the most well-known and widely used logic programming language.
Prolog is based on Horn Clauses, a subset of First Order Logic for which a
refutation-complete procedure exists. Definite Horn clauses have a single positive
literal, the head, and zero or more negative literals. Clauses are called facts, if
they have no negative literals, or rules, otherwise. Prolog programs rely on a
static data-base of facts and procedures, but a large number of applications
maintains information by asserting and retracting clauses from the database. In
modern Prolog systems, predicates where one can assert and retract clauses are
named dynamic.

A major issue for Prolog implementers is what are the semantics of a proce-
dure where clauses can be retracted and asserted while the procedure is being
executed. Originally, Prolog systems implemented what is called immediate up-
dates, where a new clause or a retracted clause was immediately visible to a new
execution. Unfortunately, these semantics can be hard to capture. Indexing also
becomes impossible, as we may need to backtrack to a newly added clause.

Lindholm and O’Keefe [5] proposed what is nowadays called the Logical Up-
date semantics. In these semantics, a call to a dynamic predicate operates on
a snapshot of the clauses defining a predicate at the time of the call. In other
words, adding or removing clauses will not change the clauses seen by a call to
a predicate. The approach allows indexing and is intuitive. On the other hand,
one problem is that deleted clauses need to be stored until all calls that use
them terminate; moreover, the current goal should not be allowed to backtrack
into “future” clauses. Lindholm and O’Keefe use time-stamps to control access
to clauses, and garbage collection to remove dead clauses.

Logical Update semantics have become very popular. They are enforced by
the ISO Prolog standard and they are implemented in most Prolog systems [2]
(although not all [6]). As discussed above, one advantage of LU semantics is
that it allows indexing (in contrast with immediate semantics). In this paper,
we discuss how one can implement just-in-time indexing with logic update (LU)
semantics. Just-in-time indexing [8] was motivated by the observation that the
performance of Prolog programs strongly depends on the ability of the Prolog
engine to find sets of clauses to match against sub-goals. Unfortunately, most
Prolog systems have very limited indexing, usually by default just on the first
argument. Extensions, such as multi-argument indexing [12], require user in-
tervention and are designed to optimize a single mode of usage. Just in Time
Indexing (JITI), can address larger databases, allowing for different modes of
usage. JITI relies on two key ideas. First, indexing should be performed late,
when we know how the actual queries are instantiated. Second, different queries
may have different modes. Thus, the indexing code should be able to change and
grow to support different moded queries.

Dynamic predicates present a challenge to JITI: the indexing code can grow
both because we have new modes of usage, and because we have new clauses.
Moreover, the code can now contract as we retract clauses. Next we contribute
over prior work [8] by extending the JITI algorithm to index dynamic predicates.
The new algorithm is based on two ideas: stable structure and fragmented index
trees. By stable structure one means that we define a structure for the indexing
tree that not change, even as we assert and as we retract clauses. Second, by
fragmented index tree we mean that the indexing tree will be built in such a
way that the updates will be local to each fragment. The algorithm was imple-
mented on the YAP Prolog system and results indicate significant speedups and
reduction of memory usage in test applications.

The paper is organized as follows. First, we briefly review the JITI through
an example. Next, we discuss the updating algorithm. We present performance
results next. Last, we present some conclusions and suggest further work.

2 The JITI by Example

The JITI extends David H. D. Warren’s WAM design. Figure 1(a) shows the
WAM code for a small database fragment from a well-known machine learning

3

A1 Type

A1 Value
d1 d2 d3

1 2

1 2

F F

53

4 5

4

(a)

A1 Type

A1 Value
d1 d2 d3

F F

5A2 A2
A3 A3

A2

1 2 3 4

(b)

Fig. 1. WAM and JITI Code for has property/3. The “Type” nodes have four children:
constant, compound term, list or unbound term. Sets of clauses are grouped as ovals.

dataset, Carcinogenesis, which contains information on the carcinogenic proper-
ties of several chemical compounds in mice [10]:

has property(d1, salmonella, p).
has property(d1, salmonella n, p).
has property(d2, salmonella, p).
has property(d2, cytogen ca, n).
has property(d3, cytogen ca, p).

Figure 1(a) shows WAM indexing code as a tree, with switch nodes, and
clause chain nodes. The WAM has two different switches: switch on type selects
according to the first argument, A1, being unbound, constant, pair or structure;
switch on constant selects according to a value. The WAM also separates clause
chain nodes with a single clause, that are implemented as a jump, and sets of
clauses, that are implemented as try, retry, trust sequences of instructions.

In the original WAM one only considers A1. This is not always optimal, as
shown in the following queries:

?- has property(d1, ,).
?- has property(d1, salmonella,).
?- has property(, salmonella ,).
?- has property(, cytogen ca, p).
?- has property(, , n).

The WAM would only generate ideal code for the first example. In all the
other cases it would backtrack through every clause in the procedure, even
though the queries are deterministic.

Unfortunately, generating indexing code for every combination of arguments
can be quite expensive: with arity 3 and no sub-arguments, we have 23 = 8
different input-output combination. The JITI approaches this task by assuming
that all calls will have the same mode of usage: it generates multi-argument
indices based on the indexing patterns for the first call of a predicate.

Figure 1(b) shows JITI code for our example procedure, if the first query
was:

?- a(d1,Prop,Type).

The JITI algorithm generates the code at the first call. The code is based on the
WAM code, but it differs as follows:

– If A1 = d1 or A1 = d2 the JITI cannot commit to a single clause. In
order to achieve determinacy, it thus adds extra code to test whether A2

is instantiated. If the test succeeds, it tries generating a new index for the
remaining clauses on A2. This is not the case, so the JITI again adds code
to test whether A3 is instantiated. In the example, A3 is unbound, so the
JITI has no choice but to generate a try-trust chain.

– If A1 = d3 there is no need to perform further indexing: the goal is already
determinate so the JITI transfers control to clause 5.

– The WAM generates a sequence of try me, retry me, trust me instructions
for the case A1 is unbound. In the purest version of the JITI this is not
necessary: the JITI just leaves code to check for the next argument, A2.

We call the nodes that wait until an argument instantiates to generate code for
the argument wait nodes, because the JITI is waiting on a chance to increase
the trees. The usefulness of wait nodes becomes clear when consider the next
example goal:

?- a(d1,salmonella,Type).

In this case, we have A2 bound. Going back to Figure 1(b), we execute the
switch on type instruction, next the switch on cons, and enter the wait node
for A2. At this point, the indexing code expands d1’s sub-tree using the same al-
gorithm we used to build the indexing code for A1. It first generates a switch on type,
and then a switch on cons. The new tree replaces the A2 wait node, resulting
in the tree shown in Figure 2(a). Notice that we only expand the case for d1: we
could be aggressive and also expand for d2, but our reference implementation
tries to generate code as lazily as possible.

Last, imagine we run a call where only the second argument is bound:

?- a(Compound,salmonella,Type).

again we will execute the top switch on type, but now we will proceed to the
rightmost wait node. The JITI builds a new indexing tree for A2, shown in
Figure 2(b).

A1 Type

A1 Value
d1 d2 d3

F F

5A2

A3

A3

A2 Type

F F

A2 Value
s sn

A2

1 2
1 2

3 4

(a)

A1 Type

A1 Value
d1 d2 d3

F F

5A2

A3

A3

A2 Type

F F

A2 Value
s sn

1 2
1 2

3 4

A2 Type

F F

A2 Value
s sn c

A3 A32

1 3 4 5

A3

(b)

Fig. 2. Expanding JITI Code for has property/3: A1, A2 bound and A2 bound

3 Dynamic Procedures

We have explained the key ideas in the JITI. Before we proceed, it is important
to understand how the YAP Prolog system implements dynamic predicates. Dy-
namic procedures are sets of dynamic clauses. Each dynamic clause is always
allocated independently (in contrast to static clauses [7]). The main fields in the
clause’s header are:

– ClFlags: every clause has a set of flags; important flags indicate whether
the clause has been deleted, and whether it is in use.

– ClRefCount: how many external pointers to the clause; most of these pointers
will be from indexing code.

– ClSource: a data-structure containing the original source of the clause.
– ClPrev, ClNext: pointers to a doubly linked list.

The assert/1 procedure stores a clause with three components: the header, the
compile term, and a term containing the source-code.

The retract/1 and erase/1 procedures remove a clause from a list imme-
diately, but do not try to recover space. Space is only recovered when ClFlags
does not have in-use set, and if the ClRefCount is 0. Actually recovering space
is the performed either at backtracking or when recovering space in the indexing
code.

Our system implements a few optimizations of interest to dynamic code:

– Facts do not have source code: source code is actually recovered by executing
the code;

– The Prolog Internal Data-Base is implemented as dynamic clauses with a
single instruction, that unifies the second argument with a copy of the data
in the ClSource field.

4 Indexing Dynamic Procedures

We have so far presented the JITI assuming the code is static. Dynamic proce-
dures introduce several complications. The key ideas in our implementation are
as follows: (a) try to keep the code as simple as possible; (b) try to make as
little changes to the current tree as possible; (c) try to make changes local at
each node. We discuss these principles next.

Simplicity Our discussion so far assumes that indexing code is always a simple
tree, rooted at a switch on type node, with switch on value nodes below, and
where leaves are wait nodes, jumps to clauses, or sequences of clauses. We shall
always follow this structure for dynamic procedures, even though this is not
always true in the WAM and in the JITI for static procedures. For example
indexing code on A1 for

has property(, salmonella, p).
has property(d1, salmonella n, p).
has property(d2, salmonella, p).
has property(d2, cytogen ca,n).
has property(, cytogen ca, p).

first tries the clause, then retries and enters a switch, and last trusts the fifth
clause. Updating such sequences is difficult, and not typical of the code most
often found with dynamic procedures.

Structure Preservation For simple trees, asserting a clause will not affect the
structure of the tree: we just expand switch on values nodes, and add new leaves,
but we do not need to build any new type and value switches tables. Retracting
a clause is more complex: if a clause is the only clause for a sub-tree, we can
(and should) recover space for the whole sub-tree.

Notice that the term last clause in a sub-tree must be understood in the
context of LU semantics: we can only remove a clause from a try–trust when
we are sure the code will not backtrack there.

Locality Last, given that the tree structure is preserved, adding a clause can be
seen as a set of independent updates to non-structure nodes: we just need to
visit the tree and apply an operation at each node. Retracting follows similar
principles, but with the caveat that we must remove empty sub-trees.

4.1 Asserting Clauses

We can now present a clause insertion algorithm, Insert(p, C,B), where p is the
predicate, C the new clause, and B a boolean saying whether we want to insert
as the first or as the last clause.

Our algorithm performs a pre-order walk of the indexing tree. Throughout,
it maintains two stacks: the label stack includes pointers to all the branches we

A1 Type

A1 Value
d1 d2 d3

F F

5A2

A3

A3

A2 Type

F F

A2 Value
s sn

A2

1 2
1 2

3 4

1

2

6

A3

3

Fig. 3. Assert on has property/3

have yet to visit; the block stack contains the node’s parents. Both stacks are
initially empty. The algorithm proceeds as follows:

1. If the current node is a switch on type node on argument Ai, then:
(a) check what constraints the new clause imposes on Ai.
(b) If the clause imposes no constraints or if Ai can match different types

(e.g., number(Ai)), remove the sub-tree rooted at this node, replacing
it by a wait node. One could add a try before/or a trust after the
switch on type but doing so would break simplicity, as discussed above.

(c) Otherwise, the clause must be added to two of the four cases in the
switch on type: the case that matches the type, and the unbound case.
The label stack allows us to process this case: we push the unbound label
to the label stack, and jump to the bound case.

2. If the current node is a switch on value node, say switch on constant,
then there must be a switch on type above, and that node ensured there is
a constraint of the form Ai = V in the clause:
(a) if V is not in the table, one must expand the table. Our system follows

the WAM and has a number of different cases: if the table is small, it use
sequential search; otherwise, it uses a hash table. In either the case, if
there is room in the table, one simply can insert the new entry. If there
is no room, a new table is allocated. The system guarantees that value
tables are only pointed from the current instruction, so the old table can
be removed immediately. The algorithm than proceeds by popping the
next instruction from the label stack.

(b) if V is in the table, and matches a single clause (leaf), replace V ’s code
by a wait node. Again, pop the next instruction from the label stack.

(c) Otherwise, push the current block on the block stack and follow the table
entry.

3. If the current node is a try-retry-trust chain (TTT): add a pointer to
the clause to the chain. Our algorithm represents TTT nodes as lists of
clauses [1], so we simply need to update the predicate’s time-stamp and add
the instruction to the list.

4. If the current node is a childless wait node: pop next instruction from label
stack if childless. Otherwise, proceed to the node’s child.

The algorithm terminates when the label stack empties.
Figure 4.1 shows an example of how the algorithm works, given the tree in

Figure 2(a).
?- assert(atm(d1, salmonella, n)).
The algorithm starts by visiting the top switch on type node. The algorithm

detects the constraint A1 = d1, hence it takes the constant label (shown as
path 1) and pushes the unbound pointer to the label stack. Next, it visits the
value node for A1. The d1 case points to a tree, so there is no need to update
the node. Next, it visits the switch on type for A2. It detects the constraint
A2 = salmonella, hence the code will do as for A1. It takes the leftmost branch,
and pushes the rightmost pointer to the stack. The next switch on constant
has two cases, salmonella and salmonella n. The salmonella case pointed to
a single clause, which must be replaced by a pointer to a wait node.

The next step is to pop the label stack and enter path 2. The algorithm first
meets a wait node T2 with a child. It follows the child and meets the TTT chain
node. At this point, it simply adds the new clause as a last trust in the chain,
and replaces the previous trust clause 6 and the trust 2 by a retry 2. We
pop again and enter path 3. We only find a wait, pop again and exit.

4.2 Retracting Clauses

The first difference between the retracting and asserting, is that when retracting
we know that the clause must be consistent with the indexing tree. Again, we start
by emptying the two stacks, and enter at a switch on type node. The algorithm
then does a pre-order walk in a fashion similar to the previous algorithm:

1. If the number of clauses for the predicate was 2, remove the whole tree.
2. If the current node is a switch on type node on some argument Ai, we must

have a constraint of the form Ai = V . Push the unbound label to the label
stack, and jump to the label matching V ’s type.

3. If the current node switches on value, then either:
(a) V matches a single clause, replace the entry with fail.
(b) Otherwise, jump to the label in the table, pushing the previous block on

the block stack.
4. If the current node is a TTT node we have a number of possibilities:

(a) 2 nodes in the chain: mark the TTT chain as deleted and replace the
entry above by a pointer to the last clause.

(b) else, if the TTT chain is not in use: remove the clause;
(c) else, mark the TTT chain as dirty.

As usual, the algorithm terminates when the label stack empties.

Time (msec) Dynamic Code (in KB)
Clauses Indices Switches TTT Wait Tables

1st Arg 211 998 126 7 85 18 14
Full 181 998 165 10 98 44 20

Table 1. Running Time and Space Usage for Dynamic Predicates in the
Kiraz/Grimley-Evans benchmark at the end of forward execution. Sizes refer to to-
tal size spent in dynamic clauses and in indices. Indexing code is divided into code for
switch and type and switch on value instructions, sequences of try-retry-trust in-
structions, wait nodes, and indexing tables.

Purging Dynamic Indices Dynamic nodes are purged after retracting clauses
or after backtracking. Reclaiming a node is only performed after detaching all
children; decrease reference to other clauses, and decrease the parent’s reference
counter.

5 Performance

The performance of JITI has been discussed in [8]. Previous results [3] show
that for an ILP system the benefits of indexing are partly derived from indexing
dynamic procedures. Next, we present in more detail some time and performance
results on two real applications typical of dynamic updates, one from van Noord’s
FSA utilities [11], and the other from the ILP system Aleph [9].

The experiments were performed using on a Max Powerbook Pro with a
2.5GHz Intel Core Pro Duo and 4GB of memory, running OSX Leopard in
32 bit mode. The experiments consisted of running applications with the JITI
totally enabled and only enabled for the main functor of the first argument.
They therefore always apply the JITI.

Kiraz and Grimley-Evans The FSA toolkit includes a number of algorithms for
finite-state automata. One of these algorithms is based on Kiraz and Grimley-
Evans’ algorithm for automata minimization [4]. The algorithm maintains a state
table as dynamic procedures, and operates by manipulating this table, therefore
it strongly depends on indexing.

Table 1 shows an advantage of using full versus first argument indexing in
this case: there is a 10% speedup, at the cost of a 20% increase in index space.
On the other hand, index space is still much smaller than clause compiled space.

A more detailed analysis finds that the difference essentially comes from two
predicates, symbol state /2 and class state /2. If one uses multiple argu-
ment, indexing execution is deterministic, and no choice-points are created. If
one just uses first argument indexing, execution is non-deterministic. Execution
thus becomes slower for two reasons: the system has to create choice-points, and
it has to maintain a TTT chain for symbol state /2 and class state /2. At
the end of execution, the application erases all clauses for symbol state .

Experiment Time (msec) Dynamic Code (in KB)
Clauses Indices Switches TTT Wait Tables

sat(1)
1st Arg 23 1066 25 4 4 9 7
Full 21 1066 36 11 2 17 4

reduce
1st Arg 4385 12170 238 5 4 139 7
Full 4100 12107 1495 12 91 148 23

sat(2)
1st Arg 34 12182 158 4 6 139 7
Full 28 12182 291 16 94 153 27

reduce
1st Arg 4710 11471 162 5 6 143 7
Full 4270 11471 378 17 155 157 49

sat(3)
1st Arg 17 11437 154 4 4 137 7
Full 14 11437 369 13 153 147 46

reduce
1st Arg 4980 10713 284 5 4 267 7
Full 4090 10713 595 13 242 277 61

Table 2. Running Time and Space Usage for a possible Aleph execution where we
first saturate example 1, reduce, saturate example 2, reduce, saturate example 3, and
reduce.

Using multiple arguments results in deeper and larger trees. The results show
that Switches, the space spent on switch on type and the space spent on the
non-table code in the switch on cons instructions, grows to 10KB from 7KB.
The last interesting data concerns the sizes of the tables used to store hash tables
and other chains. The results show Table size of 20KB for multiple argument,
whereas when using the first argument usage is negligible. The wait node space
corresponds to the space spent to support quick expansion of indexing trees.
This space will grow as we generate deeper trees.

In a second experiment we use the Aleph Inductive Logic Programming Sys-
tem running the Carcinogenesis benchmark [10]. We run saturation and re-
duction three times, for three different examples. Because the Carcinogenesis
database strongly benefits from multiple indexing, the 1st argument experiment
only disables indexing on the dynamic predicates.

Table 2 shows performance for a possible Aleph run where one saturates
the first example, reduces, the second example, reduce. The results are quite
similar to the previous dataset. There is a speedup in using multiple argu-
ment indexing, at the cost of using more memory, but the total amount of
memory is still quite low compared to the compiled code. A detailed analysis
shows again two predicates dominating execution in the multiple-argument case:
$aleph search expansion/4 and $aleph search node/8. The latter predicate
performs well with first argument indexing, but the second one creates very large
TTT chains.

6 Discussion

We discuss the implementation of dynamic updates for just-in-time indexing.
Although the key ideas have been presented previously, our contribution provides

a detailed explanation of the actual algorithms, given wide experience in using
the system.

Experience has forced a number of changes over the initial implementation.
Arguably, the main change was that the original implementation maintained
TTT chains as a single block. Extra space was reserved at the beginning and
end in case clauses would be asserted. Instead of using time-stamps, blocks were
copied. Unfortunately, experience showed that copying was just too expensive
for larger applications.

In general, TTT chains have shown to be the source for most of the com-
plexity of in the system. Note that the WAM always has a TTT chain, where
each instruction is stored just before a clause [13]. By default, our system has
no TTT chains, both on static and dynamic procedures. Clauses are linked by
an single chain, for static procedure, and by a doubly linked lists, for dynamic
procedures. One advantage of using a default chain is that it is straightforward
to enumerate every clause. In contrast, enumerating clauses requires generating
a new index, which is expensive for predicates with large number of clauses. In
the worst case, calling a built-in such as listing/0 might overflow the system.
The system chose not to support a default TTT chain in order to save space in
large databases [7].

Indexing dynamic clauses can be seen as a “light” version of the static in-
dexing algorithm. This “simplicity” principle is based on experience: updating
in the original WAM algorithm was complex because it is not always very clear
where a TTT chain ends, and thus, what is a real trust instruction.

There is relatively little work on indexing dynamic procedures. Some inspi-
ration to our work comes from the way indexing is implemented in SICStus
Prolog [1]: SICStus uses very dynamic data-structures to support logical up-
dates. One interesting alternative to our approach would be to support a single
mode: XSB supports indexing dynamic data through tries [6]. Tries are a com-
pact representation, and are clearly much more space efficient than our approach.
On the other hand, they cannot support logical updates and multiple modes.

7 Conclusions and Future Work

We present in detail an indexing algorithm for Prolog that can support Just-In
Time Compilation and that can support Logical Update Semantics. The algo-
rithm was motivated by experience with user programs, and has been successfully
applied in practice. The major advantage of this approach is that it supports the
main benefits of the JITI in applications such as updatable data-bases of ground
terms. The main cost in our experience is that it can be relatively expensive in
terms of memory usage: namely, allocating independently each instruction in a
TTT chain is quite costly space-wise.

Our implementation includes a number of design decisions that were based
on particular applications. We expect that new applications will require further
improvements. Ultimately, though, the question is whether one should invest on

alternate data-structures that can provide the functionality of dynamic proce-
dures in a more disciplined and efficient fashion.

Acknowledgments

This work has been partially supported by projects JEDI (PTDC/EIA/66924/2006)
and STAMPA (PTDC/EIA/67738/2006) and funds granted to CRACS through
the Programa de Financiamento Plurianual, Fundação para a Ciência e Tecnolo-
gia and Programa POSC.

References

1. M. Carlsson. Freeze, Indexing, and Other Implementation Issues in the Wam. In
ICLP87, pages 40–58, May 1987.

2. P. Deransart, A. Ed-Dbali, L. Cervoni, and A. A. Ed-Ball. Prolog, The Standard:
Reference Manual. Springer Verlag, 1996.

3. N. A. Fonseca, V. Santos Costa, R. Rocha, R. Camacho, and F. M. A. Silva.
Improving the efficiency of inductive logic programming systems. Softw., Pract.
Exper., 39(2):189–219, 2009.

4. G. A. Kiraz and E. Grimley-Evans. Multi-Tape Automata for Speech and Language
Systems: A Prolog Implementation. In Automata Implementation, LNCS 1436.
Springer-Verlag, 1998.

5. T. G. Lindholm and R. A. O’Keefe. Efficient implementation of a defensible se-
mantics for dynamic Prolog code. In J.-L. Lassez, editor, Proceedings of the Fourth
International Conference on Logic Programming, MIT Press Series in Logic Pro-
gramming, pages 21–39. University of Melbourne, ”MIT Press”, May 1987.

6. K. F. Sagonas, T. Swift, D. S. Warren, J. Freire, and P. Rao. The XSB pro-
grammer’s manual. Technical report, State University of New York at Stony Brook,
1997. Available at http://xsb.sourceforge.net/.

7. V. Santos Costa. Prolog performance on larger datasets. In M. Hanus, editor, Prac-
tical Aspects of Declarative Languages, 9th International Symposium, PADL 2007,
Nice, France, January 14-15, 2007., volume 4354 of Lecture Notes in Computer
Science, pages 185–199. Springer, 2007.

8. V. Santos Costa, K. Sagonas, and R. Lopes. Demand-driven indexing of prolog
clauses. In V. Dahl and I. Niemelä, editors, Proceedings of the 23rd International
Conference on Logic Programming, volume 4670 of Lecture Notes in Computer
Science, pages 305–409. Springer, 2007.

9. A. Srinivasan. The Aleph Manual, 2001.
10. A. Srinivasan, R. King, S. Muggleton, and M. Sternberg. Carcinogenesis pre-

dictions using ilp. In S. Džeroski and N. Lavrač, editors, Proceedings of the 7th
International Workshop on Inductive Logic Programming, volume 1297 of Lecture
Notes in Artificial Intelligence, pages 273–287. Springer-Verlag, 1997.

11. G. van Noord. FSA Utilities: A Toolbox to Manipulate Finite-State Automata.
In WIA: International Workshop on Implementing Automata, LNCS. Springer-
Verlag, 1997.

12. P. Van Roy, B. Demoen, and Y. D. Willems. Improving the execution speed of
compiled Prolog with modes, clause selection and determinism. In TAPSOFT’87,
pages 111–125. Springer Verlag, 1987.

13. D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI
International, 1983.

