User Defined Indexing

David Vaz!, Vitor Santos Costa?, and Michel Ferreira3

! LIACC - DCC/FCUP, University of Porto, Portugal
2 CRACS - DCC/FCUP, University of Porto, Portugal
3 Instituto de Telecomunicacoes - DCC/FCUP, University of Porto, Portugal

Abstract. Logic programming provides an ideal framework for tackling
complex data, such as the multi-dimensional vector-based data used to
represent spatial databases. Unfortunately, the usefulness of logic pro-
gramming systems if often hampered by the fact that most of these
systems have to rely on a single unification-based mechanism as the only
way to search in the database. While unification can usually take effective
advantage of hash-based indexing, it is often the case that queries over
more complex and structured data, such as the vectorial terms stored in
spatial databases, cannot.

We propose a new extension to Prolog indexing: User Defined Indexing
(UDI). In this mechanism, the programmer may add extra information
to Prolog indices so that only interesting fragments of the database will
be selected. UDI provides a general extension of indexing, and can be
used for both instantiated and constrained variables. As a test case,
we demonstrate how UDI can be combined with a constraint system
to provide an elegant and efficient mechanism to generate and execute
range queries and spatial queries. Experimental evaluation shows that
this mechanism can achieve orders of magnitude speedups on non-trivial
datasets.

1 Introduction

Logic programming provides an ideal framework for tackling complex data, using
a single and universal representation of pieces of such data as logic terms. A logic
term can represent things such as an unbound variable, a constant or an integer,
or more complex and structured entities such an interval over reals or a vectorial
polygon. The universality of this representation is a key feature for the declara-
tive flavor of logic programs. In particular, it is the basis for the generic handling
of data through the single mechanism of wunification. While this unification and
the term-based representation of the world are fundamental flagships of the logic
programming paradigm, they can also entangle the usefulness and effectiveness
of logic programming for data-intensive applications. Performing search through
unification can be terribly ineffective because of the match-based process asso-
ciated with it. Indexing tries to overcome this inefficiency, and has been coupled
to the earliest Prolog implementations [?], in order to narrow the number of
clauses to try. Indexing is however based on the representation of data, which is
universally term-based, and is very much designed in Prolog systems around the

lexical or syntactic form of such terms, rather than its semantic. A conspicuous
example of that is the position-based indexing proposed in the WAM [?]. The
divergence from semantic is contrary to the Prolog’s focus on the what, instead
of the how, but is rooted on the fact that indexing is an implementation issue,
rather than a programmer’s concern.

Lexical indexing is usually well performed through hashing techniques, which
cope naturally with the match-based mechanism of unification. Efficient execu-
tion of Prolog queries requires the programmer to be aware of this close relation-
ship between hash-based indexing and unification. The following two queries:

7- p(A), q(B), A=B.
7- p(A), q(A).

are semantically equivalent, but have very different performances, as the indexing
over goal q/1 is only effective when unification is pulled to the argument of the
call. This is an important difference between Prolog and relational databases
querying, where the execution of the later is preceded by an optimizer that is
able to look globally to the query and define an execution plan that maximizes
efficiency. Systems incorporating global analysis in the compilation of Prolog,
such as Ciao [?], are also able to perform some goal reordering that would use
the constraint over variable B on q/1 goal [?]. However, hash-based indexing of
Prolog predicates is not able to take advantage of constraints over arguments
that are not based on unification. The following query:

7- p(d), q(B), A>B.

has no possible rewriting in Prolog that would make it efficient, even if we could
pull the constraint to the call of goal q/1. This is due to the fact that the
lexical, hash-based, indexing of predicate q/1 is not able to take advantage of
the semantic constraint of order, either defined in a term-based representation
domain of numbers or strings, between variables A and B. In the same way, if the
argument of predicates p/1 and q/1 are terms representing a vectorial polygon,
then a query such as:

?7- p(4), q(B), overlaps(A,B).

is also unable to improve efficiency based on a hash-based index over the ar-
gument of predicate q/1. Efficient indexing over spatial terms is particularly
important, not only because of the usual mammoth size of such predicates, but
also because of the computationally expensive execution of spatial operators.
In this paper we propose and implement a semantic-oriented indexing of Pro-
log predicates, where the programmer is able to define the indexing mechanism
based on what the terms in the arguments of a predicate are meant to represent.
This User Defined Indexing (UDI) allows users to provide an indexing function
that selects a subset of the clauses of a predicate, given a set of constrained vari-
ables or bound Prolog terms. This function implements the type of indexing the
user deems appropriate for the predicate, from specialized hash-based functions
to multi-dimensional indexing suited for spatial terms. We propose a constraint

Al Type
Ll
A

a2
(@ilaz]a3)

00
(a) (b)

Fig.1. WAM and JITI Code for has_property/3

based syntax over the logic variables that can affect the efficiency of indexing,
retaining the declarative style of Prolog querying.

The remainder of this paper is organized as follows: Section 2 presents the
current state-of-the-art of Prolog indexing; Section 3 explains the indexing mech-
anisms used to efficiently access data structured in ranges and multi-dimensional
objects; Section 4 presents our proposal of User Defined Indexing and addresses
the engine modifications to implement it in Yap; Section 5 gives some examples
of user defined indexers and Section 6 performs a complete evaluation over very
large datasets; Section 7 concludes the paper.

2 Indexing Prolog Programs

Indexing is a key feature in Prolog implementations and has been supported
since Warren’s DEC-10 Prolog system [?]. Both DEC-10 Prolog and Warren’s
WAM [?] implement indexing on the first argument, and this has become stan-
dard in Prolog systems. Figure 1(a) shows the WAM code for a small database
shown next:

has_property(dl, salmonella, p).
has_property(dl, salmonellan, p).
has_property(d2, salmonella, p).
has_property(d2, cytogen_ca, n).
has_property(d3, cytogen_ca, p).

Figure 1(a) shows WAM indexing code as a tree, with switch nodes, that
implement clause selection, and clause chain nodes, that either jump to clauses
or support backtracking through a set of clauses. There are two different switch
nodes in the WAM. The first, switch_on_type, selects according whether the first
argument, A;, is unbound, constant, pair or structure. The second type, say
switch_on_constant selects clauses that match a walue. Given a large enough
number of different values, the WAM will implement this operation as a lookup
in the hash table. Looking up an hash table takes constant time in average,
hence indexing can in the best case improve query execution from linear in the
number of clauses to constant-time, with only a small overhead.

A natural step from the WAM is to index on multiple arguments. Systems
such as Prolog by BIM [?] and SWI-Prolog [?] do so in an user-specified fashion.
This approach requires prior knowledge on which modes of usage are going to
be used in the program, though. Just In Time Indexing (JITI) [?] addresses this
problem by generating indexing code only when needed. For example:

?- has_property(dl, _, .).

would result on the JITI code shown in Figure 1(b): notice that the code is very
similar to the original WAM code, but it includes “wait nodes”, shown as filled
ovals. Imagine next the queries:

?- has_property(dl, salmonella,).
?- has_property(_, salmonella_, _).

The JITT has the ability to expand the tree in Figure 1(b) with hashes on the
first two arguments first, and then later building an alternative index that hashes
on the second argument. This is implemented by generating new trees rooted at
the wait nodes. The JITI seems to address well the cases where one wants to
lookup a value in a database. This is an important application of Prolog, but
not the only one.

3 Indexing Ranges and Spatial Data in RDMs

Indices based on exact matching of values are useful when searching for the value
that matches some constraints, and they are usually implemented with hash
tables. On the other hand, quite often users are interested in different styles of
queries. One typical example is finding all values that are larger than some X;
another are “ranges queries”, that is, finding all values that are between two
predefined boundaries. Such queries can be naturally written as logic programs,
but are difficult to implement effectively with hash tables. More recently, there
has been wide interest in storing and manipulating geographical data. These
problems have motivated a large body of research in the Relational Database
Management Systems (RDMs) community, which has proposed a number of
indexing structures, such as B+4-Trees [?] and R-Trees [?]. We briefly review
these data structures next.

A B+-Tree is a self-balanced tree based on a B-Tree: it is often used in
RDMs because it allows for logarithmic time selections, insertions and deletions.
In B+-Trees data is stored in leaf nodes and only keys are stored in inner nodes
(index nodes). Leaves in B+-Trees are linked to one another in a linked list. The
main advantage of B+-Trees versus Hash Tables is that data is kept in order,
making range queries (inequalities) possible and efficient. Figure 2(a) shows an
example of a B4-Tree. The inner node separates the tree into three ranges X < 3,
3 < X <5and X > 5. Given a key, search executes by going down from root of
the tree and taking the branch covering the key, as shown in Figure 2(b).

B+-Trees are useful when addressing ordered values, but are not sufficient
to index complex multi-dimensional data, such as spatial data. In this case an

1ER1 I search (node, key)
if (node is leaf)
find key in node

T 2 3 7 5 6 7 else
find branch in node

search (branch, key)

(a) Example (b) Search

Fig. 2. B+Tree.

important operation is to compute whether two geographical objects intersect.
Quite often, an object’s Minimum Bounding Rectangle (MBR) or Bounding Box,
is used towards this goal. Namely, MBRs are used to implement the R-Tree, a
major datastructure used in databases such as PostGIS [?] to quickly find all
objects in a given area, e.g., “find all lakes in Switzerland”.

R-Trees are inspired on B+-Trees. The key idea is that R-Trees use MBRs to
index data. Each leaf nodes stores an object, and is keyed by the object’s MBR.
Inner nodes are keyed by an MBR that is the union of all MBRs below. Notice,
that in contrast to B+4-Trees, keys cannot be sorted as there is no order. On
the other hand, searches in R-Tree are similar to searches in B+-Tree, except
that several MBRs in the same node may overlap with the searched MBR. As
a result we can have several valid branches at each node, and it is not possible
to guarantee good worst-case performance. Indeed, in the worst case scenario, a
query MBR can contain the whole dataset; in this case the complete indexing
structure will need to be searched. Nevertheless, on most datasets the tree will
maintain a shape that allows the search algorithm to quickly discard irrelevant
regions.

Figure 3 shows an example R-Tree designed to store the boundaries of Euro-
pean countries. Figure 3(a) details part of the index structure, and Figure 3(b)
graphically depicts the actual boundaries and MBRs that define the R-Tree.
Notice that although European countries do not overlap, their MBRs do. The
tree has three levels. The root node (Level 3) contains two MBRs, R; and Ra,
shown as the wider lines. Notice that there is some overlap, as we cannot find a
disjoint balanced union of MBRs that covers the whole of Europe. The overlap
is even more evident on Level 2, Also observe that whereas Iceland, Greece and
Portugal belong to a single box for each level, the central Alps region in Europe
is covered by a large number of overlapping MBRs at all levels.

4 User Defined Indexing

In this work we are motivated by our desire to query complex databases declar-
atively and efficiently. Say, in Prolog in order to find all cities with more than 5
million people, we would state the query:

?- city(X,Pop), Pop > 5000000.

Level 1

]

. gt

PORTUGAL SPAIN ANDORRA
MBR's Level 3 mum - leve2 = = = levll-------- Level 0

(a) R-Tree Structure (b) MBR Containment

Fig. 3. R-Tree of European Countries.

Execution of this query visits every city, returning only the ones with population
over 5 million. This is arguably the most inefficient execution one can follow, es-
pecially if only a few cities have population above 5 million. In order to constrain
the search we need to know that Pop must be over 5 million people first. This is
not possible in Prolog, but it is possible in the framework of constraints:

?- Pop #> 5000000, city(X,Pop).

Notice that stating this constraint is not sufficient to improve performance: we
must use it to narrow search over city/2. In this work, we propose to do so
through indexing. This requires addressing two challenges:

1. We must be able to index on this constraint.

2. Because constraints provide a powerful and flexible language, it is not pos-
sible beforehand to implement an abstract machine that will address all
possible constraints: we need a generic framework for indexing on unknown
terms.

We address the latter problem first through our UDI mechanism, that allows
programmers to define a function that selects a subset of clauses, given a class
of attributed variables or Prolog terms. Next, we discuss the UDI in more detail.

4.1 Principles

Given a program P and a procedure Q defined as a set of clauses {c1,...,c,},
Q’s indexing code I” is a function defined as follows: given a goal G and a
matching procedure @), where 7 is a set of constraints, then I” : (Q,Gr) — Q'
selects a set of clauses Q' C @ such that if reducing Gm against ¢ € Q succeeds
then ¢ € Q.

Clearly, the most trivial indexing function is the identity function: Q' = Q.
In general, as I” incurs an overhead, one has to make sure that the benefits

of computing I outweigh this overhead. One way to do so is to restrict how
indexers are constructed. Typically, Prolog systems restrict I” as follows:

1. I” is known at compile-time; that is, the function I must be explicit before
querying the program.

2. I7(Q, Gr) is local, that is it depends on @ only and not on P — Q.

3. Indexing uses Herbrand constraints, that is, I”(Q, Gr) = IT(Q, Go), where
o C 7 are the Herbrand constraints in .

Work on indexing has proceed by relaxing these constraints. YAP’s JITI, for
example, relaxes the first constraint: essentially the JITI implements an inter-
esting subset of an “ideal” indexing function by only coding the cases shown to
be useful. The second constraint is relaxed in systems such as Ciao [?] that can
look at the whole program P to understand the possible queries and improve
the quality of indexing code.

To the best of our knowledge, there is little work on indexing non-Herbrand
constraints in the context of logic programming. We are interested in doing so
through an user defined indexer, U”. Our first observation is that we would not
expect U to be the only indexer in the system: in general, it must be able to
work with a default, system indexer. A simple approach would be to choose one
indexing per procedure or query. But, ideally, we would want to have different
indexers working together over the same query.

We can now state the properties of the user indexer UF: (i) it must be
correct; (ii) it must not perform arbitrarily worse than the default indexer; and
(iii) it must work together with other indexers.

4.2 Pragmatics
User indexer are constructed and used as a three step process:

1. The programmer declares a predicate) that will benefit from UDI, at this
point the engine will initialize the respective UDI through udi_init(Q);

2. The engine consults a new clause C' for an user indexed procedure, the engine
will call udi_extend(C);

3. A call to an user-indexed goal, the engine will call udi_exec(G).

Next, we use the pop/2 example to show our implementation. We shall assume
there are two U: one for B+-Trees and one for R-Trees.

Declarations We use declarations to inform which U” will be used by a procedure
@. Each declaration specifies which program-dependent interpretations we will
give to the arguments of a procedure. A declaration is as follows:

:- udi pop(-,btree(int)).

First, the Prolog engine tags the procedure as user indexed. Next, for both
UPs the engine calls udi_init (pop(-,btree(int))). In the example, the btree
indexer will (i) initialize a new, empty, B+-Tree of integers for pop/2; (ii) declare

that the key to the tree will be the second argument; and (iii) store a pointer to
the new tree in a record. This B+-Tree record will be returned to the engine as
an opaque handle. The engine stores the handle in a table towards fast lookup
of all UDI indexers for a procedure.

The rtree indexer will also be called. It will simply consult the declaration,
and return NULL.

Asserting Every time a clause for a user indexed predicate has been asserted,
and after it has been compiled, the Prolog engine searches for UDI records. For
each record, it calls udi_extend() with a pointer to the term describing the
clause, a pointer to the compiled code, and the handle. In our example, the
btree code would (i) recover the tree from the handle; (ii) fetch the key from
the second argument, given the clause’s source; (iii) insert a new record new key
in the B4+-Tree; (iv) associate the new record with the clause code. The UDI
code then returns control to the engine.

The engine is not informed of what the indexing code does but it does assume
the clause code will be respected.

Ezxecution Currently, we assume that each predicate has at most one user in-
dexer. UDI code is supported by the following YAP instruction:

yamop *new = Yap_udi_search(P->u.lp.p);
if (!new) P = PREG->u.lp.l;

else P = new;

JMPNext () ;

The function Yap_udi_search receives a pointer to the procedure descriptor and
fetches the handle matching the procedure table. It then calls call_udi using
the handle as argument. If call_udi returns a NULL pointer YAP will fall back
the default indexing code. Otherwise, YAP will execute the code returned by
the UDI, which can be:

— a pointer to code, usually clause code;
a pointer to a set of clauses;

NULL, as explained above;

— FAIL: execution just fails.

From the engine point of view, the non-trivial case is when the engine must
process a set, of clauses. It must construct instructions that can enumerate every
clause. In our case, we decided that the constructed object should be discardable
on backtracking (or we will risk filling up memory). The current YAP implemen-
tation relies on “blobs”, or opaque terms, to implement this functionality. Es-
sentially, YAP creates an “opaque term” which just contains WAM code of the
form try-retry-trust. These objects can be easily stack shifted, but choice-
points may point to instructions within the blob, making garbage collection
difficult.

5 User Defined Indexers

Next, we propose two constraint systems that rely on the UDI for efficient exe-
cution. We will use the following methodology:

— Data will be represented as a standard Prolog database.

— Constraints will be used to represent our queries. Thus we shall follow Dat-
alog with constraints style [?]. Other styles such as HiLog would be possi-
ble [?], but we chose Datalog because it has a natural application to our
indexing algorithms.

— We shall use UDI code to associate semantics to special procedures.

As explained above a typical query will be as follow:

?7- Pop #> 5000000, city(X,Pop).

set queries can be written in Prolog style:

?7- setof (Pop, (Pop #> 5000000, city(X,Pop)), Cities).

Notice that In this work we are interested in reasonably simple queries executed
on large databases: indexing, and not constraint propagation, will be fundamen-
tal.

In the above example, the first step is to implement the constraint #>. YAP
supports Demoen’s implementation of attributed variables [?]. In this case, the
constraint could be set by the following (simplified) code:

A #> B :-
attributes:put_att_term(A,range(_,gt(B))),
attributes:put_att_term(B,range(_,1t(A))).

The calls to the put_att_term built-in associate variable A and B with the
constraint. Following Demoen, the constraint is represented as a compound term.
The functor represents the constraint module, or package: in this case, B4-Trees
are used to to verify satisfiability of range constraints. The first argument chains
constraints for different modules on the same variable. The N — 1 remaining
arguments correspond to the constraints for the same module: in this case, and
towards readability, we represent them explicitly.

Notice that the code is simplified: the definition should be symmetric and
cumulative and it should handle the cases where either A or B are instantiated.

The second step of execution is city (X,Pop). The UDI code for udi_exec is
then called and access the arguments of the predicate through the C-interface.
The indexer executes as follows:

— Fetch the second argument A,

— Verify whether As is an attributed variable: if not, return NULL.

— Verify whether As contains a term with main functor range: if not, return
NULL.

— Translate the constraint(s) into a query on B+-trees.

— If the query returns no matching clauses, return FAIL

— If the query returns a matching clauses C' , return C'

— If the query returns several matching clauses, call the C-interface to construct
a “blob” that will allow backtracking through the code.

Next we will discuss how to use UDI in our two examples: ranges and vec-
torial data. They both use trees as indexing structures, and therefore most of
their definitions are similar. In both cases, udi_init and udi_extend are very
similar: udi_init stores which arguments are indexed and initializes the tree;
udi_extend will insert the indexed arguments in the trees, saving the clause
pointer to use as return value in searches. Each UDI example works in a specific
domain so the tree structure and set of constraints will be shown next.

5.1 Ranges

We propose two UDIs for range data: one for integers and one for floating point
numbers. We will discuss them together, given the obvious similarity. We support
seven constraints, two unary and five binary constraints:

max A min A A #> B A #>= B A #< B A #=< B A #= B

In our simplified implementation each constraint term has 6 arguments. One
represents a constraint max, min, and the other four the maximum and minimum
limits, and whether we can match that limit. For example, a range query of the
form:

?7- Pop #> 100, Pop #< 1000, city(X,Pop).
will result in setting the following range constraint on Pop:
range(_,false,100,false,1000,false)

The UDI code searches for this range structure and translates it into a range
query returning all values in the database such that their second argument is
between 100 and 1000 (if any). If the second argument was set to max it would
return the maximum value in this range: other queries such as average or mode
can easily be implemented.

5.2 Vectorial Terms

The original motivation to this work was our interest in using vectorial terms
or spatial terms as defined in previous work [?]. These are simple geometry
types based on 2D points. Notice that the simplicity of the primitives does not
mean that the terms themselves are simple. For example, the European countries
boundaries in Figure 3(b) are represented in Prolog as multipolygons with several
hundred points each (and this is a low resolution sample).

Here we use R-Trees as the indexing structure, following the ideas in Sec-
tion 3. In this work, we will use overlaps binary constraint &&, the key operator
on the Postgis spatial RMS [?]: A && B constraint is satisfied if A’s bounding box
overlaps B’s bounding box. A query is shown next:

?- country(spain,P1), P2 && P1, country(Country,P2).

Here as P1 is instantiated by the time P2 && P1 is reached P2 will be attributed
by overlap(_,P1), thus second call of country will search the tree succeeding
only with Countries that have overlapping boundaries MBR with spain.

Notice that the && only approximates overlapping the actual intersection
must be performed after. For example:

?- country(spain,P1), P2 && P1, country(C,P2),
intersection(P1,P2,P3).

The query searches for countries that intersect with Spain. The overlapping
constraint prunes the results to Portugal, France and Andorra, but only the
latter will eventually succeed. Notice that the same result would be achieved
without the use of UDI, but with a high penalization in time:

?- country(spain,P1), country(C,P2), overlap(P1,P2),
intersection(P1,P2,P3).

6 Experiments

In this section we discuss the performance of our two UDI indexers. We compare
against the default JITI indexing in YAP.

6.1 Experimental Setup

We performed our experiments on a Core 2 Duo P9500 @ 2.53GHz machine with
4GB of memory running Linux 2.6.27 in 64 bit mode.

Our goal in evaluating range queries was to compare Prolog and UDI as
we vary selectivity and database size. As a first step, we created four datasets,
with sizes between 512K and 10M tuples. Each dataset was filled in with a
uniform distribution of random integers in the interval [1,100000000]. Next, we
experimented with simple queries, as shown in Figure 4. The first two queries
select all values above or below a certain threshold, the third query selects a
range in the database. We control how many tuples should be selected: values
are 10%, 20%, 50% and 100% of all tuples. Figure 4 shows the execution time
in all cases. Notice that we only show the constraint queries, the Prolog queries
must be written with the tests after the database call.

Regarding the evaluation of vectorial data, we are interested in performance
on common spatial queries such as: “Find road intersections”, “Find railway
crosses”, “Find road bridges over streams”; in all cases the queries are about
overlapping objects. Our methodology was as follows: (i) we select two sources
of geographical objects Sy and So; (ii) for every object O in S, we query how
many objects in So O overlaps. Figures 5(a) and 5(b) displays the actual Prolog
code used in both cases. Notice that we only compare if the object’s MBRs
overlap in these tests. We use datasets of Germany and California geographical

10 20 50 100 10 20 50 100

(a) & #> 100000000+ (1-P), a(A,X). (b) & #< 100000000%P, a(A,X).

10 -
t,,*44—4444——4A'4f777";;;;4'44ﬂ
,,/»—”""‘/»

/,A . A A 10m
1l~ﬂ’."”("’1 H H 2m
F." E— e ¢ 1Im

. T -t ¢

e e 512k
h* 7,,,*7/’ * ¢

D].//« D L 4 — No UDI indexing

- - UDIindexing

»
10 20 50 100
(c) A #> 100000000%(0.5-P/2),

A #< 100000000%(0.5+P/2), a(A,X).

Fig. 4. B+-Tree UDI testing. Times in seconds (Y axis) of UDI versus no UDI, varying
the result percentage over dataset size (X axis). Times are given in log scale.

data in these experiments, obtained at http://www.rtreeportal.org. Figure 5(c)
shows the results; in Germany we overlap roads with utilities and level lines, and
in California we compare roads and streams. Notice that the California roads
dataset is over 2.1 million objects whereas Germany largest dataset only have
36k objects: we include the size of each dataset in brackets.

6.2 Results and Discussion

Figure 4 shows that, as expected, in all cases performance of the UDI code
varies linearly with the size of the output and with database size. Prolog does
not benefit from tuple selection: as a result, performance tends to be independent
of output size, although it still varies linearly with dataset size.

If the output size is close to the database size, there is no benefit in using the
UDI. In this case, pure Prolog is faster than the UDI code, as it can use static
data structures; the UDI has been designed to construct answer lists dynamically.
The UDI starts to performs better as the output size decreases, and is up to 10
times faster for 10% output size. Notice that 10% of, say, 10MB is still quite

:- [datal]. :- udi datal(-,rtree).
:— [data2]. - [datal].

- udi data2(-,rtree).
overlap([(X1,Y1),(X2,Y2)], [(X3,Y3),(X4,Y4)]):- - [data2].

X1 =< X4, X3 =< X2, Y1 =< Y4, Y3 =< Y4.

time((datal(A,B), D && B,

:— time((datal(A,B),data2(C,D), data2(C,D),fail)).
overlap(B,D),fail)).
(a) Native Indexing. (b) UDI Indexing.
[datal [data2 [native (a)][UDI (b)] ratio]
Germany
road (30k) [road (30K) 334.165s] 0.170s] 1065
wtility (17K) |road (30K) 219.250s| 0.067s| 3272x
road (30k) [utility (17k) | 194.000s| 0.090s| 2155x
rrline (36k) |road (30k) 402.150s| 0.106s|3793x
road (30k) rrline (36k) 416.943s| 0.095s| 4388x
California
streams (96k)[roads (2.1m)[81665.457s[13.543s] 6030x
roads (2.1m) [roads (2.1m)] n.a.| 80.989s|

(c) Results

Fig. 5. R-Tree UDI testing.

large, so the UDI is doing very well although it is constructing very large data
structures, and results will be even better for queries that have very small output
sizes.

Figure 5(c) shows even better results for R-Trees. Notice that we just compute
overlap, we do not execute spatial operators. In this case, Prolog uses an O(nxm)
algorithm versus the RTrees average O(n x (log(m))), easily justifying two orders
of magnitude speedups. The performance of the R-Tree UDI results is of same
order of the magnitude as the results obtained by Postgis, an extension to the
well known RDMs PostgreSQL, and the main Open Source RDMs solution in
Geographical Information Systems.

6.3 Example Application

Our work in the UDI has been motivated by previous work [?] in the geographical
viewer simplegraphics, where as the user zooms-in we need to display fewer
objects or might display the objects in view in greater detail. In general, the
ability to quickly prune spatial objects is fundamental for performance in these
applications. Next, we show an example of how a straightforward logic program
can be at the heart of a geographical querying system.

Los Angeles is subject to earthquakes on a daily basis, due to its location in
the Pacific Ring of Fire. We have gathered the location of the last five major
earthquakes, shown in Figure 6. By using a roads database and different ranges
of action we can estimate how many roads could be affected by a new earthquake.
The predicate in_danger specifies the problem and we use a simple graphical in-
terface based on the site http://maps.google.com to depict the results, as shown

:=— udi roads(-,rtree).
;= [roads].
:— [earthquakes].

in_danger (ID,Count) :-
earthquakes(ID,Epicenter),
e_area(Epicenter,D),
findall(ID2,
(R && D, roads(R,ID2)),
L,
length(L,Count) .

[Earthquake[20km[40km[60km]

1933 41.038]123.956| 236.430

1971 12.799| 75.223|173.749

1987 75.797|202.980(343.914

1994 45.816| 117.734| 206.294

2008 46.604| 154.739| 268.228
(b)

Fig. 6. Los Angeles five major earthquakes.

in Figure 6. The UDI execution mechanism takes less than a second to run these
queries, hence allowing us to quickly experiment with different epicenters and
with different ranges. Moreover, this small program can be easily adapted as
other sources of information, such as population counts, become available.

7 Conclusions

The use of Prolog as a general-purpose language, solving a wide variety of differ-
ent problems, is clearly not limited by the expressiveness of logic terms. Declar-
ative and intuitive representations of entities such as range intervals over reals
or vectorial representations of spatial objects are easily expressed as logic terms.
Such conceptual efficiency is naturally expected in a language built around the
motto of the “what”. The “how™s efficiency, however, is almost completely left,
in Prolog, to sophisticated compilation techniques, where indexing fits. We ar-
gued, in this paper, that the current state-of-the-art of this Prolog indexing,
disconnected from what a term represents, can entangle the general use of the
language with data-intensive problems from novel domains, such as vectorial
spatial databases. Our results provide unequivocal evidence of the advantages of
UDI, showing real-world queries that take hours to execute based on hash-based
indexing, and are completed within tenths of a second when suitable indexing is
used.

Our proposal of UDI, coupled to a declarative constraining of logic variables,
is able to allow the user to redefine how indexing is to be done for a particular
predicate, based on what the arguments of the predicate represent, from scalar
values to multi-dimensional objects. It is clear that UDI provides the user some
explicit control over the procedural execution of Prolog code, which is very much
justifiable when such explicit control is able to improve the efficiency of Prolog

programs by several orders of magnitude, allowing an efficient handling of data
in novel areas of application.

Acknowledgments

This work has been partially supported by projects JEDI (PTDC/EIA /66924/2006)
and STAMPA (PTDC/EIA/67738/2006) and funds granted to LIACC, CRACS
and IT through the Programa de Financiamento Plurianual, Fundagao para a
Ciéncia e Tecnologia and Programa POSC. David Vaz is funded by FCT PhD
grant SFRH/BD/29648/2006.

References

1. Warren, D.H.D.: Implementing Prolog - Compiling Predicate Logic Programs.
Technical Report 39 and 40, Department of Artificial Intelligence, University of
Edinburgh (1977)

2. Warren, D.H.D.: An Abstract Prolog Instruction Set. Technical Note 309, SRI
International (1983)

3. Hermenegildo, M., Bueno, F., Puebla, G.: The CTAO multi-dialect compiler and
system: An experimentation workbench for future (C) LP systems. In Parallelism
and Implementation of Logic and Constraint Logic Programming (1999)

4. Puebla, G., Stuckey, P.: Optimization of logic programs with dynamic scheduling.
In: Logic Programming: Proceedings of the Fourteenth International Conference
on Logic Programming, MIT Press (1997)

5. Demoen, B., Marién, A., Callebaut, A.: Indexing prolog clauses. In: NACLP.
(1989) 1001-1012

6. Wielemaker, J.: SWI-Prolog 5.5: Reference Manual. SWI, University of Amster-
dam, Roetersstraat 15, 1018 WB Amsterdam, The Netherlands. (2008)

7. Santos Costa, V., Sagonas, K., Lopes, R.: Demand-driven indexing of prolog
clauses. In Dahl, V., Niemel4, 1., eds.: Proceedings of the 23rd International Confer-
ence on Logic Programming. Volume 4670 of Lecture Notes in Computer Science.,
Springer (2007) 305-409

8. Comer, D.: The ubiquitous b-tree. ACM Comput. Surv. 11(2) (1979) 121-137

9. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In Yormark,
B., ed.: SIGMOD’84, Proceedings of Annual Meeting, Boston, Massachusetts, June
18-21, 1984, ACM Press (1984) 47-57

10. The Postgis Development Team: Postgis adds support for geographic
objects to the postgresql object-relational database. Available from
http://postgis.refractions.net/.

11. Revesz, P.: Introduction to constraint databases. Springer-Verlag New York, Inc.,
New York, NY, USA (2002)

12. Chen, W., Kifer, M., Warren, D.S.: Hilog: A foundation for higher-order logic
programming. J. Log. Program. 15(3) (1993) 187-230

13. Demoen, B.: Dynamic attributes, their hprolog implementation, and a first eval-
uation. Technical report, Department of Computer Science, K.U.Leuven, Leuven,
Belgium (2002)

14. Vaz, D., Ferreira, M., Lopes, R.: Spatial-yap: A logic-based geographic information
system. In Dahl, V., Niemel4, I., eds.: ICLP. Volume 4670 of Lecture Notes in
Computer Science., Springer (2007) 195-208

