
Trading Memory for Answers: Towards Tabling ProbLog

Angelika Kimmig, Bernd Gutmann firstname.lastname@cs.kuleuven.be

Departement Computerwetenschappen, K.U. Leuven, Celestijnenlaan 200A - bus 2402, 3001 Heverlee, Belgium

Vı́tor Santos Costa vsc@dcc.fc.up.pt

Faculdade de Ciências, Universidade do Porto, R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

Abstract

ProbLog is a recent probabilistic extension
of Prolog, where facts can be labeled with
mutually independent probabilities that they
belong to a randomly sampled program. The
implementation of ProbLog on top of the
YAP-Prolog system provides various infer-
ence algorithms that calculate the success
probability of a query, i.e. the probability
that the query is provable in a randomly sam-
pled program. We discuss extensions of these
algorithms with tabling that broaden the
class of problems that can be handled. First,
exploiting structure sharing can speed up in-
ference in domains where different proofs of
a query share many subgoals. Second, we
extend exact inference to deal with negated
ground subgoals in clause bodies.

1. Introduction

In the past few years, a multitude of different for-
malisms combining probabilistic reasoning with log-
ics, databases, or logic programming has been de-
veloped. To use such formalisms in statistical rela-
tional learning, efficient inference algorithms are cru-
cial. ProbLog (De Raedt et al., 2007) is a simple
extension of Prolog defining the success probability
of a query in terms of random subprograms. Effi-
cient inference algorithms for ProbLog have been im-
plemented on top of the YAP-Prolog system (Kim-
mig et al., 2008). However, as these algorithms rely
on exploring the space of all proofs, they suffer from
redundant computations for domains where different
proofs of a query share many subgoals, such as HMMs.
Inspired by PRISM (Sato & Kameya, 2001), where

International Workshop on Statistical Relational Learning
(SRL-2009)

tabling is successfully applied for efficient probability
calculations in such settings, we explore whether sim-
ilar results could be obtained for ProbLog. We also
discuss how tabling can serve to extend exact ProbLog
inference to (certain types of) programs with negation.

As a motivating example, we consider a ProbLog en-
coding of the well-known bloodtype model, where a
person’s blood type probabilistically depends on a sin-
gle gene, which in turn probabilistically depends on
the corresponding gene of the person’s parents:

bloodtype(Pers,B) :-
pchrom(Pers,P),mchrom(Pers,M),b(B,P,M).

pchrom(Pers,P) :-
father(Fa,Pers),
pchrom(Fa,PF),mchrom(Fa,MF),p(P,PF,MF).

mchrom(Pers,M) :-
mother(Mo,Pers),
pchrom(Mo,PM),mchrom(Mo,MM),m(M,PM,MM).

Here, the predicates father and mother encode the
geneological tree. The predicates b, p and m model the
conditional probability distributions in a PRISM-like
switch style. Here, the first argument denotes the ran-
dom variable, i.e. for fixed second and third argument,
exactly one instance of such a fact is true. More pre-
cisely, the first predicate, bloodtype, encodes Pers’
bloodtype B as depending on a chromosome from each
parent through the switch b. The other two predicates
declare that a single chromosome is inherited from the
parent’s, and that the chromosome originates from one
of the grandparent’s through the switches p and m.

Notice that in this problem each gene can take one of
three different values. If the ancestor structure forms
a tree for each person (we assume no common ances-
tors), the number of proofs for each possible blood
type is n(0) = 3 · 3 for persons without known ances-
tors (pchrom and mchrom take random values), and
n(g) = (3 · n(g − 1))2 for generations g > 0 (each
parent gene can have 3 values, and each of these has

Trading Memory for Answers: Towards Tabling ProbLog

n(g − 1) possible proofs, as one generation of ances-
tors less is known for parents). This amounts to about
5 · 106 for two generations of ancestors known, and
205 · 1012 for three generations. However, these proofs
share many common subgoals. For instance, the query
bloodtype(p1,a) can be proven from nine different
gene combinations, as both P and M can take values
a, b or null. Standard backtracking search will thus
re-prove each instance of the mchrom fact for each in-
stance of the pchrom fact, and similar repetitions occur
in the clauses for these facts in each generation of the
ancestor tree. Systems such as PRISM address this
problem by using tabling to avoid recomputing inter-
mediate answers1. Next, we investigate how the same
principles can apply to ProbLog.

2. ProbLog Basics

A ProbLog program consists of a set of labeled facts
pi :: ci together with a set of definite clauses. Each
ground instance (that is, each instance not contain-
ing variables) of such a fact ci is true with probability
pi, where all probabilities are assumed mutually inde-
pendent. The definite clauses allow to add arbitrary
background knowledge (BK). A ProbLog program T =
{p1 :: c1, · · · , pn :: cn} ∪ BK defines a probability dis-
tribution over subprograms L ⊆ LT = {c1, · · · , cn}:

P (L|T) =
∏

ci∈L
pi

∏
ci∈LT \L

(1− pi). (1)

The success probability Ps(q|T) of a query q in a
ProbLog program T is defined as

Ps(q|T) =
∑

L⊆LT

P (q|L) · P (L|T) , (2)

where P (q|L) = 1 if there exists a θ such that
L ∪ BK |= qθ, and P (q|L) = 0 otherwise. In other
words, the success probability of query q is the proba-
bility that the query q is provable in a randomly sam-
pled logic program. The definition of success probabil-
ities employs non-probabilistic Prolog programs only.
Therefore, it generalizes directly to background clauses
with negated ground body literals as long as negation
(seen as negation as failure) is not involved in cycles,
which we will assume here. This observation allows
one to encode a switch predicate with n possible val-
ues in ProbLog as a sequence of n − 1 probabilistic
facts. Consider for example the last switch m in the
bloodtype example, with values a, b and null. The
first probabilistic fact decides whether it is a or not; if
it is not a, the second fact says whether it is b or not;
finally, if it is neither a nor b, it has to be null. The
following logic program realizes this:

1We encoded bloodtype in PRISM; queries for three
generations were solved in a fraction of a second.

m(a,P,M) :- mprob_a(P,M).
m(b,P,M) :-

probnot mprob_a(P,M), mprob_b(P,M).
m(null,P,M) :-

probnot mprob_a(P,M), probnot mprob_b(P,M).

Probabilistic facts mprob_a(P,M) and mprob_b(P,M)
are needed for all combinations of argument values2.
The probnot operator denotes negation as failure on
ground queries. For a ground probabilistic fact Q,
probnot Q succeeds if Q is not in the program’s
model. Therefore, if Q succeeds with probability P ,
probnotQ succeeds with probability 1−P . Our imple-
mentation of ProbLog relies on representing proofs as
sets of probabilistic facts, leading to a straightforward
extension to probnot for probabilistic facts: negated
facts are included in the set as well, and proving fails
if both cases occur for the same fact. Note that while
probnot on probabilistic facts is sufficient to realize
the switch encoding, implementing probnot on ground
goals in general is more involved; we will return to this
in the following sections.

3. Approximate Inference

In (Kimmig et al., 2008), we proposed a MonteCarlo
method for computing the probability of a ProbLog
query. The algorithm works by repeatedly sampling a
logic program from the ProbLog program and check-
ing whether the sample satisfies the query of interest.
The fraction of samples where the query is provable
is taken as an estimate of the query probability. This
approach has shown itself to be quite robust and effec-
tive in practice, therefore it is interesting to investigate
whether we can use tabling to improve performance.

For very large programs, generating a full sample may
be more expensive than checking for satisfiability. As
discussed in (Kimmig et al., 2008), we can take ad-
vantage of independence between facts to generate the
sample lazily as needed during search for a proof: we
verify whether a fact is in the sample only when we
need it for a proof. To do so, samples are represented
as the sample array with possible values correspond-
ing to “true”, “false” and “unknown”. Notice that
this implementation trick also provides a natural im-
plementation for the probnot operator implementing
negation as failure on (arbitrary) ground goals, as it
follows standard Prolog inference with backtracking,
filling up the array as needed on the way.

Whatever implementation we choose, it should be clear
2Note that the probabilities of the facts have to be ad-

justed such that the product of the sequential outcomes
equals the desired probabilities. For ease of use, switches
are automatically compiled into the sequence encoding.

Trading Memory for Answers: Towards Tabling ProbLog

Ancestor tree depth 0 1 2 3
SLD 1.0 9.5 117 1740
SLG 0.6 1.0 2.0 4.3

Table 1. MonteCarlo Execution Times (in secs).

that the sample is a definite logic program, where any
ground call to probnot Q can be replaced as a call to
a new ground goal probnot Q, such that either Q or
probnot Q hold in the sample. Such logic programs
have a single minimal model, and are quite amenable
to SLG-execution. This suggests a first straightfor-
ward algorithm for tabling, where for every sample
program we 1) reset the Table Space and 2) execute
the tabled program. Notice that SLG-refutation is of
interest only if the same subgoal is encountered multi-
ple times during a proof for a query, as then the same
sequence of array entries will be checked repeatedly.
Table 1 shows average execution time for the blood-
type example as a function of family size on an artifi-
cial database of individuals. The results were obtained
on a Macbook Pro running OSX Leopard with an In-
tel Dual Core 2 Duo at 2.5GH and with 4GB of RAM.
Tabling was implemented by declaring the predicates
bloodtype, pchrom, and mchrom as tabled. Although
we might achieve better performance with SLD reso-
lution if the program was coded more carefully, tabling
seems to bring an important benefit in this application
whilst requiring very little programmer effort.

4. Exact Inference

Exact ProbLog inference relies on a DNF formula
representing all proofs of the query using (possibly
negated) variables corresponding to probabilistic facts.
The DNF is constructed using logical inference, where
known parts are stored in a trie. For probability cal-
culation, the completed trie is transformed into a Bi-
nary Decision Diagram (BDD) to solve the disjoint
sum problem; see (Kimmig et al., 2008) for details.

To adapt exact inference for negation beyond proba-
bilistic facts, we replaced the single trie by a set of
tries. Trie nodes are labeled either with a (possibly
negated) variable as before, or with a negated ref-
erence to another trie. Basically, on encountering a
ground subgoal probnot Q, the current state of prov-
ing is saved, and a new trie is used to solve Q. When
this trie is completed, the proof of the calling goal
is resumed with a negated reference to Q’s trie added.
To avoid repeated building of such subformulae, we use
the same reference for reoccuring subgoals, thereby re-
alising a simple form of tabling. This approach relies
on the BDD step to combine different parts of proofs
and to eliminate repeated or contradicting occurences
of the same variable in a complete proof. This makes

the Prolog part conceptually simple, although further
investigation is needed to obtain a clear idea of the
price to be paid in the form of memory requirements.

5. Discussion and Future Work

Tabling is an important feature of modern logic pro-
gramming systems. It is a key to efficient execution
in PRISM (Sato & Kameya, 2001), and has become
fundamental to understand the operation of PRISM
programs. Motivated by this work, we study whether
similar results can be obtained for ProbLog. Our first
experiment is promising: we show that tabling can
be introduced naturally in approximative inference of
ProbLog programs, with very significant benefits. Our
results raise a number of important related questions
to be answered in future work.

Can exact inference for ProbLog programs benefit from
tabling? As the formula encoding all proofs is cru-
cial for ProbLog inference, tabling requires encoding
the proofs themselves. Our initial implementation of
the probnot operator suggests that using linked tries
might be a way of realizing this that can easily be
extended to negation as well.

Can we improve MonteCarlo inference? The Monte-
Carlo algorithm has to reset the tables, only to con-
struct a very similar tree next. Given that we can
establish a clear connection between the trie table and
the sampling array, it may be worthwhile to exper-
iment with variational methods, such as MCMC. In
this case, each move would just consist of flipping ran-
dom variables and verifying whether the trie changes.

Acknowledgements A.K. and B.G. are supported

by FWO Vlaanderen. This work is partially supported

by GOA/08/008 Probabilistic Logic Learning, JEDI

(PTDC/EIA/66924/2006), STAMPA (PTDC/EIA/67738/

2006) and funds granted to LIACC, CRACS and IT via

the Programa de Financiamento Plurianual, Fundação

para a Ciência e Tecnologia and Programa POSC.

References

De Raedt, L., Kimmig, A., & Toivonen, H. (2007).
ProbLog: A probabilistic Prolog and its application
in link discovery. IJCAI (pp. 2462–2467).

Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B.,
& De Raedt, L. (2008). On the Efficient Execution of
ProbLog Programs. ICLP (pp. 175–189). Springer.

Sato, T., & Kameya, Y. (2001). Parameter learning of
logic programs for symbolic-statistical modeling. J.
Artif. Intell. Res. (JAIR), 15, 391–454.

