
On the Relationship between PRISM and CLP(BN)

Vı́tor Santos Costa vsc@dcc.fc.up.pt

CRACS and DCC-FCUP, Universidade do Porto, Portugal

Aline Paes ampaes@cos.ufrj.br

Department of Systems Eng. and Computer Science, Universidade Federal do Rio de Janeiro, Brazil

1. Introduction

The last few years have seen significant progress in
Statistical relational learning (SRL) (Getoor & Taskar,
2007) and/or Probabilistic Inductive Logic Program-
ming (De Raedt et al., 2008). This progress requires
the design and implementation of languages that can
be used to express uncertainty over relational data,
motivating the development of a very large number of
languages in this area. These languages differ on both
the representation they use for structure, with logic-
based formalisms being quite popular, and on the rep-
resentations for uncertainty, with both directed and
undirected graphical models being used.

Recently, there has been interest on understanding the
relationship between these different languages. We ob-
serve that establishing a mapping between two differ-
ent languages often provides insight in understanding
the languages themselves. Moreover, such a mapping
may be useful in sharing implementation technology
and experience. For example, PRISM has been used
to implement SLPs (Muggleton, 1995).

One important category of SRL languages are the lan-
guages based in logic programming. Very different
examples include PHA (Poole, 1993), SLPs (Muggle-
ton, 1995), CLP(BN) (Santos Costa et al., 2003; San-
tos Costa et al., 2008), and ProbLog (De Raedt et al.,
2007). PRISM (Sato & Kameya, 2001) is one partic-
ularly important example that provides a nice, com-
pact, formalism for describing directed graphical mod-
els. Thus, PRISM can benefit both from the progress
in inference on bayesian networks, and from progress
in the implementation of sequential logic programming
languages, namely B-Prolog.

In this work, we study the relation between CLP(BN)
and PRISM. Although CLP(BN) is less widely used
than PRISM, it also benefits from an implementa-
tion. The two languages are clearly quite related,
and in fact our original motivation was to investigate

whether there was a simple mapping between the two
languages. We will focus on the PRISM to CLP(BN)
mapping first. Our approach is example-based: we will
start from standard PRISM examples, and try to see
whether they can be “elegantly” mapped to CLP(BN).

2. Background

We quickly introduce PRISM and CLP(BN) next.

2.1. PRISM

PRISM (PRogramming in Statistical Modelling) is a
logic-based modelling language, originally proposed by
Sato (Sato & Kameya, 2001), and based on distri-
bution semantics. In these models, probabilities are
given to set of ground atoms. In PRISM programming,
these atoms are embodied through the msw(i, n, v)
which can be enunciated as “switch named i randomly
taking the value v at trial n”.

PRISM is a natural language for describing stochastic
processes. It can also be used in a nice way to describe
HMMs and stochastic grammars, with a sophisticated
battery of algorithms having been developed to ad-
dress both inference and learning (Sato & Kameya,
2001).

It is important to notice that in practice, one often
drops trial n and assumes every call to the switch will
be independent. In this case, the semantics of PRISM
become very dependent of what is a call. PRISM relies
on tabling execution, and we will often need to assume
a single variant call to each goal.

2.2. CLP(BN)

CLP(BN) (Constraint Logic Programming for
Bayesian Networks) is a language to model graphical
models, and namely bayesian models. CLP(BN) pro-
grams are set of Prolog clauses, where some clauses
may contain BN constraints. BN constraints are of

Title Suppressed Due to Excessive Size

the form {X = Key with PT}, where X must be a
Prolog variable, Key a term, and PT a probability
distribution. The answer substitution to a CLP(BN)
query will therefore contain a set of constraints: to-
gether these constraints will form a bayesian network
defining a probability distribution over the possible
answers to the query. Notice that every variable X
with the same key must assume the same value.

Evidence is a major concern in CLP(BN). Evidence
may be introduced in a this formalism by unifying a
constrained variable with a value. Probabilities are
then computed over the joint network.

3. Static Bayesian Networks

The connection between CLP(BN) and PRISM is very
clear in static bayesian networks. Consider PRISM’s
implementation of the alarm example:

world(Fi,Ta,Al,Sm,Le,Re) :-
msw(fi,Fi), % P(Fire)
msw(ta,Ta), % P(Tampering)
msw(sm(Fi),Sm), % CPT P(Smoke | Fire)
msw(al(Fi,Ta),Al), % CPT P(Alarm | Fire,Tampering)
msw(le(Al),Le), % CPT P(Leaving | Alarm)
msw(re(Le),Re). % CPT P(Report | Leaving)

This program defines a joint distribution over
Fi, Ta, Al, Sm, Le,Re. From the CLP(BN) point of
the view, this simply corresponds to a network of con-
straints. Thus, the program is a CLP(BN) program if
one defines msw as follows:

msw(S,V) :-
term_variables(S, Vs),
parameters(S, Domain, Matrix),
{ V = S with p(Domain,Matrix,Vs) }.

The first subgoal finds the ancestors for the current
random variable V . The second subgoal uses the
values and set sw declarations to construct the con-
ditional distributions. Last, we constrain V .

This nice result suggests that PRISM could mapped
in a straightforward fashion to CLP(BN). In fact, one
needs not to construct very sophisticated models to
obtain major differences between the two languages.

4. Stochastic Processes

The dcoin program is a PRISM program that simu-
lates a stochastic process where we can throw one of
two coins:

dcoin(N,Coin,[R|Rs]) :-
N > 0,
msw(Coin,R),
(R == head, NextCoin = coin(2)
; R == tail, NextCoin = coin(1)),
N1 is N-1,

dcoin(N1,NextCoin,Rs).
dcoin(0,_,[]).

notice that the two coins will have different distribu-
tions. To understand this program as a CLP(BN) pro-
gram, we need to ask what are the random variables.
PRISM provides a very compact encoding.

First, we clearly have N different Coin variables. No-
tice that the previous mapping would not construct a
single variable: this is because each call to msw is in-
dependent, and thus a different random variable. This
principle may be enforced by generating new keys at
every new call:

msw(S,V) :-
term_variables(S, Vs),
parameters(S, Domain, Matrix),
new_trial(S,K),
{ V = K with p(Domain,Matrix,Vs) }.

where new trial generates a new key, related to S.

This is not the main difference, though. If we observe
carefully, R is conditioned on a random variable, and is
therefore a random variable itself (although with a de-
terministic conditional probability table). The correct
CLP(BN) program is therefore:

dcoin(N,Coin,[R|Rs]) :-
N > 0,
msw(Coin,R),
msw(R,NextCoin),
N1 is N-1,
dcoin(N1,NextCoin,Rs).

dcoin(0,_,[]).

notice that the program is deceptively simple. In or-
der to know the domain and the CPTs, msw must be
able to distinguish between Coin and R. This requires
consulting the current constraint store (the details are
available in the YAP CLP(BN) distribution).

5. Hidden Markov Models

Notice that PRISM can use values of random variables
to switch. This is clearly a problem for CLP(BN),
as demonstrated when trying to understand PRISM’s
very nice profile Hidden Markov Model (pHMM) ex-
ample. pHMMs are a popular approach to represent
conserved subquences in families of proteins, they can
be coded as:

hmm([],end).
hmm(Sequence,State) :-

State \== end,
msw(move_from(State),NextState),
msw(emit_at(State), Symbol),
(Symbol = epsilon ->

hmm(Sequence, NextState)
; Sequence = [Symbol|TailSeq],

hmm(TailSeq , NextState)
).

Title Suppressed Due to Excessive Size

Sequence are strings of letters, where letters may
be bases or amino-acids. Two states are special:
start and end. Other states can be of the form
m(I), d(I), i(I), 1 < I < L where L is the number of
conserved positions. An m(I) state corresponds to a
match, and may transition to i(I),m(I + 1), d(I + 1).
i(I) and m(I) states emit a normal symbol, d(I) sym-
bols do not.

This program is naturally understood as specifying a
path in the unrolled markov model. Each call to a msw
corresponds to a branch in the path: either moving
from a state to the next states, or whether emitting
specific symbols. A more subtle poin is that the pro-
gram requires tabling : if we reach the same state with
the same sequence from two different callers, we should
obtain a single random variable, not two independent
trials.

To translate the program to CLP(BN) we need the
following transformations:

1. Random Variables are not about state, but about
transitions. To encode this in CLP(BN) we need
to pass both the current state (a non-random vari-
able) and the current transition (a random vari-
able).

2. Given that the state s not a random-variable, we
can declare whether a symbol will be emitted or
not without much ado.

3. Last, CLP(BN) would construct the full HMM.
This requires transforming backtracking on recur-
sion.

We cannot present the transformed program in the
abstract, due to lack of space. The program will work
correctly without tabling, but will take exponential
time. Tabling hmm/3 obtains dynamic programming,
as usual, and scales up to sequences with hundreds on
the example with L = 17.

6. Conclusions

We compare CLP(BN) and PRISM on a number of
standard PRISM examples. The examples show that
PRISM can provide a very compact encoding of in-
teresting statistical models. Simpler examples can be
adapted to CLP(BN) easily. More complex and dy-
namic examples require understanding how the ran-
dom variables affect the possible states in the model
explicitely.

Arguably, the main advantage of PRISM encodings is
that they are very compact and concise. Arguably,

the main disadvantage of PRISM encodings is that
they are very compact and concise. In our experi-
ence, PRISM does provide very short and elegant de-
scriptions, but that may not be always straightforward
to understand, especially as when needs to under-
stand the interplay between switches, independence,
and tabled execution. CLP(BN) makes it harder to
connect control and random variables; on the other
hand, what is a random variable and what is not is
clearer.

Automatic translation from the core fragment of
CLP(BN) to PRISM seems easier than the other way
round. On the other hand, CLP(BN) has a very dif-
ferent way to condition on static evidence that may be
hard to code with PRISM.

Acknowledgments This work has been
partially supported by projects JEDI
(PTDC/EIA/66924/2006) and STAMPA
(PTDC/EIA/67738/2006) and funds granted to
CRACS through the Programa de Financiamento
Plurianual, FCT and Programa POSC. Aline Paes
would like to thank the Brazilian Council for Scien-
tific and Technological Development (CNPq) for the
financial support.

References

De Raedt, L., Frasconi, P., Kersting, K., & Muggleton, S.
(Eds.). (2008). Probabilistic inductive logic programming
— theory and applications, vol. 4911 of Lecture Notes in
Artificial Intelligence. Springer.

De Raedt, L., Kimmig, A., & Toivonen, H. (2007).
ProbLog: A probabilistic Prolog and its application in
link discovery. IJCAI (pp. 2462–2467).

Getoor, L., & Taskar, B. (Eds.). (2007). Statistical rela-
tional learning. The MIT press.

Muggleton, S. (1995). Stochastic logic programs. ILP.

Poole, D. (1993). Probabilistic Horn abduction and
Bayesian networks. Artificial Intelligence, 64, 81–129.

Santos Costa, V., Page, C. D., & Cussens, J. (2008). Proba-
bilistic inductive logic programming, chapter CLP(BN):
Constraint Logic Programming for Probabilistic Knowl-
edge, 156–188. Springer-Verlag.

Santos Costa, V., Page, D., Qazi, M., & Cussens, J. (2003).
CLP(BN): Constraint Logic Programming for Proba-
bilistic Knowledge. Proceedings of the 19th Conference
on Uncertainty in Artificial Intelligence (UAI03) (pp.
517–524). Acapulco, Mexico.

Sato, T., & Kameya, Y. (2001). Parameter learning of logic
programs for symbolic-statistical modeling. J. Artif. In-
tell. Res. (JAIR), 15, 391–454.

