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Abstract. Proteins are molecules that play a fundamental role in the
functioning of living organisms. They actively participate in more than
90% of chemical activity of our body. Protein function is related to
their 3-D structure, which is known to be determined by their primary
structure, i.e. the linear sequence of amino acids. It is, therefore, of great
importance to be able to understand and predict how the 3D-structure
is achieved from the linear sequence of amino acids that compose the
protein. Predicting the 3D-structure from the linear sequence of amino
acids (primary structure) is a major step and it usually breaks into two
phases. First, we predict the secondary structure (α-helices and β-sheet);
from the secondary structure we then predict the 3D-structure.
In this paper we report on the application of Machine Learning methods
to predict the secondary structure of proteins, specifically the prediction
of the starting position of α-helices, from sequences of residues around
the starting point and also based on a set of properties of the amino acids.
We have used information of the proteins collected in the Protein Data
Bank (PDB) and applied Machine Leaning algorithms encoded in the
Weka software package. We achieved 84.4% accuracy on the prediction of
the starting point of the α-helices.

1 Introduction

Proteins are complex structures synthesised by living organisms. They are actually
a fundamental type of molecules and can perform a large number of functions
in cell biology. Proteins can assume catalytic roles and accelerate or inhibit
chemical reactions in our body. They can assume roles of transportation of
smaller molecules, storage, movement, mechanical support, immunity and control
of cell growth and differentiation [1]. All of these functions rely on the 3D-structure
of the protein. The process of going from a linear sequence of amino acids, that
together compose a protein, to the protein’s 3D shape is named protein folding.
Anfinsen’s work [2] has proven that primary structure determines the way protein
folds. Protein folding is so important that whenever it does not occur correctly it
may produce diseases such as Alzheimer’s, Bovine Spongiform Encephalopathy



(BSE), usually known as mad cows disease, Creutzfeldt-Jakob (CJD) disease, a
Amyotrophic Lateral Sclerosis (ALS), Huntingtons syndrome, Parkinson disease,
and other diseases related to cancer.

A major challenge in Molecular Biology is to unveil the process of protein
folding. Several projects have been set up with that purpose. Although protein
function is ultimately determined by their 3D structure there have been identified
a set of other intermediate structures that can help in the formation of the 3D
structure. We refer the reader to Section 2 for a more detailed description of
protein structure. To understand the high complexity of protein folding it is usual
to follow a sequence of steps. One starts by identifying the sequence of amino
acids (or residues) that compose the protein, the so-called primary structure;
then we identify the secondary structures made of α-helices and β-sheet; and
then we predict the tertiary structure or 3D shape.

In this paper we address the step of predicting α-helices (parts of the secondary
structure) based on the sequence of amino acids that compose a protein. More
specifically, in this study we have built models to predict the start of α-helices.
We have applied Machine Learning to construct such models. We have collected
the sequences of 1499 proteins from the PDB and have assembled data sets that
were further used by Machine Learning algorithms to construct the models. We
have applied rule induction algorithms, decision trees, functional trees, Bayesian
methods, and ensemble methods. We have achieved a 84.4% accuracy and were
able to construct some small and intelligible models.

The rest of the paper is organised as follows. Section 2 gives basic definitions
on proteins required to understand the reported work. Related work is reported
in Section 3. Our experiments, together with the results obtained, are presented
in Section 4. Conclusions are presented in Section 5.

2 Proteins

Proteins are build up of amino acids, connect by peptide bonds between the
carboxyl and amino groups of adjacent amino acid residues as shown in Fig-
ure 1b) [3]. All amino acids have common structural characteristics that include
an α carbon to which are connected an amino group and a carboxyl group, an
hydrogen and a variable side chain as shown in Figure 1 a). It is the side chain
that determines the identity a specific amino acid. There are 20 different amino
acids that integrate proteins in cells. Once the amino acids are connected in the
protein chain they are designated as residues.

In order to function in an organism a protein has to assume a certain 3D
conformation. To achieve those conformations apart from the peptide bonds there
have to be extra types of weaker bonds between side chains. These extra bonds
are responsible for the secondary and tertiary structure of a protein [4].

One can identify four types of structures in a protein. The primary structure of
a protein corresponds to the linear sequence of residues. The secondary structure
is composed by subsets of residues arranged as α-helices and β-sheets, as seen in
Figure 2. The tertiary structure results for the folding of α-helices or β-sheets.



Fig. 1. a) General Structure of an amino acid; side chain is represented by the letter R.
b) A fraction of a proteic chain, showing the peptide bounds.

The quaternary structure results from the interaction of two or more polypeptide
chains.

Secondary structures, α-helices and β-sheets,

Fig. 2. Secondary struc-
ture conformations of a pro-
tein: α-helices (left); β-sheet
(right).

were discovered in 1951 by Linus Carl Pauling. These
secondary structures are obtained due to the flexi-
bility of the peptide chain that can rotate over three
different chemical bonds. Most of the existing pro-
teins have approximately 70% of their structure as
helices that is the most common type of secondary
structure.

3 Related Work

Arguably, protein structure prediction is a fundamental problem in Bioinformatics.
Early work by Chou et al. [5], based on single residue statistics, looked for
contiguous regions of residues that have an high probability of belonging to a
secondary structure. The protein samples used was very small which resulted in
an overestimation in accuracy of the reported study.

Qian et al [6] used neural networks to predict secondary structures but
achieved an accuracy of only 64.3%. They used a window (of size 13) technique
where the secondary structure of the central residues was predicted on the base
of its 12 neighbours.

Rost and Sanderwith used the PHD [7] method on the RS126 data set
and achieved an accuracy of 73.5%. JPRED [8], exploiting multiple sequence
alignments, got an accuracy of 72.9%. NNSSP [9] is a scored nearest neighbour
method by considering position of N and C terminal in α-helices and β-strands.
Its prediction accuracy for RS126 data set achieved 72.7%. PREDATOR [10] used
propensity values for seven secondary structures and local sequence alignment.
The prediction accuracy of this method for RS126 data set achieved 70.3%.
PSIPRED [11] used a position-specific scoring matrix generated by PSI-BLAST
to predict protein secondary structure and achieved 78.3. DSC [12] used amino
acid profile, conservation weights, indels, hydrophobicity were exploited to achieve
71.1% prediction accuracy in the RS126 data set.

Using a Inductive Logic Programming (ILP) another series of studies improved
the secondary structure prediction score. In 1990 Muggleton et al. [13] used only
16 proteins (in contrast with 1499 used in our study) and the GOLEM [14] ILP
system to predict if a given residue in a given position belongs or not to an



α-helix. They achieved an accuracy of 81%. Previous results have been reported
by [15] using Neural Networks but achieving only 75% accuracy. The propo-
sitional learner PROMIS[16, 17] achieved 73% accuracy on the GOLEM’s data set.

It has been shown that the helical occurrence of the 20 type of residues is highly
dependent on the location, with a clear distinction between N-terminal, C-terminal
and interior positions [18]. The computation of amino acid propensities may be a
valuable information both for pre-processing the data and for assessing the quality
of the constructed models [19]. According to Blader et al. [20] an important
influencing factor in the propensity to form α-helices is the hydrophobicity of
the side-chain. Hydrophobic surfaces turn into the inside of the chain giving a
strong contribution to the formation of α-helices. It is also known that the protein
surrounding environment has influence in the formation of α-helices. Modelling
the influence of the environment in the formation of α-helices, although important,
is very complex from a data analysis point of view [21].

4 Experiments

4.1 Experimental Settings

To construct models to predict the start of α-helices we have proceeded as follows.
We first downloaded a list of low homology proteins from the Dunbrak web
site [22]1. The downloaded list contained 1499 low homology proteins. We then
downloaded the PDBs2 for each of the protein in the list. Each PDB was then
processed in order to extract secondary structure information and the linear
sequence of residues of the protein.

Each example of a data set is a sequence of a fixed number of residues (window)
before and after the start or end of a secondary structure. The window size is
fixed for each data set and we have produced 4 data sets using 4 different window
sizes. To obtain the example sequences to use we selected sequences such that
they are:

1. at the start of a α-helix;

2. at the end of a α-helix;

3. in the interior of a α-helix;

4. at the start of a β-strand;

5. at the end of a β-strand;

6. in the interior of a β-helix.

To do so, we identify the “special” point where the secondary structures start
or end, and then add W residues before and after that point. Therefore the
sequences are of size 2 × W + 1, where W ∈ [2, 3, 4, 5]. In the interior of a
secondary structure we just pick sequences of 2 ×W + 1 residues that do not
overlap. With these sequences we envisage to study the start, interior and end of

1 http://dunbrack.fccc.edu/Guoli/PISCES.php
2 http://www.rcsb.org/pdb/home/home.do



secondary structures. In this paper, however, we just address the first step of the
study, namely, we focus on the start of α-helices.

The size of the data sets, for the different window sizes, are shown in Table 1.

Table 1. Characterisation of the four data sets according to the window size.

Window size 2 3 4 5

Data set size 62053 49243 40529 34337

Number of attributes 253 417 581 745

The attributes used to characterise the examples are of two main types: whole
structure attributes; and, window-based attributes. The whole structure attributes
include: the size of the structure; the percentage of hydrophobic residues in the
structure; the percentage of polar residues in the structure; the average value of
the hydrophobic degree; the average value of the hydrophilic degree; the average
volume of the residues; the average area of the residues in the structure; the
average mass of the residues in the structure; the average isoelectric point of the
residues; and, the average topological polar surface area. For the window-based
attributes we have used a window of size W before the “special” point (start or
end of either a helix or strand), the “special” point and a window of size W after
the “special” point. For each of these regions, whenever appropriate, we have
computed a set of properties based on the set of individual properties of residues
listed in Table 2.

Table 2. List of amino acid properties used in the study.

polarity hydrophobicity size isoelectricpt

charge h-bonddonor xlogp3 side chain polarity

acidity rotatable bond count h-bondacceptor side chain charge

For each amino acid of the window and amino acid property we compute other
attributes, namely: the value of the property of each residue in the window; either
if the property “increases” or decreases the value along the window; the number
of residues in the window with a specified value and; whether a residue at each
position of the window belongs to a pre-computed set of values. Altogether there
are between 253 (window size of 2) to 745 (window size of 5) attributes. We have
used boolean values: a sequence includes the start of an helix; the sequence does
not contain a start of an helix. All collected sequences where an helix does not
start were included in the “nonStartHelix” class. These later sequences include
interior of α-helices, end points of α-helices, start, interior and end points of beta
strands.

The experiments were done in a machine with 2 quad-core Xeon 2.4GHz and
32 GB of RAM, running Ubuntu 8.10. We used machine learning algorithms
from the Weka 3.6.0 toolkit [23]. We used a 10-fold cross validation procedure
to estimate the quality of constructed models. We have used rule induction
algorithms (Ridor), decision trees (J48 [24] and ADTree [25]), functional trees



(FT [26][27]), instance-based learning (IBk [28]), bayesian algorithms (NaiveBayes
and BayesNet [29]) and an ensemble method (RandomForest [30]).

4.2 Experimental Results

Table 3. Accuracy results (%) of the different algorithms on data sets with windows of
size 2, 3, 4 and 5 residues before and after helix start.

Window size
Algorithm 2 3 4 5

Ridor 83.4 80.6 76.1 77.3

J48 83.9 81.1 79.4 77.0

RandomForest 84.4 81.6 78.4 77.1

FT 79.9 80.5 80.2 75.5

ADTree 83.4 80.3 75.1 76.1

IBk 81.5 76.1 75.2 70.4

NaiveBayes 71.1 66.1 63.2 62.9

BayesNet 70.3 66.2 64.2 64.0

ZeroR 81.5 76.9 72.4 67.8

The results obtained with the Machine Learning algorithms are resumed
in Table 3. Apart from the Bayesian methods, most algorithms achieved an
accuracy value above the ZeroR predictions. The ZeroR algorithm is used here
as the baseline predictor, it just predicts the majority class. The algorithm that
achieved the best accuracy values was RandomForest, that is an ensemble method.
Basically RandomForest constructs several CART-like trees [31] and produces its
prediction by combining the prediction of the constructed trees.

For some data mining applications having a very high accuracy is not enough.
In some applications it would be very helpful one can extract knowledge that
helps in the understanding of the underlying phenomena that produced the data.
That is very true for most of Biological problems addressed using data mining
techniques. In the problem at hands in this paper we have algorithms that can
produce models that are intelligible to experts. J48 and Ridor are examples of
such algorithms. Using J48 we mange to produce a small size decision tree (shown
in Figure 3) that uses very informative attributes near the root of the tree.

5 Conclusions and Future Work

In this paper we have addressed a very relevant problem in Molecular Biology,
namely that of predicting when, in a sequence of amino acids, an α-helix will
start forming. To study this problem we have collected sequences of amino acids
from proteins described in the PDB. We have defined two class values: a class of
sequences were an α-helix starts forming and; all other types of sequences where
an α-helix does not start.

We have applied a set of Machine Learning algorithms and almost all of them
made predictions above the naive procedure of predicting the majority class. We



criticalPointSize = tiny
| nHydroHydrophilicWb2 ≤ 1
| | xlogp3AtPositionA2 ≤ -1.5: noStart (3246.0/816.0)
| | xlogp3AtPositionA2 > -1.5: helixStart (51.0/24.0)
| nHydroHydrophilicWb2 > 1
| | rotatablebondcountAtPositionB1 ≤ 1
...
| | rotatablebondcountAtPositionB1 > 1
...
criticalPointSize = small
| criticalPtGroup = polarweak
| | chargeAtPositionGroupA2 = negativeneutral: helixStart (1778.0/390.0)
| | chargeAtPositionGroupA2 = neutralpositive
...
| criticalPointGroup = nonpolarweak: helixStart (1042.0/35.0)
criticalPointSize = large
| chargeAtPositionGroupA2 = negativeneutral
| | sizeAtPositionGroupB1 = tinysmall
...
| | sizeAtPositionGroupB1 = smalllarge
...

Fig. 3. Attributes tested near the root of a 139 node tree constructed by J48.

have achieved a maximum score of 84.4% accuracy with an ensemble algorithm
called Random Forest. We have also managed to construct a small decision tree
that has smaller accuracy than 80%, but that is an intelligible model that can
help in unveiling the chemical justification of the formation of α-helices.
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