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Abstract. The last few years have seen great interest in developing
models that can describe real-life large-scale structured systems. A pop-
ular approach is to address these problems by using logic to describe the
patterns or structure of the problems, and by using a calculus of prob-
abilities to address the uncertainty so often found in real life situations.
The CLP(BN ) language is an extension of Prolog that allows the rep-
resentation, inference, and learning of bayesian networks. The language
was inspired on Koller’s Probabilistic Relational Models, and is close to
other probabilistic relational languages based in Prolog, such as Sato’s
PRISM.

We present the implementation of CLP(BN ), showing how bayesian net-
works are represented in CLP(BN ) and presenting the implementation
of three different inference algorithms: Gibbs Sampling, Variable Elimi-
nation, and Junction Trees. We show that these algorithms can be imple-
mented effectively by using a matrix library and a graph manipulation
library, and study how the system performs on real-life applications.

1 Introduction

The last few years have seen great interest in developing models that can describe
real-life large-scale structured systems. A popular approach is to address these
problems by using logic to describe the patterns or structure of the problems,
and by using a calculus of probabilities to address the uncertainty so often found
in real life situations. Examples include ICL [1], PRISM [2], Probabilistic Re-
lational Models [3], Stochastic Logic Programs [4], Markov Logic Networks [5],
Problog [6], and CLP(BN ) [7, 8], among many others [9, 10].

These languages differ in a number of ways, including the logic used, the
graphical (probabilistic) model followed, and the way the two are combined
together. Arguably, a key difference is whether the language consists of a set
of true statements about objects whose properties are only partially known, as
in PRISM or CLP(BN ), or if the language allows uncertainty about the truth
the statements, as in MLNs. Languages also differ on the formalism being used,
Prolog being a popular option, and on the underlying graphical model: whether
it is discrete or continuous, and whether it is directed or undirected.



Ultimately, the usefulness of these languages strongly depends on their ability
to answer complex queries. Inference in Bayesian Networks is known to be NP-
hard, and can be quite expensive even in traditional (propositional) networks.
Models that combine logic and probabilities have the ability to easily construct
very large graphical networks, and can arguably make the problem even harder.

Next, we present how these problems are addressed in the context of the
CLP(BN ) language. In this language, uncertainty about the value of a variable
is represented as a constraint on the variable [8]. Inference on the logic pro-
gram naturally constructs a network of random variables and provides a natural
method for constructing bayesian networks.

CLP(BN ) was implemented in Prolog, Our motivation was threefold. First,
we wanted to address the licensing and practical issues associated with using
external tool-kits. At the time we developed the system most stable implemen-
tations of bayesian networks either were commercial, relied on commercial sys-
tems, or had significant scalability and/or licensing issues. Second, we wanted
to have the flexibility that one can only achieve with its own implementation.
This has proven most valuable in supporting learning, and we believe it will
prove useful as we experiment novel algorithms in the future. Third, we wanted
to experiment with using logic programming for this purpose: Gibbs sampling,
say, is not a typical Prolog application.

The literature reports a very large number of inference models for graphical
models [9]. The CLP(BN ) implementation supports three widely used inference
methods. Gibbs sampling [11] is a popular method for approximate inference. It
is often used for complex networks, say, in the BUGS system [12]. Variable elimi-
nation [13] is a relatively simple inference model that answers queries by reducing
the number of random variables one by one. Last, junction tree construction is
a popular method where queries are answered by using believe propagation over
a “junction tree” that represents the network.

2 CLP(BN )

The CLP(BN ) language is an extension to Prolog where variables with undefined
values are represented as a constraint. As an example, consider the definition for
a coin-flip:

flip(X) :-
{ X = flip with p([h,t],[0.5,0.5]) }.

The constraint includes two components: the left-hand side of the with is a key
that uniquely references the random variable; the right-hand side of the key is a
term describing the probability distribution of the values. Using a key allows one
to identify different logical variables with the same random variable. The term
includes X’s domain and probability values of every element in the domain.

Querying this procedure returns a constrained object. Prolog then outputs
statements about the probabilities entailed by the constraints:



?- flip(X).
p(X=h)=0.5,p(X=t)=0.5

CLP(BN ) uses the key flip to represent identity across different calls to
flip(X). That is, every constraint with the same key refers to the random vari-
able. Thus, the call:

?- flip(X), flip(Y), flip(Z).

entails X = Y = Z, as shown in the actual answer given by CLP(BN ):

X = Y = Z,
p(X=h)=0.5,p(X=t)=0.5

A sequence of independent coin-throws can be represented as a list of random
variables:

flips(0, []).

flips(I, [F|Fs]) :-

I > 0,

flip(I, F),

I1 is I-1,

flips(I1, Fs).

flip(I,X) :-

{ X = flip(I) with p([h,t],[0.5,0.5]) }.

As expected, querying this procedure returns a list of random variables:

?- flips(5, L).
L = [_A,_B,_C,_D,_E],
p((_E=h,_D=h,_C=h,_B=h,_A=h))=0.03125,
... ?

CLP(BN ) returns the joint distribution, which in this case is uniform. Notice
that because of space considerations we do not show the whole output.

Last, a bayesian network can be used to represent conditional dependencies
between the different random variables.

flips(0, _, []).

flips(I, F, [F|Fs]) :-

I > 0,

flip(I, F, F1),

I1 is I-1,

flips(I1, F1, Fs).

flip(1, X, _) :- !,

{ X = flip(1) with p([h,t],[0.5,0.5]) }.

flip(I, X, X0) :-

{ X = flip(I) with p([h,t],[0.6,0.4,0.4,0.6],[X0]) }.



The first clause for flip/3 implements the base case, or prior, which is still
uniform. The second clause implements a conditional probability distribution.
Each value in the list of floating point numbers is a conditional probability.
In this case, it states that the probability of having the same value as in the
previous flip is 60%, and the probability of having a different value is 40%. The
joint probability distribution is quite different in this case:

?- flips(5, _, L).
X = [_A,_B,_C,_D,_E],
p((_E=h,_D=h,_C=h,_B=h,_A=h))=0.0648,
... ?

Quite often, in probabilistic networks we have information on some random
variables, and our goal is to find out how probabilities for other variables (the
marginals) change. If the value of a random variable is known in advance, we say
that we have evidence on the variable. CLP(BN ) uses unification as a natural
mechanism for introducing evidence:

?- flips(5, _, L), nth(2,L,h).
L = [_A,_B,_C,_D,_E],
_B=h,
p((_E=h,_D=h,_C=h,_A=h))=0.1296,... ?

3 The Implementation

The current implementation of CLP(BN ) works in two steps. In a first step,
execution creates a network of constraints. In a second step, this network is sent
to a constraint solver that computes the joint probability of the possible values
of the query variables.

Figure 1 shows the structure of the CLP(BN ) implementation. As shown in
the examples above, execution starts in Prolog style, by launching a query. Dur-
ing execution, the predicate {}/2 will be called a number of times, creating a set
of random variables. Random variables are represented as attributed variables.
The main attributes are

– the reference to the random variable, or key ;
– the unique identifier for the distribution, or id ;
– the set of parent variables, or parents.

The identifier id refers to a table of distributions, that stores the domain and
the probability tables for each different distribution.

Query execution terminates by calling the clpbn:project attributes/2
predicate. The predicate receives two arguments: one is a list of query vari-
ables, Qs, and the other a list of all attributed variables, As. The task of
clpbn:project attributes/2 is to compute the joint distribution of the ran-
dom variables in Qs, given the network of constraints that connects together
the variables in As. The predicate first performs simplification and calls one
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Fig. 1. Structure of the CLP(BN ) system.

of the three solvers. The solvers ultimately output the distribution over the
query variables, or marginals. The distribution is exported as an extra constraint,
posterior. The top-level calls clpbn display:attribute goal/2 to transform
the posterior constraint into a set of goals, shown in the examples above.

Figure 1 shows the three current solvers. Note that originally, CLP(BN ) used
as solver an interface that sent the network to the Bayesian Network Toolbox
(BNT) [14], a toolkit written in Matlab. Unfortunately, this solution offered a
number of limitations, leading us to implement specific solvers for CLP(BN ).

Experience showed that to implement the solvers require extensive matrix
operations as they manipulate tables for discrete distributions. Algorithms such
as junction trees further require extensive graph manipulation. Our implemen-
tation thus relies on two support libraries.

Matrices The matrix library is C-code that implements multidimensional matri-
ces of integers or floating point numbers. The library provides straightforward
matrix operations and the operations required to support the solvers. The dist
library is responsible to transform a probability distribution from the initial list
format into a matrix.

Matrices reside on the Prolog global stack as blobs. The blob mechanism was
originally implemented to support very large numbers, but has since been shown
useful for a variety of purposes. Each blob can be seen as variant of compound
term with a special functor, a tag identifying the type of blob, the size of the
blob, and the actual data itself. In the case of matrices data is matrix type,
number of dimensions, a linear array with the size of each dimension, and the
actual matrix.

Graphs Bayesian Networks are graphs, therefore it is unsurprising that the al-
gorithms described next require a number of graph operations.

We believe Prolog is an excellent language for graph manipulation, as it allows
sophisticated pattern matching, and high-level description of graph operations.
We therefore implemented a number of Prolog libraries for graph manipulation.



The libraries implement graphs over association lists, that themselves are imple-
mented as red-black trees. The dgraphs library implements the basic operation
over directed graphs. This library is then reused by the undgraphs library, as
this one implements undirected graphs by transporting them into directed graphs
with edges in both directions. Last, weighted versions are implemented on top
of these two libraries. The libraries take advantage of the reexport module
directive to avoid code duplication.

4 Variable Elimination

As the name says, the variable elimination procedure [13] executes by eliminating
random variables until only the query variables remain. The (simplified) main
procedure is shown next:

solve_ve(QVs, AllVs, Ps) :-
random_vars_to_graph(AllVs, Graph),
process(Graph, QVs, Dist),
normalise_CPT(Dist,MPs),
export(MPs, Ps).

The first step of the algorithm is to generate a graph from the random variables.
The graph is accessible through two data structures: a list of factors or tables,
and a list of variables, or nodes. Factors store a table and corresponding variables.
Variables maintain a list of every factor they participate in.

The random vars to graph/2 generates the initial factors from each vari-
able’s probability tables, and associates each variable with the factors it par-
ticipates in. Variables with evidence must also be eliminated before variable
elimination starts. This requires discarding every entry that is not compatible
with the evidence, and is implemented as a single matrix operation.

The process/3 predicate is the core of the algorithm. It operates as follows:

process(Vs, QVs, Out) :-
find_best(Vs, V, WorkTables, LVI, QVs), !,
multiply_tables(WorkTables, Table, Parents),
project_from_CPT(V,Table,NewTable),
include(Vs, Parents, NewTable, NewVs),
process(NewVs, InputVs, Out).

process(Vs, _, Out) :-
fetch_tables(LV0, WorkTables),
multiply_tables(WorkTables, Out).

The procedure first finds a variable that can be eliminated. If one such variable
is found, it “multiplies” all tables where the variable participates, projects the
variable out of the joint table, and makes the parents replace their previous table
by a new table. Unification is used to simplify the latter task.

Notice that multiplication operation is not actual matrix multiplication. The
operation is implemented through the matrix library. Notice also that the output



matrix is not an actual probability table, as the columns are not guaranteed to
add to one.

If no such variable can be found, the remaining variables must be the query
variables. The algorithm multiplies the remaining factors, and normalises them
in order to obtain a true probability table.

The performance of the algorithm strongly depends on finding the best se-
quence of variables: if we have a variable with N binary neighbors, table size
will be 2N+1. CLP(BN ) follows the standard approach and uses a greedy al-
gorithm where one chooses the variable with the smallest number neighbors at
each point.

5 Junction Trees

A popular algorithm for inference in bayesian networks is junction tree construc-
tion. The intuition of the algorithm is to transform a general bayesian network,
a directed acyclic graph, into a tree. Bayesian inference in trees is much simpler
than in the general case. The algorithm therefore proceeds in two steps:

1. Construct a junction tree, a representation of the graphical network. Each
node in the tree is a factor obtained from nodes that are strongly connected.

2. Apply belief propagation to the junction-tree. This executes as two steps:
first, an upward step propagates information from the leaf-nodes (e.g., evi-
dence). Second, a downward step propagates the joint values to the individual
variables.

Junction trees are popular because constructing the junction tree, although
expensive, is independent of the query variables and of any evidence. Thus, as
soon as we construct the junction tree for a network we can use it for different
query variables and for different evidence.

The CLP(BN ) implementation is as follows:

build_jt(BayesNets, CPTs, Tree) :-
init_undgraph(BayesNet, Moral0),
moralised(BayesNet, Moral0, Markov),
undgraph_vertices(Markov, Vertices),
triangulate(Vertices, Markov, Markov, _, Cliques0),
cliques(Cliques0, EndCliques),
wundgraph_max_tree(EndCliques, J0Tree, _),
root(J0Tree, JTree),
populate(CPTs, JTree, Tree).

The junction-tree algorithm [15] essentially tries to construct a tree from a di-
rected acyclic graph. It does so by adding edges until the graph is triangulated,
constructing a graph from the cliques in the triangulated graph, and obtaining
a tree:

1. Create a moral graph, an undirected graph where the parents of every node
are always connected together, by introducing edges between parents.



2. Perform triangulation, that is it ensure that the graph is chordal by intro-
ducing edges so that every cycle that has more than 3 nodes has at a least
a chord.

3. Detect all cliques in the undirected graph, and construct a new weighted
undirected graph, where each node is a clique of variables. Nodes have edges
if they share a variable. The weight of each edge is given by the number of
variables shared between the nodes.

4. Select an arbitrary node as a root of the clique tree.
5. Construct a maximal covering tree of the clique tree. Call that weighted

directed tree the junction tree.
6. Fill each node of the tree with the factor obtained from multiplying all tables

where the variables belong to the clique.

Two steps of the algorithm are not deterministic: there are different ways to
perform triangulation, and any node can be chosen as a tree root. CLP(BN ) uses
a version of the algorithm where one does not explicitly perform triangulation.
Instead, one first searches for simplicial nodes, that is, nodes such that the node
and all its neighbors form a clique, and removes that node (this is based on the
observation that a triangulated graph always has a simplicial node). If no such
node exists, it searches for the node that could be made a simplicial node with
the smallest clique.

The implementation strongly relies on the graph library. Although the al-
gorithm is rather complex, most operations are little more than transforming
directed into undirected or weighted undirected graphs, and then adding or re-
moving edges.

The second step of the algorithm perform belief propagation in four steps:

1. simplify cliques with evidence;
2. do message passing upwards;
3. do message passing downwards;
4. select a clique with the query variables, and marginalise.

Belief propagation can be seen as a sequence of matrix multiplications (in
the style of variable elimination), and its implementation thus relies heavily
on the matrix library. As an example, a simplified version of upward message
propagation is shown next:

upward([], _, Tab, [], Tab).
upward([t(CVars,CTab,CKids)|Sibs],Vars,Tab,

[t(CVars,UpdCTab,UpdCKids)|UpdSibs],NTab) :-
upward(CKids, CVars, CTab, NTabKids, UpdCTab),
ord_intersection(CVars, Vars, Int),
sum_out_from_CPT(Int, NewTab1, CVars, Tab1),
multiply_CPTs(Tab, Tab1, ITab),
upward(Kids, Vars, ITab, NKids, NTab).

Each node in the tree is represented as a term t/3, where the arguments are
the random variables in the clique, the factor table, and a list of children. The



algorithm constructs a new tree recursively by calling upward message propaga-
tion for each child, summing out the variables not in the intersection, and then
multiplying the child’s table (the message) by the current table. The process
repeats until messages from all children have been received. Downward propa-
gation executes in the opposite fashion.

6 Gibbs Sampling

The last inference method we use is the well-know Gibbs sampler. This is an
example of a Markov Chain Monte Carlo method. The method works as follows:

1. Start from a random initial setting of the random variables.
2. For N steps:

(a) For every variables v:
i. Compute the current distribution of v based on the current value of

its neighbors;
ii. Sample a new value vi for v according to this distribution;

3. For the query variable q, compute the probability of each qi as the number
of times q = qi over N .

It is often the case that we discard the first M steps, or burn-in steps. Also, often
one runs several iterations of this algorithm, or chains, in parallel. The advantage
is that by comparing the current estimates from the different chains, one can
estimate how close to convergence the algorithm is. The number of burn-in steps,
M , chains, C, and maximum number of steps, N , are the main parameters to
this algorithm.

Implementing this algorithm in Prolog is reasonably straightforward. Un-
fortunately, we did found that computing the current distribution of v is quite
expensive because we need to generate the variable’s Markov blanket. It requires:

1. Finding all neighbors of the variable (the so-called Markov Blanket);
2. Multiplying all probability tables in the Markov Blanket;
3. Eliminating according to evidence.

In order to speed-up this process, CLP(BN ) performs a pre-processing step
where it constructs a table with the distributions for all possible alternatives of
the Markov Blanket for each variable. CLP(BN ) benefits from the multi-way
indexing in YAP to guarantee efficient access even for reasonably large Markov
blankets. [16]. The key code is:

do_var(I,Sample,Sample0,Graph) :-
arg(I,Graph,var(_,_,_,_,_,CPTs,Parents,_,_)),
fetch_parents(Parents,I,Sample,Sample0,Bindings),
( compiled(I) ->
recorded(mblanket,m(I,Bindings,Vals),_)

;
multiply_all_in_context(Parents,Bindings,CPTs,Graph,Vals)



),
X is random,
pick_new_value(Vals,X,0,Val),
arg(I,Sample,Val).

If the variable I has been preprocessed, it is fetches the current value of the
parents and consults the data-base. We use the YAP internal database for com-
pactness, as YAP can index sub-terms within this database. Otherwise, we need
to multiply the tables. Next, we take a value from the distribution. We then set
this value by simply unifying the argument I of a compound term. In this case,
we take advantage of YAP’s ability to manipulate large arity compound terms.

7 Evaluation

Our experience in implementing CLP(BN ) shows that Prolog is a much better
tool for these tasks than what we expected. It also seems to indicate it could be
an even better tool.

In our experience, the main advantages of using Prolog are flexibility and
compactness. Regarding compactness, the final code we needed to write for each
algorithm was remarkably small: around 300 lines for variable elimination, and
less than 600 for junction trees and the gibbs sampler. The glue libraries that
connect to the matrix and the graph libraries are even smaller: less 300 lines for
the matrix interface, and a bit over 300 for the dist library (that encapsulates
distributions).

Prolog also makes it possible to write and change code quite easily. The code
is mostly side-effects free, which makes it possible to easily debug by redoing
computations. In general, the ability to quickly specify a procedure in a top-
down fashion, and then debug and refine it incrementally is a major advantage
of Prolog.

On the other hand, we found a number of drawbacks. The first drawback
we noticed is the limited number of libraries and toolboxes currently available.
For example, graph manipulation is natural to implement in Prolog. Unfortu-
nately, when we started this project there was a single free library for graph
manipulation, written 30 years ago. This was helpful, but not sufficient and we
had to write our own code. Fortunately, we believe that this lesson has been
well learned by the Prolog community. Initiatives such as Prolog Commons are
trying to address this problem.

The matrix library is a second case in point. Originally, we represented multi-
dimensional matrices as lists. Unfortunately, lists lose structure and force sequen-
tial access. Our second implementation used compound terms. This implemen-
tation allowed direct access but ultimately we still found it hard to maintain
and understand code that performed matrix transposition, summing out, and
similar operations. In the end, we felt it was just more natural to write this code
in C, and more efficient. We believe that the lesson is that it is important to be
able to connect easily to languages written in other languages: we simply cannot
expect to do everything in Prolog.



One major problem we found in designing the system is that Prolog is a hard
language for software engineering. As an example, changing the implementation
of probability tables from lists to compound terms, and then to C-code exposed
a number of structural problems in the system. There are two problems:

– Prolog makes it easy to state a first solution and refine it, but it does not
make it easy to add meta-information and structure the program;

– Without this information, it becomes very hard to obtain encapsulation,
which makes the programs unnecessary brittle.

The single tool Prolog has to provide structure is the module system. There has
been some interest in trying to address these problems, by introducing type sys-
tems [17, 18]. We believe that even simpler solutions, such as a macro expansion
mechanism that could encapsulate access to a data structure may be useful.

7.1 Experiments

In order to obtain a feeling about the performance of the system, we apply
CLP(BN ) to a typical learning task. The goal is to learn the parameters of
a structured bayesian network representing a simulated school with students,
professors, grades, and courses. We assume that we know the structure of the
network, given as CLP(BN ) clauses. For example, registration grade depends
on the value of the course difficulty and the student’s intelligence:

registration_grade(RegKey, Grade) :-
registration(RegKey, CKey, SKey),
course_difficulty(CKey, Dif),
student_intelligence(SKey, Int),
grade_table(Int, Dif, Table),
{ Grade = grade(Key) with Table }.

Our goal is to find out the parameters in Table. In this example, we need to learn
the parameters for 6 different CLP(BN ) predicates. We have 32 professors, 64
courses, 256 students, and 856 registrations in the database. The database was
actually generated by sampling from the CLP(BN ) program, so our goal can be
seen as simply trying to recover the parameters.

If all the information for the database is available (there is no missing data),
then the parameters can be computed by using the maximum likelihood esti-
mator. In other words, the parameters can be computed by simply counting
the numbers of the different cases, and normalising. No Bayesian inference is
required in this case.

If data is missing, we need to estimate what are the most likely values for the
missing values. CLP(BN ) implements a version of the Expectation Maximisation
(EM) algorithm. The algorithm iterates by computing the expected values for
the missing data, and then using these values, weighted by their probabilities, to
obtain new estimates of missing data. The process is guaranteed to eventually
converge to a local maximum. In practice, we impose a maximum number of
iterations and/or stop if the improvement is below some threshold.



Missing Variable Elimination Junction Trees Gibbs Sampling
Data Run Time LL Iters Run Time LL Iters Run Time LL Iters

0% 294 2085 0
5% 330 2079 2 425 2133 2 2688 2118 2
10% 629 2100 3 4971 2133 2 5436 2138 2
20% 912 2117 3 19607 2104 3 13503 2158 2
30% 3477 2159 3 89450 2134 3 56099 2163 3
50% 43702 2141 5 313770 2098 5 128328 2161 5
90% 2319 2543 1 5165 2533 1 136929 2536 1

Table 1. Performance on School DataSet. For each method, the table shows running
times in msec, log-likelihood of the data given the parameters found (LL), and number
of iterations of the EM algorithm.

Clearly, the more data is missing, the more inference we should have to
perform. In fact, the problem is compounded by the fact that missing data
tends to result in larger networks per query: as we have less evidence we need
to consult more variables to obtain an accurate answer.

The CLP(BN ) implementation of EM learning therefore can call the infer-
ence routine a large number of times on large networks. To reduce overheads,
the actual implementation performs two separate calls: an initialization call con-
structs the network, and preliminary data-structures. For example, with the
junction-tree solver, junction trees are constructed only once. In a second call,
variables are marginalised against the current parameters.

Table 1 shows performance on a MacBookPro with a 2.5 GHz Intel Core2
Duo running OSX 10.5.8, with 4GB of installed memory. We present the log-
likelihood of the data, that is, the logarithm of the probability of the observed
data given the learned parameters, and the number of iterations that the EM
algorithm took to obtain the parameters. We vary the missing data between 0%
(base-line) and 90% of all data. In this dataset, variable elimination performs
very well, significantly better than the other methods. Performance tends to vary
linearly with the number of marginalised variables and iterations, except for 50%
noise, where one creates very large networks.

Gibbs Sampling performs second. Performance is independent on evidence:
it depends only on the number of iterations and on the number of variables
to marginalise. This shows one of the best advantages of Gibbs sampling: it is
robust to complex dependency graphs that can result from different evidence.
Unfortunately, even with pre-compilation running Gibbs sampling is slower.

Our hope in implementing junction trees was that the same structure would
occur with different queries. This does not seem to be the case. Thus, we have
to compile lots of different networks into different junction trees, cancelling out
the benefit from using junction trees. The problem is particularly severe when
there is much missing evidence, and we may have large networks. On the other
hand, belief propagation is very fast, so after compilation junction trees are
usually faster than variable elimination. This may make an important difference
if converge is very slow.
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Fig. 2. A Bird’s Eye View of a Bayesian Network Induced by evidence in the School
Database. The picture clearly depicts the linear nature of the bayesian network graph.

We also observe that the EM algorithm seems to be doing quite well at
recovering the original parameters: although likelihood tends to degrade as we
remove more data, it is close to the one with full data almost up to 50% of missing
data. The method cannot achieve miracles, and cannot recover the parameters
if only given 10% of the full data.

Although these results show a significant advantage of variable elimination,
they should be taken carefully. Fig 2 shows a bird’s eye view of a graph induced
by this application with 30% missing evidence (evidence nodes are shown in red,
the query node in green). The graph is almost perfectly linear, making it perfect
for variable elimination.

For our second experiment, we use Gene Expression Data. In this case, we
have a collection of time-series data for yeast expression, and we want to generate
probabilistic rules that predict gene activity [19]. We use the ILP system Aleph
to generate rules. The ILP Prolog rules are then adapted to CLP(BN ), which
then uses the Expectation Maximisation algorithm to learn the parameters. The
problem includes both learning parameters and rules.

We use the same platform as before. We have 2940 examples of time expres-
sion, corresponding to 19 different genes/proteins in yeast and to 23 different
time series. In practice, learning proceeds by finding a rule for the first gene,
and then adding the rules for each new gene until all genes are explained. Thus,
the rules initially construct a mostly empty network, but as learning proceeds the
networks will grow more and more complex. About 10% of the data is missing,
but the distribution of the missing data is often not random (e.g., an experiment
may be missing the time-series for a gene).

Missing Variable Elimination Junction Trees Gibbs Sampling
Gene Run Time Likelihood Run Time Likelihood Run Time Likelihood

1 9.78 2285 10.30 2285 298 2285
4 4.60 2281 5.10 2281 175 2133
8 8.81 2272 8.96 2272 248 2133
12 68.37 2264 56.66 2264 1085 2264
16 4.26 2249 9.40 2249 144 2249
Total 397.51 2237 406.79 2237 7851 2234

Table 2. Performance on Yeast DBN. We show results after gene 1, 4, 8, 12, and
16, and total execution. For each method, he table shows running times in sec, and
likelihood of the data given the parameters found. Notice that the final row exhibits
the total execution time.
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Fig. 3. An Example Dynamic Bayesian Network induced by evidence in the Yeast
Expression Dataset. Red nodes are evidence nodes, and the two green nodes are the
query nodes.

Table 2 shows performance in this example. Again, variable elimination does
quite well, although junction trees do quite close, and in fact perform better in
some cases. Gibbs sampling pays a large overhead and ends up being up to an
order of magnitude slower than the other two approaches.

Figure 3 shows an example network. The network has the layered structure
typical of time series and dynamic bayesian networks. The red boxes indicate
evidence: the results show that the network was induced by missing evidence on
expression of the genes such as YML027W when trying to estimate expression at
the end of the time series.

8 Conclusions

We present a logic programming based implementation of a statistical relational
learning system, CLP(BN ), available as part of the YAP Prolog development
distribution. Our results show that the system can be applied effectively to large
problems, such as estimating gene pathways from gene expression data. This
was possible by implementing the most expensive operations in a C library. We
therefore benefit from the expressiveness of Prolog, while maintaining what we
believe is reasonable efficiency.

The area of Statistical Relational Learning is an exciting area, and we hope
that CLP(BN ) will be able to contribute. Recently, there has been much interest
in novel inference methods that take advantage of the relational nature of the
problem [9]. We believe that CLP(BN ) may be very well suited for this task.
Implementing novel, complex, algorithm will also require re-factoring existing
code. We believe how best to do so is an exciting problem, and hope CLP(BN )
will benefit from the progress in Prolog development technology.
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