
Mestrado em Engenharia Informática

Back-end GNU Prolog para EAM

(tabulação e distribuição)

Paulo Ricardo Lopes André
<prla@uevora.pt>

Orientador: Prof. Doutor Salvador Abreu

Évora, May 3, 2010

This thesis does not include appreciation nor suggestions made by the jury.

Esta dissertação não inclui as cŕıticas e sugestões feitas pelo júri.

Mestrado em Engenharia Informática

Back-end GNU Prolog para EAM

(tabulação e distribuição)

Paulo Ricardo Lopes André
<prla@uevora.pt>

Orientador: Prof. Doutor Salvador Abreu

Évora, May 3, 2010

This thesis does not include appreciation nor suggestions made by the jury.

Esta dissertação não inclui as cŕıticas e sugestões feitas pelo júri.

Acknowledgments

First of all, I’d like to thank my supervisor, Salvador Abreu, for putting

up with all my distractions, for doing his best to keep me focused when the

going got tough and most of all for another great learning experience.

I would like to thank Ricardo Rocha for fruitful discussions on the im-

plementation of WAM2EAM and making me feel at home in Porto. The FCT

(Portuguese Government Agency) is acknowledged for supporting this work

under the project STAMPA (PTDC/EIA/67738/2006).

I would also like to thank my parents (and grandparents) for their un-

conditional love, for always believing in me and having provided me with

everything I ever needed. No better parents exist.

To Daniela, for being there whenever I need, for all the laughs and tears

we shared. Her love and support is much more than I could ever ask for.

To Cláudio, who I deeply respect, for accompanying me this whole jour-

ney of ten years. When there was something I needed to hear, he was there

to tell me and that’s what you can expect from a true friend.

And to Rocky, for having been the toughest little creature ever to grace

the face of the planet. May you rest in peace.

i

Abstract

“GNU/Prolog Backend for the EAM (Tabling and Distribu-

tion)”

Logic programming provides a very high-level view of programming, which

comes at the cost of some execution efficiency. Improving performance of

logic programs is thus one of the holy grails of Prolog system implementa-

tions and a wide range of approaches have historically been taken towards

this goal. Designing computational models that both exploit the available

parallelism in a given application and that try hard to reduce the explored

search space has been an ongoing line of research for many years. These

goals in particular have motivated the design of several computational mod-

els, one of which is the Extended Andorra Model (EAM). In this thesis, we

present a preliminary specification and implementation of the EAM with Im-

plicit Control, the WAM2EAM, which supplies regular WAM instructions with

an EAM-centered interpretation.

ii

Resumo

A programação em lógica dá uma visão de muito alto ńıvel da pro-

gramação, o que acontece à custa de alguma eficiência na execução dos pro-

gramas. Melhorar o desempenho dos programas em lógica é por isso um

dos maiores objectivos das implementações de sistemas Prolog e um vasto

leque de abordagens já foi utilizado no passado com vista a alcançar esta

meta. Desenhar modelos computacionais que explorem tanto o paralelismo

dispońıvel numa dada aplicação e que tentam reduzir ao máximo o espaço

de pesquisa tem sido uma linha de investigação muito activa durante muitos

anos. Estes objectivos motivaram em particular a criação de vários modelos

computacionais, entre eles o Extended Andorra Model (EAM). Nesta tese,

apresenta-se uma especificação e implementação preliminares da EAM com

Controlo Impĺıcito, a WAM2EAM, que confere uma interpretação baseada na

EAM a vulgares instruções WAM.

iii

Contents

1 Introduction 1

1.1 Contextualization . 2

1.2 Thesis Structure . 2

2 State of the Art and Related Work 3

2.1 The Andorra Principle . 3

2.2 The BEAM . 5

2.2.1 Non-termination . 6

3 The Extended Andorra Model and WAM2EAM 8

3.1 Rewrite Rules . 9

3.2 The WAM2EAM . 12

3.3 Parsing WAM instructions . 13

3.4 C Code Generation . 14

3.4.1 Choice point manipulation 16

3.4.2 Execution Control . 17

3.4.3 Variable manipulation and unification 18

3.5 Generated code structure . 18

3.6 Runtime Data Structures . 19

3.6.1 AND-boxes . 20

3.6.2 OR-boxes . 21

3.6.3 Suspensions . 22

3.7 Deterministic Promotion . 23

3.8 OR-split and non-deterministic promotion 24

3.9 The scheduler . 25

iv

4 Example Execution 27

5 Concluding Remarks & Future Work 31

A Example Code Generation 32

A.1 Execution Control . 32

A.1.1 call . 33

A.1.2 execute . 33

A.2 Choice Point Manipulation . 34

A.2.1 try me else . 34

A.2.2 retry me else . 35

A.2.3 trust me else fail 35

A.3 Unification . 36

v

List of Figures

3.1 Where WAM2EAM fits. 13

3.2 On the left: an AND-box grouping made of 3 different AND-

boxes. 24

3.3 The scheduler’s flow diagram. 26

4.1 Sample program . 27

4.2 Stuck configuration. 28

4.3 After OR-split. 29

4.4 After deterministic promotion. 30

vi

Chapter 1

Introduction

The work presented in this thesis is the result of a two years graduate

masters student research which concerns itself with the general problem of

enhancing the efficiency of logic program execution. In fact, this was spawned

by one of the tasks of Project STAMPA at University of Porto1 which aims

at the first implementation of a system that fully supports tabled logic pro-

grams running within the David H. D. Warren’s Extended Andorra Model

environment. Breaking down this big task into two smaller ones, we chose

to focus on the EAM side of the question initially, laying the groundwork to

enhance the future compiler with tabling later on.

While initially STAMPA’s task was geared towards integreating tabling

with the BEAM, an early implementation of the EAM, plans shifted to a

more radical approach in which we would take an existing Prolog compiler,

GNU/Prolog, take its WAM output and compile with an EAM-centric exe-

cution in mind. Perhaps then a more appropriate title for this thesis might

be “Casting The WAM as the EAM”.

And in fact, part of the work described herein has already been published

under that title in the proceedings of the Joint Workshop on Implementa-

tion of Constraint Logic Programming Systems and Logic-based Methods in

Programming Environments, CICLOPS-WLPE’10, see [1].

1http://www.dcc.fc.up.pt/stampa/

1

1.1 Contextualization

Logic programming is an abstract and high-level view of programming

in which programs are expressed as a collection of facts and predicates that

define a model of the problem at hand and against which questions may be

asked. The most well-known example of this paradigm of programming is

Prolog, which has been sucessfully used in applications of many different ar-

eas. One line of work that has been followed to address performance issues is

parallel execution: parallelism allows logic programs to transparently exploit

multi-processor environments while extensions like co-routining, constraints

and tabling go a long way towards reducing the problem’s inherent search

space. Some or all of these together act as the foundation on which to build

more advanced techniques towards obtaining maximum performance.

From the experience gained in implementing the Basic Andorra Model,

D.H.D. Warren made a more radical proposal, the Extended Andorra Model,

or EAM [14], in which the conditions in which independent computations

might be carried out are eagerly sought. In this thesis, we present a concrete

implementation of the Extended Andorra Model, the WAM2EAM, which differs

from other approaches taken in the past because we are compiling straight

WAM code into C,2 adopting an EAM computational model, resorting to

GCC extensions.

1.2 Thesis Structure

This thesis is structured as follows: Chapter 2 presents a short survey

on the road leading up to our current implementation as far as the EAM is

concerned, from the Andorra Principle to the BEAM. Chapter 3 describes the

EAM in more detail and lays down the theoretical groundwork of the WAM2EAM

and delves more deeply into its practical implementation from WAM code

compilation to the data structures and execution control of the EAM-based

generated C code. Finally, Chapter 4 uses a concrete Prolog example and

succintly describes its compilation and execution from start to finish.

2We are targetting C with GCC extensions, such as label values and indirect jumps.

2

Chapter 2

State of the Art and Related

Work

A significant body of research on Logic Programming has been directed

towards improving the performance of Prolog. One important line of research

towards this goal is the exploitation of the different forms of implicit par-

allelism, present in Prolog programs. Several approaches have been devised

over the years but we shall focus on the systems which allow for the transpar-

ent parallel goal execution, in particular the “Andorra” family of languages

which includes Andorra-I, AKL and the BEAM.

2.1 The Andorra Principle

David H. D. Warren proposed the Basic Andorra Model (BAM),1

geared towards the execution of logic programs, in which a goal is called

determinate if it has at most one candidate clause. In this model, deter-

ministic goals should be executed first, thereby reducing the nondeterminate

“guesswork” to the minimum possible. Only then, once no deterministic

goal remain to be executed, should a non-deterministic goal be selected for

execution.

1Not to be confused with Van Roy’s Berkeley Abstract Machine, used in the Aquarius
Prolog system [7].

3

A system incorporating the Andorra Principle reduces the search space

of logic programs by having deterministic goals execute first and only once,

rather than have them re-executed several times in different points of the

search space. This behavior is also known as “sidetracking.” Also, as a

desirable consequence, deterministic goals may generate constraints (bind-

ings) which may further reduce the number of alternatives in other (non-

deterministic) goals, possibly even making them deterministic.

Another interesting advantage is how all deterministic goals can execute

in parallel, so long as they do not run into binding conflicts. Parallelism in

the BAM comes in two flavours:

• AND-Parallelism - deterministic goals run in parallel

• OR-Parallelism - the exploration of different alternatives to a goal is

done in parallel

The BAM may also alter the semantics of programs, in that the order of the

solutions for a given goal may be different from that resulting from sequential

Prolog execution. This may cause otherwise nonterminating programs to

reach a solution.

There are, however, a few issues inherent to this sort of computational

model:

• Finding which goals are deterministic can sometimes be difficult as

predicates with more than one clause may actually have a single match-

ing clause for a given query.

• Concurrency may break Prolog semantics, for instance by executing a

pruning directive (e.g. cut) too early.

The best-known implementation of the Basic Andorra Model is Andorra-I [4,

3]. It exploits OR-parallelism and determinate dependent AND-parallelism

while fully supporting Prolog, however, despite good results, the system is

limited by the fact that co-routining and AND-parallelism can only be ex-

ploited between determinate goals.

4

Shortly after, Warren went further and proposed the Extended An-

dorra Model (EAM) which improved upon the ideas of the BAM, namely

by trying to explore independent AND-parallelism. This lead to a two major

approaches:

• AKL: The Andorra Kernel Language (AKL) [5, 8] was designed by

Haridi and Janson and was the course followed at SICS. It concentrated

on the idea that a new language was needed, based on the advantages

of the EAM, which would subsume both Prolog and committed-choice

languages. AKL distinguished itself by featuring an explicit control

scheme, as programs were written using guarded clauses, where the

guard was separated from the body with a sequential conjunction, cut

or commit operator.

• EAM with Implicit Control: In contrast to AKL, David H. D.

Warren and other researchers at Bristol worked towards an implemen-

tation of the EAM with implicit control. Its main goal was to take

advantage of the Andorra Principle while alleviating the burden on the

programmer.

2.2 The BEAM

The Boxed EAM (BEAM) is an implementation of the EAM design with

implicit control, developed at University of Porto, Portugal [9, 10, 11, 12].

The beam’s initial goal was to prove the feasibility of Warren’s design for the

EAM, and as a first step it concentrated on the original rewriting rules of the

EAM, so formally it was defined through rewrite rules that manipulate AND-

OR trees as well as simplification and optimization rules used to simplify the

tree and discard boxes. It also made use of a general control strategy, which

is used to decide when and how to apply each rule.

The main operations of the BEAM are:

• Reduction expands a goal G into and or-box.

5

• Promotion promotes constraints from the an inner AND-box to an

outer AND-box.

• Propagation propagates constraints from an outer AND-box to the

inner-boxes.

• Splitting distributes a conjunction across a disjunction.

Adding to these are a few simplification and optimization rules, all of which

are described in [11].

Apart from AND- and OR-boxes, there’s also another kind of box con-

templated in the BEAM which is the choice-box. These are special OR-boxes

created when the clauses defining a procedure include a pruning operator,

generically designated by %. The original EAM supports two pruning oper-

ators, cut and commit.

The EAM tries to keep the control implicit as much as possible, contrary

to AKL for instance. Therefore, in the BEAM, the control decisions are based

exclusively on information implicitly extracted from the program. Moreover,

one of the main goals of the EAM is to perform the least possible number

of reductions to obtain the solutions to a goal. BEAM’s control strategy is

geared towards this goal.

The BEAM also does not attempt to do all the work by itself, instead

relying on the output of an existing Prolog compiler, in this case YAP Pro-

log. The BEAM was built as an extension to YAP. It differs from the work

reported herein in that the BEAM is meant to be an interpreter, whereas

WAM2EAM takes WAM code and compiles it to C.

2.2.1 Non-termination

A central problem found by the developers of the BEAM was a conse-

quence of EAM’s execution scheme: as long as they do not bind any (exter-

nal) variables, the EAM allows the early parallel execution of nondetermi-

nate goals. In the worst case, this may lead to non-termination for certain

recursive predicates. The proposed solution was based on both eager non-

determinate promotion and tabling which, on the one hand guarantees that

6

the computation ends in programs that have finite solutions and on the other

hand, with tabling, allows for the reuse of solutions to goals.

7

Chapter 3

The Extended Andorra Model

and WAM2EAM

The Extended Andorra Model (EAM) is the foundation for the work we

carried out with WAM2EAM. The ideia is to perform as much work as possible

in parallel, exploiting all the avaliable forms of parallelism:

• Or-parallelism, related to exploring the various alternatives of any given

goal.

• Indendent AND-parallelism, within a conjunction of goals that do not

share any variables.

• Dependent AND-parallelism, between goals that do share variables.

The main extension of the EAM over the BAM is that non-deterministic goals

are allowed to execute in parallel so long as they do not bind any external

variables.

Our purpose is to provide a concrete implementation of the EAM with

implicit control. It departs from existing work because it compiles regular

WAM code into C, using an EAM runtime specification. Therefore, the

biggest challenge and arguably the most interesting aspect of this work, is

going from one paradigm (Prolog compiled onto the WAM) to a different one

(EAM) with a single tool.

8

Based on a configuration AND-OR tree at all times, the way to evolve this

configuration is by using one of several rewrite rules on it and an execution

control scheme to manage the application of these rules. The next section

describes each of these rules in detail.

3.1 Rewrite Rules

The rewrite rules are yet another variation on the usual scheme already

found in other implementations such as AKL [6] or the BEAM [12].

A few comments on the notation used to express rewrite rules in WAM2EAM:

• The letters Ai and Oi stand for an AND-box and an OR-box,

respectively.

• We shall use αi to denote a (possibly empty) sequence of

AND-boxes and ωi for a possibly empty sequence of OR-

boxes.

• The symbol . denotes the list constructor and is used to

specify the structure of sequences or sets. It can be used to

single out an element from a sequence (eg. A.α for a sequence

of AND-boxes or GL.Ca for a sequence of goals that make up

an AND-continuation).

• The symbol + is used to indicate a list append operation.

• The symbol ε is used to denote the empty sequence and

applies to AND-boxes, OR-boxes and continuations.

• The symbol ⊥ represents the FAIL box and applies to both

kinds of boxes.

• Transitions are expressed as follows:

(present configuration)

(next configuration)

∣∣∣∣∣
(optional conditions)

Should there be a precondition which must be satisfied for

a rule to apply, it will be indicated on the right of the rule.

9

Rules with no preconditions apply whenever the present con-

figuration matches the rule.

Note also that access to non-local stores is read-only: should a worker

try to bind a non-local variable (ie. one which resides in an and-box different

from the one it’s presently executing in) it will block.

AND-try This rule augments an AND-box by progressing in the evalua-

tion of its AND-continuation: it removes an item from the AND-

continuation and acts upon it, creating a child OR-box with an empty

set of descendent AND-boxes and an appropriate value for its OR-

continuation.

ANDVσ(Os; GL.Ca; Cs)

ANDVσ(Os′ = ORL(ε; Co).Os; Ca; Cs)
(3.1)

Binding (successful binding) The binding rule (or constraint imposition rule)

sets the value for a previously unbound variable. It occurrs in a situa-

tion similar to that of the AND-try rule, being different from it in that

the subgoal to be tried is a simple store operation.

ANDVσ(Os; Gop.Ca; Cs)

ANDVσθ(Os; Ca; Cs)

∣∣∣∣∣
Gop≡θ

(3.2)

Where Gop binds a set of variables X ⊂ V via a substitution θ. This

transition is expected to represent the bulk of what is performed in a

clause’s execution.

Suspension (external binding) The suspension rule can be applied under

circumstances similar to those in which the binding rule applies: it

would set the value for a previously unbound variable. It differs from

the successful binding rule in that the variable which is being bound is

external: this rule causes the operation to suspend.

ANDVσ(Os; Gop.Ca; Cs)

ANDVσ(Os; Ca; Cs ∪ {(X, θ)})

∣∣∣∣∣
Gop≡θ∧X 6⊂V

(3.3)

10

Where Gop attempts to bind a set of variables X 6⊂ V via a substitution

θ. θ then becomes suspended on X and the pair (X, θ) is added to the

set Cs.

AND-collapse (failed binding) Analogous to the binding rule, there is a

transition which is applicable when the attempted store operation fails:

ANDVσ(Os; Gop.Ca; Cs)

⊥

∣∣∣∣∣
Vσ 6`Gop

(3.4)

⊥ represents a failed AND-box. This transition is taken whenever the

attempted operation Gop fails in the store provided by V and σ.

OR-try Similarly to AND-try, this rule augments an OR-box by progressing

in the evaluation of its OR-continuation.

ORK(As; Go.Co)

ORK(As ∪ {A}; Co)
(3.5)

Where Go is the first element of the OR-box’s OR-continuation and A

is the AND-box created by Go. Co represents the remainder of the OR-

continuation. Initially we’ll have A = AND∅(ε; Ca; ε), i.e. the OR-box’s

context is passed on to the new AND-box, which starts its existence

with no variables or bindings, no OR-box children and no suspended

continuations.

Promotion This rule applies when an OR-box has a single successor node,

which is then moved into the OR-box’s parent node. More formally:

ANDVσ(OR(ANDV′σ′(Os′; Ca′; Cs′)); Ca; Cs)

AND(V∪V′)σσ′(Os′; Ca.Ca′; Cs ∪ Cs′)
(3.6)

The promotion rule is contracting and it ensures that configurations

remain shallow. The context from the AND-box which is being pro-

moted is transfered onto the corresponding AND-continuations and

suspensions.

11

Split This rule is the basis for non-determinism in WAM2EAM and can be

thought of as a rule for distribution of ANDs over ORs:

OR(α0ANDVσ(ω1OR(α1α2)ω2)α3)

OR(α0ANDVσ(ω1OR(α1)ω2)α3ANDVσ(ω1OR(α2)ω2)α3)
(3.7)

This is the “classical” choice split as found in AKL and the BEAM,

in which an OR-box has one of its successor AND-boxes singled out,

thereby making it a candidate for promotion by rule 3.6. The present

formulation for this rule allows for different strategies to be selected,

depending on the lengths of α1 and α2: should one of these be of length

1 it will be selected for promotion. In order to preserve Prolog-like

solution order, |α1| ≤ |α2| must hold.

The AND-box containing α2 as is a copy of the original AND-box con-

taining α1α2. The contexts are also copied to wherever it is appropriate.

3.2 The WAM2EAM

The major challenge in WAM2EAM certainly is to go from a WAM program

and re-interpret it from an EAM point of view. To accomplish that, we

take the GNU Prolog’s textual WAM output and proceed from there. The

idea is to generate C code for an EAM runtime. This entails doing things

quite differently from previous work such as WAMCC [2] or B-Prolog [13].

WAM2EAM has two major aspects to it:

1. the compiler, comprising the parser and the C code generator,

2. the runtime, a collection of data structures, logic and execution control

that implements the EAM execution model.

However, this is not enough to actually get answers from a Prolog program.

WAM2EAM acts an intermediate step in the Prolog compilation pipeline, coming

in between GNU/Prolog and GCC as fig. 3.2 ilustrates.

The remainder of this section discusses design and implementation of the

compiler and runtime.

12

Figure 3.1: Where WAM2EAM fits.

3.3 Parsing WAM instructions

We used GNU Prolog because its compilation passes are fairly simple and

it is easy to materialize the WAM representation of Prolog programs. The

following is a snippet of code which is the GNU Prolog WAM representation

of the p/1 predicate from the earlier example.

predicate(p/1,5,static,private,user,[

allocate(1),

get_variable(y(0),0),

put_value(y(0),0),

call(q/1),

put_value(y(0),0),

deallocate,

execute(r/1)]).

13

Alas, in the name of efficiency and convenience later on and a more hands-

on approach, we chose to go with C so to parse GNU/Prolog’s WAM output

we need a different route. The obvious candidate is the tried and true flex/bi-

son tag team, which allows for flexible scanning and parsing which integrates

well with custom C code. Despite a few extraneous meta bits of information

to be found in the intermediate WAM representation, the bulk of the work is

extracting the actual WAM instructions so that is the one major concern of

the scanner. Other than that, every atom is internalized with a convenient C

representation for further processing later on. Instructions are special in that

they have arguments, varying in number and type, which must be parsed so

a corresponding C WAM instruction representation must to be built. This

is accomplished using a complete WAM instruction Bison grammar and allo-

cating a tailor-made C structure for each instruction we find along the way,

including its arguments. Therefore, the parsing stage comprises two major,

consecutive steps:

1. For each predicate, we internalize every instruction found on the WAM

intermediate representation - that is, building an appropriate C repre-

sentation for each WAM instruction. This act as a staging area for the

next step.

2. Generate a pattern of C code for each WAM instruction we find.

3.4 C Code Generation

An interesting aspect of WAM2EAM is how its input is pure text, just like its

output is pure text. In particular, it compiles the Prolog WAM intermediate

representation into C code, switching to an EAM perspective in the mean-

time. To accomplish this, the idea is to generate a small and well-defined

pattern of C code for each WAM instruction, this being the vehicle to gener-

ate an EAM-based representation of the source program. For instance, while

a pure WAM implementation would look at a choice-point manipulation in-

struction such as try me else as an order to produce... well, a choice point,

WAM2EAM insteads subverts this perspective and creates the EAM analogue, in

14

this case setting up an OR-box alternative using the label given as argument.

Be that as it may, a lot of the WAM instruction set translates as-is to the

EAM representation. Simpler instructions, such as put value for instance,

are supposed to do exactly the same thing in the WAM and in the EAM and

the same goes for indexing instructions like switch *. In a few cases, such

as proceed, WAM2EAM simply disregards the instruction as not being useful in

the EAM setting.

At closer inspection of the WAM instruction set, the major difference in

paradigm impacting the C code generation concerns the instructions dealing

with non-determinism. Whereas the WAM deals with choice points, creating

and destroying them as needed, the EAM, by doing away with the WAM’s

stack-based representation and using an AND-OR tree based configuration

instead, deals with OR-boxes when it comes to setting up and exploring

alternatives.

Once every detail of the original program has a C representation – an

abstract parse tree – the idea is to walk through it and emit a bit of C for

each predicate and for every WAM instruction inside it. For each internalized

predicate, a block of C code is generated, setting up a new AND-box which

contains a suitable number of allocated local variables,1 binding those vari-

ables to its parent OR-box corresponding predicate arguments and defining

each of those variables’ home as the very AND-box that is being created.

The output code is generated by this code in the compiler:

emit(8, "a = new_and_box (o, %d, ab_id++);\n", max_var_idx+1);

for (i = 0; i < n; i++)

emit(8, "bind (a->locals[%d], o->args[%d]);\n", i, i);

for (i = 0; i < max_var_idx+1; i++)

emit(8, "ASREF(a->locals[%d])->home = a;\n", i);

max var idx reflects the maximum number of variables used in this predicate,

accounting for possible temporaries in all of its clauses, potentially a single

one if deterministic. Looking now at the C code for a clause with two local

variables, it might look something like this:

1The exact number is determined by inspection of the WAM code in the body.

15

a = new_and_box (o, 2);

bind (a->locals[0], o->args[0]);

bind (a->locals[1], o->args[1]);

This allocates a new AND-box with two local variables, as a child of the

current OR-box (whose address is kept in o) and both of those variables

are then immediately bound to whatever are the first two parent OR-box

arguments. This creates variable chains across the AND-OR tree, reflecting

the same concept found in Prolog clauses where a newer variable might refer

to an older one.

A second pass through the WAM instructions for the clause is needed to

generate code for each actual WAM instruction by traversing the list built

by the parser.

while (instrs) {

print_instr (instrs->head, (*a)->name, n, max_var_idx+1, FALSE)

instrs = instrs->tail;

}

print instr then goes through a large switch instruction that finds the

appropriate bit of C code to emit for each WAM instruction, having the

EAM execution scheme in mind. WAM instructions, which by now we regard

as EAM instructions in their own right, are roughly divided in three major

groups:

3.4.1 Choice point manipulation

These are the try*, retry* and trust* instructions. We no longer think

in terms of choice point frames, instead looking at managing non-determinism

by way of OR-boxes. A predicate with only one clause consists of an OR-box

with a single alternative (and thus a single descendant AND-box) whereas a

non-deterministic predicate (ie. having more than one clause) is translated as

an OR-box with as many children AND-boxes as there are possible clauses.

A more in-depth description of how OR-boxes actually deal with alternatives

16

will be given after we introduce the major data structures used throughout

WAM2EAM. In practice, an instruction like try me else (L) (or retry me else

(L), for that matter) for predicate q(1) simply defines the next alternative

in the current OR-box, generating the following bit of C code:

o->alt = &&P_q_1_C4;

3.4.2 Execution Control

The call and execute instructions are responsible for predicate calling,

in effect jumping to the appropriate place in the code where to start executing

the called predicate. They also need to setup a return address for when this

predicate is done executing. This is accomplished by emiting a C label and

configuring the current AND-box continuation to that label, using GCC’s

label address extension. With this, once the called predicate is done, it

will proceed to whatever AND-continuation is available in its AND-box, in

effect returning here and resuming execution. The difference between call

and execute is precisely what to do after the called predicate is done with.

Whereas in the former case, it simply continues executing whatever is left in

the current predicate, the latter means this was the last goal in the current

clause and it should look for a continuation above, in the Prolog execution

chain. Here’s how the call instruction is translated to C: For example, the

pattern of code generated for calling the goal q(X) in our example is:

/* call(q/1) */

q_enqueue(a->and_conts,&&R1); // setup AND-continuation

o = new_or_box(a,1); // create new OR-box

o->args[0] = a->locals[0]; // preload A registers on the new OR-box

goto P_q_1; // jump to the predicate’s code

R1: // return label

/* further code.. */

17

3.4.3 Variable manipulation and unification

This type of instructions is also handled quite differently within the EAM.

Simple instructions such as put value or get variable are basically the

same, but unification needs to be looked at more carefully, as trying to bind

variables which are not local to the current AND-box leads to suspension of

execution and triggers a search for work, elsewhere in the code. AND-box

suspension and the WAM2EAM execution scheme will be looked upon in a bit

more detail shortly.

3.5 Generated code structure

Since we’re generating a valid C program, ready to be compiled by GCC,

there’s a question of what layout this code will use. One important constraint

is that we must be able to jump back and forth between different predicates,

in order to implement predicate calling and returning. Also, we need to

jump to random places in the code when attempting to resume a suspension.

Considering that it is illegal to use C’s goto between different functions,2

generating one C function per predicate is not an option, no matter how tidy

and comfortable that would be from a structure point of view.

One possible alternative then is to implement the entire program as a sin-

gle function and delimiting predicates using unique labels. This way, jumping

from one point in the code to another remains within the bounds of the one

function and correct indentation when emitting the code will hopefully not

make it a burden to look at. We also must be careful when jumping to a

point of code from out of nowhere, since the correct environment must be

replaced, namely the current AND- and OR-boxes. Other than that, all it

takes for jumping around the code is the address to jump to and making

good use of GCC’s labels as values extension.

int program ()

{

2We may not reenter an existing C stack frame.

18

/* ... */

P_p_1: {

a = new_and_box(o,1);

/* ... */

o = new_or_box(a,1);

goto P_q_1;

/* ... */

P_q_1: {

a = new_and_box(o,1);

/* ... */

}

3.6 Runtime Data Structures

The runtime half of WAM2EAM is itself broken into two major steps and

these are where we significantly depart from the WAM way of doing things

and completely focus on EAM. First, executing the C code previously gener-

ated by the compiler will incrementally build the configuration, an AND-OR

tree that gets constructed, modified and pruned as execution of the code

proceeds. The way for this to happen is by applying in turn the different

AND-OR tree rewrite rules.

The most important data structure in WAM2EAM is the AND-OR tree, also

known as the configuration. An AND-OR tree is so called because it is

composed of two kinds of nodes: the AND nodes, corresponding to Prolog

clauses and the OR nodes, consisting of Prolog goals. We’ll shortly get into

more detail on how both these nodes are structured and how they interact

with each other. For now, it’s important to note that no two nodes, or boxes,

of the same type are directly connected in an AND-OR tree, so any path from

the root to any leaf is always made of alternate types of boxes. A parent

OR-box has AND-box children, each of which has descendent OR-boxes, and

so on. Moreover, the root is always an OR-box.

19

3.6.1 AND-boxes

They represent clauses, so there is one AND-box in the configuration for

every clause in the Prolog source code. So, for instance, a non-deterministic

predicate having four different clauses, would consist of four AND-boxes, one

for each clause. AND-boxes are a lengthy structure in WAM2EAM in that they

play a critical role. They are home to the clause’s local variables, they need

to keep track of their continuations (e.g. where to find the code for the next

goal in the clause once the current goal is done with) and they also may or

may not be suspended at any point in time. Finally, promotion also impacts

AND-boxes directly, so they also have mechanisms to deal adequately with

that. And, of course, they spawn (and in turn descend from) OR-boxes

corresponding to the reduction of their body goals. AND-boxes are represent

internally using the following C struct:

struct _andbox {

orbox *parent;

int nlocals; // number of local vars

term **locals; // array of vars local

int num_or_boxes;

orbox **or_boxes; // child OR-boxes

queue *and_conts; // AND-continuations

void *susp;

int is_susp;

andbox *clone;

andbox *head; // top of this box’s grouping

andbox *rest; // next on this box’s grouping

int id;

};

An important aspect of AND-boxes is their AND-continuations, meaning

the addresses in the code where execution should proceed in this box. AND-

continuations are needed when a goal suceeds and more work needs to be

20

found in order for execution to continue. In other words, AND-continuations

are used up when a called goal terminates and control goes back to the

callee. This is accomplished through the implementation of the execute

WAM instruction, which sets up a return label right after the jump to the

called predicate code.

q_enqueue(a->and_conts,&&R2); // setup continuation

o = new_or_box(a,1); // create new OR-box

// preload A registers on the new OR-box

o->args[0] = a->locals[0];

goto P_r_1; // jump to r/1

R2:

(...) // further code

3.6.2 OR-boxes

These represent goals and are created everytime a new goal is executed.

Their primary concern is dealing with non-determinism by managing goal

alternatives, namely holding an address for the next alternative for the cur-

rent goal at all times. They also carry the goal’s arguments when the goal

gets called in order to pass them initially to each clause’s AND-box as initial

values. OR-boxes thus spawn an AND-box for each clause they invocate.

Their representation on the WAM2EAM is as follows:

struct _orbox {

andbox *parent;

void *alt; // next alternative

andbox **and_boxes;

int num_and_boxes;

term **args;

int arity;

21

orbox *clone;

int id;

};

3.6.3 Suspensions

As we have seen before, caution must be taken when an attempt to bind

a variable is made. Only in case the variable is local to the current AND-box

will binding be allowed to occur. Otherwise, the AND-box is said to be sus-

pended on the offending variable and execution proceeds elsewhere, namely

to the next alternative in the current OR-box. Execution can only return

to this AND-box when certain conditions are met, namely when the variable

becomes local to the current AND-box or it gets bound from elsewhere. In

the latter case, when the suspension is resumed, the attempted binding that

triggered the suspension in the first place is retried and it either checks OK

or it fails against the prevailing (earlier) binding.

In order to correctly deal with these situations, we need to wrap instruc-

tions wherein a suspension might occur with some code that actually checks

for “offending” binding attempts, namely trying to bind a non-local variable.

We do this by having every unification instruction check whether the deref-

erenced variable is already bound and if not, whether it is local or external

to the current AND-box. The result of this verification is then returned as a

meanigful code to a wrapping CHECK() macro, which then acts accordingly.

Faced with a unification attempt, the outcome can then be any one of:

BIND SUSP the variable is not bound yet and it’s not local to the current

AND-box either. The current AND-box suspends on this variable.

BIND OK the variable is not bound and it’s local, so the binding succeeds.

CHECK OK the variable is bound and its value is the same as the one

being attempted in the binding, so execution may proceed.

CHECK FAIL the variable is bound and its value differs with the one

being tried. The configuration branch rooted in the current AND-box

fails and is pruned off the tree.

22

Because of suspensions, for every non-trivial program it’s easy to see that

we quickly arrive at what we call a stuck configuration, an AND-OR tree

where all leaf AND-boxes are suspended. As we don’t stop execution anytime

a box suspends, it is only when no more code is left to execute that we

have a problem. At this time we try to apply one of the rewriting rules, in

particular giving priority to determinate rules such as determinate promotion.

By promoting an inner AND-box into an outer AND-box, the variables inside

it are also promoted which means they become closer to the AND-box where

they will actually be local, eventually allowing for bindings to happen or

suspensions to resume.

3.7 Deterministic Promotion

As explained in the previous section, actions (or rules) that contract the

configuration are desirable. On the other hand, expanding goals also expands

the configuration, as AND-boxes give way to OR-boxes which in turn give

way to more AND-boxes and so forth. Deterministic promotion, being the

only rule that eliminates boxes, is highly sought after. This rule is only

applicable to OR-boxes with a single alternative.

Implementation-wise, promoting an AND-box context (variables, suspen-

sions and continuations) into another requires maintaining their environ-

ments coherent. In other words, if the resulting AND-box contains the union

of both sets of locals variables from the two AND-boxes involved in the sus-

pension, then what was the first variable in the inner (promoted) AND-box

is probably no longer the first variable in the outer (resulting) AND-box

after promotion. This lends itself to all kinds of mayhem when code still

refers a->locals[0] (WAM register X(0)) when the actual variable is now

at a->locals[1].

To cope with this problem, we opted to introduce the concept of AND-

box groupings. Each AND node in the configuration is actually a group of

one or more complete AND-boxes, forward-connected among themselves by

a pointer which indicates the next box in the group. Moreover, every box in

the group is also linked to the first - the head. This situation is illustrated in

23

figure 3.2.

Figure 3.2: On the left: an AND-box grouping made of 3 different AND-
boxes.

This way, each box environment remains pristine, as originally constructed,

and it’s safe to resume from a suspension point as far as accessing local vari-

ables is concerned. It’s important to note that a variable is local to the

current AND-box if, after dereferencing, its home AND-box is in the same

group, i.e. has the same head.

3.8 OR-split and non-deterministic promotion

Desirable as deterministic promotion might be, its occurence is heavily

constrained as we have shown in the previous section. The OR-box must have

a single alternative and for predicates with multiple clauses that’s frequently

not the case. It is quite common for a configuration to get stuck with no

chance for deterministic promotions to occur. When it comes to this, there

is no other choice than to perform what we call an OR-split which forces a

situation where a determinate promotion may happen.

Simply put, we elect an OR-box with more than one alternative to act as

the root of a subtree to be cloned. In the original subtree, only one alternative

24

remains, while in the cloned subtree, every other alternative is present. This

way, all alternatives remain in the overall configuration, ensuring correctness

of the program, yet an opportunity for deterministic promotion now exists.

Note that if the selected OR-box contains only two alternatives, we arrive

at the special case where the OR-split induces two different deterministic

promotion possibilities: one in the original box and another in the cloned

box.

The choice of OR-box to split may be guided by heuristics, yet at this

early stage we’re simply going with the leftmost OR-box suitable for splitting.

Also, from the chosen box’s alternatives, we’re picking the leftmost one to

remain in the original branch and all others to be moved to the cloned subtree.

Actual cloning is thus only needed for the parent AND-box and any siblings

of the chosen OR-box. OR-split is the least desirable rule, because with

cloning entire branches of the tree, it quickly becomes expensive.

3.9 The scheduler

The need to decide which rule to apply led to the implementation of a

scheduler. This scheduler is called the first time after all alternatives and

continuations are exhausted and no answers were produced. In other words,

when the tree is stuck we ask the scheduler for guidance.

The implementation of the scheduler is part of the runtime code and

is implemented as a C macro. It basically follows a hierarchy of possible

events and acts accordingly for each outcome. First of all, in the event

that a variable that had suspensions got bound, it tries to resume from

any suspension pending on that variable. If none are found, it looks for

an alternative in the current OR-box. If found, it continues execution from

there, otherwise it tests the tree to see if it’s stuck. If it is, it tries to apply

deterministic promotion in order to try to move on or, if that fails, it resorts

to applying non-deterministic promotion, by way of an OR-split. Putting

this as the last choice makes sense, because it is also the most expensive

operation.

It’s interesting to note the reason why the scheduler is implemented as a

25

macro instead of a function, despite being a little involved and lengthy, it is

because it may involve jumping to any point in the code, be it a suspension

point, a continuation or an OR-alternative. Again, we are faced with the

problem of not being able to jump between different C functions, so its

being a macro is sufficient. The control flow for the scheduler is depicted in

figure 3.3.

Figure 3.3: The scheduler’s flow diagram.

26

Chapter 4

Example Execution

In this chapter, we’ll use a running example based on the sample Prolog

code shown in figure 4.1.

main :- p(X).

p(X) :- q(X), r(X).

q(1). q(2).

r(2). r(3).

Figure 4.1: Sample program

Keeping this example in mind, we now give an overview of how WAM2EAM

goes from WAM code to EAM execution.

As previously mentioned, WAM2EAM-produced C code, when executed, com-

prises two different phases. The first one is made of consecutive reduction

steps, expanding the AND-OR configuration as execution continues through

the code. For each called predicate, a new OR-box is allocated, spawning

a child AND-box for each of the predicate’s clauses. Only trivial examples

won’t lead to suspension, as variable chaining between different predicates

immediately induces external variables on some AND-boxes. This means

that, at first, almost any binding attempt will lead to AND-box suspension,

forcing execution to look elsewhere in the code, namely in the current OR-

box’s next alternative. So, in our example, it’s easy to see how variable X

27

Figure 4.2: Stuck configuration.

is only local to the AND-box corresponding to the only clause for the main

predicate and thus every fact for q and r will lead to suspension over X. After

all clauses are executed, we get to a stuck configuration as seen on figure 4.2.

Implementation-wise, we rely on a function that takes the configuration’s

root OR-box and determines recursively whether the configuration is stuck.

If every leaf node is suspended then we’re faced with a stuck configuration

indeed. Then the scheduler needs to choose one of two paths. It either

performs deterministic promotion, if there are nodes ready to have this type

of promotion performed on them, or it chooses to apply non-deterministic

promotion somewhere in the tree:

if (is_stuck(root) && !q_empty(prom_ready))

DP();

else

NDP();

From now on, the configuration is modified by repeated application of

rewriting rules, managed by the WAM2EAM scheduler. In this case, as no OR-

box contains a single (suspended AND-box) alternative, no deterministic

promotion is possible, so we need to resort to applying the OR-split rule on

the leftmost OR-box, parent to suspended AND-boxes.

28

Figure 4.3: After OR-split.

Because there were only two alternatives to the split OR-box, it means

one stays in the original branch while the other is moved to to the cloned

branch and two determinstic promotions spots now exist (Figure 4.3). Were

there more alternatives and only one deterministic promotion opportunity (in

the original branch), the cloned branch would hold two or more alternatives,

and thus not be ready for deterministic promotion. So we apply deterministic

promotion to the leftmost AND-box, resulting in the configuration shown in

figure 4.4.

After promotion, we attempt to restart the promoted and previously sus-

pended box, but it immediately suspends again as its local variable, when

dereferenced, still belongs to an another AND-box - the main AND-box in

this example. Applying promotion to the analogous case in the cloned branch

leads to exactly the same outcome, so we’re again at a stuck configuration

scenario. From here on, it’s easy to see that repeated application of the

WAM2EAM rules will result in a sequence of OR-split, promotion, suspension

until an AND-box suspension is restarted and the variable in it that caused

suspension is finally local to the current AND-box group. When that hap-

pens, the binding succeeds (or fails) and every AND-box suspended on this

variable is “awakened”. Then, there are two possible outcomes:

29

Figure 4.4: After deterministic promotion.

• CHECK OK – the attempted binding at the suspension point unifies

with the one already in place. This generates an answer to the program

query and in our example that answer is X=2.

• CHECK FAIL – the attempted binding fails to unify and that means

this entire branch rooted on the current AND-box group, simply fails

and is pruned from the configuration. Execution then looks to the

scheduler for where to proceed.

As the EAM (and in turn WAM2EAM) does not contemplate explicit back-

tracking, the way to generate other answers for any given program, is to

continue exploring different branches of the configuration looking for other

successful bindings. In this case, none could be found as the other branch

would also have a conflicting binding, leading to its pruning off the tree.

30

Chapter 5

Concluding Remarks & Future

Work

We are convinced that our goal of generating a program following EAM

semantics from a classical WAM one has been met, even if with some restric-

tions for the time being. Performance is not yet an issue but will become

one as we develop further aspects of this implementation. It is interesting to

see that it is feasible to have an EAM execution model without the Prolog

compiler being aware of the fact.

Further work is to focus on the introduction of pruning operators – in

the case of cut this is straightforward to recognize from the WAM code but

for commit special measures will have to be taken as it is not inherently

accounted for by the Prolog-to-WAM compiler of GNU Prolog.

One of the driving motivations for generating AND-OR trees and having

them manipulated as per the EAM was to bridge this computational model

to one with tabling, as found in XSB or YAP Prolog. Although we haven’t

begun to do so, this goal remains valid.

There are not many EAM implementations; we need to experimentally

assess our work comparing it to the BEAM and other Prolog implementations

in terms of performance, particularly when we work towards a parallel version

of WAM2EAM.

31

Appendix A

Example Code Generation

As we have seen before in the body of this thesis, WAM instructions are

reinterpreted under an EAM light. These original instructions can be roughly

divided in three main classes:

• Execution control

• Choice point manipulation

• Unification

In this appendix, a few generated code patterns for the more crucial

instructions are presented, along with the reasoning behind their implemen-

tation in terms of the EAM. We rely on the running example from Chapter

4 to illustrate the various instructions and their corresponding C code.

A.1 Execution Control

These instructions are responsible for controlling most of the execution

that goes on in WAM2EAM, in that they induce the creation of boxes and look

for where to go next when more work is needed.

32

A.1.1 call

This instruction is directly responsible for calling another predicate from

within the execution of an AND-box. As calling a predicate entails jumping

off to another place in the code, getting back after it executes, call needs

to setup a return label so execution can proceed from there afterwards. This

is accomplished by setting up an AND-continuation on the current AND-

box, in effect enqueueing the address of the return label in its continuations

queue. For the call(q/1) WAM instruction, the corresponding C snippet

would then look like the following:

q_enqueue(a->and_conts,&&R1);

o = new_or_box(a,1);

o->args[0] = a->locals[0]; // preload A registers on the new OR-box

goto P_q_1;

R1:

a = o->parent;

o = a->parent;

R1 is statically setup after the jump to the predicate’s code and, making use

of gcc’s labels as values extension, we enqueue its address in a->and conts.

A new OR-box for the called predicate is then created and the only thing left

to do before the jump is preloading the AND-box’s current local registers on

the new OR-box, so it will have its default values ready.

A.1.2 execute

The execute instruction works exactly like call in that it is used to

call another predicate’s code, yet it shows up when the called goal is the

last in the current AND-box. Because of this, when execution gets back

to the callee, it should look for where to proceed in the parent AND-box’s

continuations queue, instead of simply carrying on executing code as is the

case with call.

q_enqueue(a->and_conts,&&R2);

33

o = new_or_box(a,1);

// preload A registers on the new OR-box

o->args[0] = a->locals[0];

goto P_r_1;

R2:

a = o->parent;

o = a->parent;

goto *(get_and_cont(a));

It should be noted that a continuation may not be found higher up in the tree

and if the configuration is stuck it may not even be anywhere to be found.

Control then goes back to the scheduler for it to apply some appropriate

rewrite rule on the configuration.

A.2 Choice Point Manipulation

Whereas in the WAM the management of alternatives was done by means

of choice points and backtracking, we have now seen that in the EAM, because

of its tree-based configuration, alternatives are fundamentally implemented

as different tree branches, rooted in an OR-box. Therefore, alternative-

management instructions, as we shall now call them, act upon the OR-

alternative field of an OR-box, which holds the address of whichever point

in code for trying the next defined clause.

A.2.1 try me else

This instruction sets up the initial alternative in the current OR-box.

Doing so for the instruction try me else(4) inside predicate r/1 is achieved

with the following snippet of C code:

o->alt = &&P_r_1_C4;

34

In this case, if the current clause suspends, a jump to o->alt is attempted,

which means jumping to the P q 1 C4 label, where the code for the next

clause is defined.

A.2.2 retry me else

retry me else simply updates the OR-alternative in the current OR-box

but must also create a new AND-box in the process. The reason for its cousin

try me else not having to do so is because the initial AND-box for the first

clause is already created when the predicate is entered the first time, right

after it gets called and control jumps to the appropriate point in the code.

So compiling retry me else(5) would yield:

o->alt = &&P_r_1_C5;

a = new_and_box(o, 2); // arity is ’2’

// bind vars to the parent OR-box’s args

bind(a->locals[0], o->args[0]);

bind(a->locals[1], o->args[1]);

// define new locals’ home

ASREF(a->locals[0])->home = a;

ASREF(a->locals[1])->home = a;

A.2.3 trust me else fail

trust me else fail indicates that it is dealing with the last alternative

in the clause so this poses the question of what should be defined as the

current OR-box alternative. As we ran out of those at this point, control

should then look for what to do in the parent’s AND-box continuation. This

means the implementation is pretty much similar, differing in the alterna-

tive’s target:

o->alt = (void *) get_and_cont(o->parent);

a = new_and_box(o, 2); // arity is ’2’

35

// bind vars to the parent OR-box’s args

bind(a->locals[0], o->args[0]);

bind(a->locals[1], o->args[1]);

// define new locals’ home

ASREF(a->locals[0])->home = a;

ASREF(a->locals[1])->home = a;

A.3 Unification

By unification instructions, we mean any instruction that may induce

variable binding and value management. These are any get *, put * or

unify * instructions. It’s important to understand that a very common oc-

curence in the EAM is having an AND-box suspend because of an attempt

to bind an external variable and that only comes about through one of these

unification instructions. As an example, we present the code pattern gener-

ated for the get integer(2,0) instruction:

CHECK(get_integer(C_INT(2), a->locals[0], a), a->locals[0], 5);

The implementation of get integer is an example of the runtime of WAM2EAM,

code that is written to support the runtime execution, namely the body of

these unification instructions. This one in particular looks like the following

bit of code:

int get_integer (term_int *ti, term *var, andbox *a)

{

var = deref(var);

if (var->type == REF) {

// unbound

if (is_local(ASREF(var),a->head)) {

term *i = ASTERM(C_INT(ti->value));

36

ASREF(var)->ref = i;

ASINT(i)->home = var;

return BIND_OK;

}

return BIND_SUSP; // not local

} else if (var->type == INT) {

// bound

if (X_INT(var) == ti->value)

return CHECK_OK;

return CHECK_FAIL;

} else {

return CHECK_FAIL;

}

}

The outer conditional distinguishes between the case where the variable is

not bound yet (a REF) and the case where it is already bound, and in this

case it must be an INT otherwise the check fails immediately. In case it is not

bound and it is local, it binds the variable to the given value, internalized as

an integer. But if it’s not local, it suspends the current AND-box. Finally, in

the case the variable is already bound, it just checks its current value against

the new value, failing if they don’t match.

Note that the function shown above returns a meaningful macro value for

any of its possible outcomes. This value is to be used by the CHECK macro

wrapper in the caller, which takes appropriate measures on each of these

outcomes:

#define CHECK(OP,VAR,R)

do {

retry_me##R:

switch (OP) {

case BIND_SUSP:

ADD_SUSP (VAR, &&retry_me##R, a);

goto START_SCHED;

37

break;

case CHECK_FAIL:

remove_and_box(a);

a = root->and_boxes[0];

goto START_SCHED;

break;

case BIND_OK:

goto START_SCHED;

break;

case CHECK_OK:

goto DONE;

break;

}

} while (0)

In a nutshell, if the binding induces a suspension, the relevant info about it

is saved to allow execution to get back here when conditions are right later

on. If the check fails, the entire tree branch rooted on the current (failed)

AND-box is pruned off the configuration and if the binding works out OK,

then control resumes from wherever the scheduler tells it to. Finally, if it

checks OK, then we have an answer to the query we’re working on.

As the WAM2EAM is still in its initial stages of development, not every WAM

instruction has a corresponding C snippet being generated, yet this appendix

should be enough to give an overview of how it goes about compiling WAM

instructions.

38

Bibliography

[1] Paulo André and Salvador Abreu. Casting the wam as an eam. In 2010

Joint Workshop on Implementation of Constraint Logic Programming

Systems and Logic-based Methods in Programming Environments, 2010.

[2] Philippe Codognet and Daniel Diaz. wamcc: Compiling Prolog to C. In

12th International Conference on Logic Programming. The MIT Press,

1995.

[3] Vı́tor Santos Costa, David H. D. Warren, and Rong Yang. Andorra-

i: A parallel prolog system that transparently exploits both and- and

or-parallelism. In PPOPP, pages 83–93, 1991.

[4] Vı́tor Santos Costa, David H. D. Warren, and Rong Yang. The andorra-i

engine: A parallel implementation of the basic andorra model. In ICLP,

pages 825–839, 1991.

[5] Torkel Franzén, Seif Haridi, and Sverker Janson. An overview of the

andorra kernel language. In Lars-Henrik Eriksson, Lars Hallnäs, and

Peter Schroeder-Heister, editors, ELP, volume 596 of Lecture Notes in

Computer Science, pages 163–179. Springer, 1991.

[6] Torkel Franzén, Seif Haridi, and Sverker Janson. An Overview of the

Andorra Kernel Language. In Extensions of Logic Programming, Second

International Workshop, pages 163–179.

[7] Bruce K. Holmer, Barton Sano, Michael Carlton, Peter Van Roy,

Ralph C. Haygood, William R. Bush, Alvin M. Despain, Joan M. Pendle-

ton, and Tep Dobry. Fast Prolog with an Extended General Purpose

39

Architecture. In Proceedings of the 17th International Symposium on

Computer Architecture, 1990.

[8] Sverker Janson and Seif Haridi. Programming paradigms of the andorra

kernel language. In ISLP, pages 167–183, 1991.

[9] Ricardo Lopes and Vı́tor Santos Costa. The beam: A first eam im-

plementation. In Maria Chiara Meo and Manuel Vilares Ferro, editors,

APPIA-GULP-PRODE, pages 425–440, 1999.

[10] Ricardo Lopes, Vı́tor Santos Costa, and Fernando M. A. Silva. A novel

implementation of the extended andorra model. In I. V. Ramakrishnan,

editor, PADL, volume 1990 of Lecture Notes in Computer Science, pages

199–213. Springer, 2001.

[11] Ricardo Lopes, Vı́tor Santos Costa, and Fernando M. A. Silva. On the

beam implementation. In Fernando Moura-Pires and Salvador Abreu,

editors, EPIA, volume 2902 of Lecture Notes in Computer Science, pages

131–135. Springer, 2003.

[12] Ricardo Lopes and Vı́tor Santos Costa. The BEAM: Towards a first

EAM Implementation. In Proceedings of the Workshop on Parallelism

and Implementation Technology for (Constraint) Logic Programming

Languages, 1997.

[13] Paul Tarau. The BinProlog Experience: Implementing a High-

Performance Continuation Passing Prolog Engine. Technical report,

BinNet Corp., 1998.

[14] David H. D. Warren. The Extended Andorra Model with Implicit Con-

trol. ICLP90 Preconference Workshop, June 1990.

40

	Introduction
	Contextualization
	Thesis Structure

	State of the Art and Related Work
	The Andorra Principle
	The BEAM
	Non-termination

	The Extended Andorra Model and WAM2EAM
	Rewrite Rules
	The WAM2EAM
	Parsing WAM instructions
	C Code Generation
	Choice point manipulation
	Execution Control
	Variable manipulation and unification

	Generated code structure
	Runtime Data Structures
	AND-boxes
	OR-boxes
	Suspensions

	Deterministic Promotion
	OR-split and non-deterministic promotion
	The scheduler

	Example Execution
	Concluding Remarks & Future Work
	Example Code Generation
	Execution Control
	call
	execute

	Choice Point Manipulation
	try_me_else
	retry_me_else
	trust_me_else_fail

	Unification

