
On the Portability of Prolog Applications

Jan Wielemaker1 and Vı́tor Santos Costa2

1 VU University Amsterdam, The Netherlands,
J.Wielemaker@cs.vu.nl

2 DCC-FCUP & CRACS-INESC Porto LA
Universidade do Porto, Portugal

vsc@dcc.fc.up.pt

Abstract. The non-portability of Prolog programs is widely considered
one of the main problems facing Prolog programmers. Although since
1995, the core of the language is covered by the ISO standard 13211-1,
this standard has not been sufficient to support large Prolog applications.
As an approach to address this problem, since 2007, YAP and SWI-
Prolog have established a basic compatibility framework. The aim of the
framework is running the same code on Edinburgh-based Prolog systems
rather than having to migrate an application. This article describes the
implementation and evaluates this framework by studying how it can be
used on a number of libraries and an important application.

1 Introduction

Prolog has a long history, and its user community has seen a large number of
implementations that evolved largely independently. This is in contrast to more
recent languages such as Java, Python, or Perl. These language either have a
single implementation (Python, Perl) or are controlled centrally (a language can
only be called Java if it satisfies a set of standards [9]). The Prolog world knows
dialects that are radically different, with different syntax and different semantics
(e.g., Visual Prolog [12]). Arguably, this is a handicap for the language because
every publicly available significant piece of code must be carefully examined for
portability issues before it can be applied. As an anecdotal example, answers
to questions on comp.lang.prolog typically include “on Prolog XYZ, this can be
done using . . . ” or “which Prolog implementation are you using?”.

In this work we propose an approach for improving the portability of appli-
cations in modern Prolog systems. Our approach has been implemented in the
SWI-Prolog [22] and YAP [16] systems. The approach requires (i) support of
the Prolog ISO standard to a large extent [2, 18]; (ii) a module system close
to Quintus Prolog module system; (iii) and a term-expansion approach; and,
whenever this is not sufficient, (iv) a preprocessor, that allows one to explicitely
state system-dependent regions of code. Except for the second requirement, we
expect most of these features to be available or easy to implement in modern
Prolog systems. On the other hand, arguably module support is a controversial
issue in the Prolog community. Although any program larger than a few pages

requires modularity, the ISO standard for modules was never accepted by most
Prolog developers. In our case, we follow the approach of using the Quintus mod-
ule system, to better or worse arguably the closest to a standard in the Prolog
community. This module system is supported by Quintus Prolog [1], SICStus
Prolog [4], and Ciao [6], besides SWI-Prolog [22], and YAP [16]. Other Prolog
systems, such as XSB-Prolog [15], have limited compatibility with this module
system.

The key ideas of our approach are as follows. First, each program will belong
to a dialect, such as swi, yap, or sicstus. Second, loading a program declared to
belong to a dialect sets up a compile-time emulation layer that works as follows:

– load an extra set of built-ins and libraries;
– redefine conflicting built-ins;
– change system flags, if necessary.

The emulation layer will then be active while loading the file.
Our technique has been implemented in the SWI-Prolog [22] and YAP [16].

In YAP it has been used to implement a very extensive emulation layer for
SWI-Prolog. This has allowed YAP to support a large number of SWI-Prolog
packages, including the Java interface jpl, the chr, clpfd and clpqr extensions,
several web interface packages, and the plunit package. SWI-Prolog includes
emulation layers for several Prolog dialects, such as yap, sicstus, and ciao.
The sicstus layer has been used to port a large natural language package from
SICStus Prolog to SWI-Prolog, maintaining a single source for the package.

The paper is organized as follows. First, we discuss the key concepts in porta-
bility work. Second, we present our approach in more detail. Then, we present
the YAP and SWI-Prolog case studies in more detail. We finish with some con-
clusions.

2 Portability approaches and related work

Software portability is a problem since the day the second computer was built.
In our case, we expect that at least basic portability requirements are fulfilled:
there are few syntactic incompatibilities, and the core language primitives have
to a large extent the same semantics. This is the case for the family of im-
plementations that is subject in this study. Beyond that, the implementations
vary widely; notably in (i) the organisation of the libraries; (ii) available library
primitives; and (iii) access to external resources such as C-code, processes, etc.

Our problem is to some extent related to the problem of porting C-programs
between different compilers and operating systems. Although today’s C has made
significant progress in standardizing the structure of the library (e.g., C99 in-
ternationalisation support) and POSIX has greatly simplified operating sys-
tem portability, writing portable C-code still relies on judicious use of the C-
preprocessor and a principled approach to portability. We therefore will take
advantage of the underlying principles and choices that affect portability in the
C-world, both because we believe the examples are widely known and because
the C-community has a long-standing experience with portability issues.

The abstraction approach. A popular approach to make an application portable
is to define an interface for facilities that are needed by the application and that
are typically not portable. Next, the interface is implemented for the various
target platforms. Targets that are completely different (e.g. Windows vs. X11
graphics) use completely distinct implementations, while small differences are
handled using compile-time or run-time conditions. Typically, the “portable”
part of the application still needs some conditional statements, for example if
vital features are simply not available on one of the target platforms.

Abstractions come in two flavors: specifically designed and implemented in
the context of an application; and designed as high-level general-purpose abstrac-
tions. We find instances of the latter class notably in areas where portability is
hard, such as user-interface components (e.g., WxWindows, Qt, various libraries
for threading).

Logtalk [10] is an example from the Prolog world: it provides a portable
program-structuring framework (objects) and extensive libraries that are portable
over a wide range of Prolog implementation. On the other hand, we could claim
that Logtalk is a language developed by a community that just happens to be
using a variety of Prolog implementations as backend. The portability of Logtalk
itself is based on application-specific abstraction.

The emulation approach. Another popular approach is to write applications for
environment X and completely emulate environment X on top of the target
environment Y . Comparing with the previous approaches, arguably, one system
can be seen as an abstraction to other. One of the most extreme examples here
is Wine3, that completely emulates the Windows-API on top of POSIX systems.
The opposite is Cygwin [13], that emulates the POSIX API on Windows plat-
forms. To the best of our knowledge, SEPIA was the first system to use this
approach, in this case to emulate other Prolog systems [14].

Emulation has large advantages in reducing the porting effort. However, it
comes at a price. Cygwin and Wine are very large projects because emulating
one OS API can approach the complexity of an OS itself. This means that
applications ported using this approach become heavyweight. Moreover, they
tend to become slow due to small mismatches. For example, both Windows and
POSIX provide a function to enumerate members of a directory and a function
to get details on each member. The initial enumeration already provides more
than just the name, but the set of attributes provided differs. This implies that
a full emulation of the directory-scanning function also needs to call the ‘get-
details’ function to fill the missing attributes, causing a huge slow-down. The
real difficulty is that, often, the application is not interested in these painfully
extracted attributes. Similar arguments hold for the differences between the
thread-synchronisation primitives. For example, the initial implementation of
SWI-Prolog message-queues that establish a FIFO queue between threads was
based on POSIX thread ‘condition variables’ and ported using the pthread-

3 http://www.winehq.org

win324 library. The Windows version was over 100 times slower than the POSIX
version. Rewriting the queue logic using Windows ‘Event’ object duplicates a
large part of the queue-handling code, but provides comparable performance.

The conditional approach. Traditionally, (small) compatibility problems are ‘fixed’
using conditional code. There are two approaches: compile-time and run-time.
In the Prolog world, we’ve seen mostly run-time solutions with the promise that
partial evaluation can turn this into the equivalent of the compile-time approach.

Conditions themselves often come from version information (e.g. if (cur-
rentBrowser == IE && browserVersion == 6.0) ...). At some point in time,
the variation in the Unix-world was so large that this was no longer feasible.
Large packages came with a configuration file where the installer could indicate
which features where supported by the target Unix version. Of course, most sys-
tem managers found it hard to obtain a reasonable configuration. A major step
forward was GNU autoconf [21], a package that provides clear guidelines for
portability, plus a collectively maintained suite of tests that can automatically
execute in the target environment (configure).

There is one important lesson to be learned from GNU autoconf: do not test
versions, but features. E.g. if you want to know whether member/2 is available
without loading library(lists), use a test like the one below rather than a test for
a specific Prolog system:

catch(member(a, [a]), _, fail)

Feature tests work regardless of your knowledge of the availability of a pred-
icate in a specific Prolog implementation and they keep working if implementa-
tions change this aspect or new implementations arrive on the market.

3 Prolog portability status

Before we can answer the question on the best approach for Prolog, we must
investigate the current situation.

Our target Prolog systems have been influenced by the Edinburgh tradition,
namely through Quintus Prolog, C-Prolog, DEC10-Prolog and its DEC10 Prolog
library. They all at least partially support the ISO core standard. In addition,
resources such as Logtalk, and the Leuven and Vienna constraint libraries have
recently helped enhancing the compatibility of Prolog dialects due to a mutual
interest of the resource developers (a wider audience) and Prolog implementors
(valuable resources). Logtalk has pioneered this field, pointing Prolog implemen-
tors at non-compliance with the ISO standard and other incompatibilities. The
constraint libraries have settled around the attributed variable and global vari-
able API designed for hProlog ([5]). These APIs are either directly implemented
or easily emulated.

4 http://sourceware.org/pthreads-win32/

Ciao SICStus SWI-Prolog YAP

ISO yes yes yes yes
module/2 yes yes yes yes
module/3 yes no no no
use module/2 yes yes yes yes
use module/3 no yes no no
operators and modules local global both both
export built-in no no yes yes
redefine built-in yes no yes yes

Term-expansion yes yes yes yes
Goal-expansion yes yes yes yes
Compilation-modela file direct direct direct
Directives special goal goal goal

Attributed variables yes yes yes yes
Coroutining (dif/2, freeze/2) yes yes yes yes
Global variables yes yes yes yes
Tabling yes no no yes

Threads yes no yesb yesb

Unicode no yes yes yes

Set unknown flag fail error yesc yesc

Get unknown flag fail fail fail fail

Provide unknown optiond error error ignore error

Library license GPL Proprietary GPLe Artistic & GPL

a File: compile .pl to object and load object code
b Provides create prolog flag/3
c Following ISO technical report
d E.g. write term(foobar, [hello(true)])
e With an additional statement that allows for use in proprietary code, based on the

GCC runtime library.
Table 1. Core features provided by the target Prolog environment

The language. All systems can run programs satisfying the ISO standard as long
as they do not depend on corner cases. There are cases where ISO demands an
exception and implementations take the liberty to provide meaningful semantics.
E.g., SWI-Prolog supports the mode arg(-,+,?); many systems support ‘options’
to predicates such as open/4 and write term/4 that are not described by the ISO
standard (e.g. ‘encoding’ in open/4 to indicate the character-set encoding of the
file). Additional options are explicitly allowed by the standard, but there is no
good mechanism to know which options are allowed by a specific implementation
and it is not easy to find an elegant way to deal with different option-list require-
ments in different implementations. Similarly, most systems provide prolog-flags
(current prolog flag/2) in addition to the standard flags. Finally, systems differ
in the relation between operators and modules. Table 1 provides an overview of
features that we consider most relevant to porting code in the four Prolog di-

alects considered. The table discusses approaches to modularity, term and goal
expansion, major extensions in the code, and flag handling.

The libraries. The situation of the Prolog libraries is unfortunate. Although
much of the code is derived from the public domain ‘DEC10’ library, a long pe-
riod of independent development makes this barely recognizable. Currently, the
way predicates are spread over the libraries and system built-ins differs enor-
mously. Also different is the status of built-in predicates (can you redefine them,
can you export them from a library, etc.) differs. Fortunately, there are only few
cases where we find predicates with the same name but different semantics (e.g.
delete/35). In the last few years, cooperation around Logtalk and the CLP li-
braries as well as discussions in the community [11] have enhanced the situation
somewhat.

Foreign code. As Bagnara ([3]) pointed out, the design of the foreign language
interface is largely settled. All target systems use ‘term-handles’; opaque han-
dles to Prolog terms that must be allocated and thus ensure that the Prolog
engine knows which terms are referenced by foreign code. On the other hand,
the naming, coverage of the API functions to interact with terms as well as the
way foreign code is made visible as Prolog predicates varies widely. We identify
two problem areas.

– All Prolog systems allow binding external I/O channels to Prolog streams.
The design of these interfaces however differs so widely that emulation is
non-trivial and likely to cause severe performance degradation. See Sect. 5.

– The SWI-Prolog and YAP APIs allow for creating non-deterministic pred-
icates in C. SICStus and Ciao require the non-determinism to be moved to
Prolog. It is hard to make a SWI-Prolog/YAP non-deterministic implemen-
tation run of SICStus/Ciao without major work.

4 The YAP/SWI-Prolog Approach

Ideally, we would hope for a standardized full definition of the Prolog language
and its libraries. However, getting agreement on such a library and proper im-
plementations for all platforms has shown not to be trivial. Even if this library
eventually exists, a lot of legacy applications may require extensive rewriting. In
general, our goal is to run the same code on multiple Prolog systems, with the
least possible rewriting effort.

As far as we are aware, there are none or very few cases where emulation
leads to poor performance due to mismatches in the APIs as explained in Sect. 2.
So, as a good shared abstraction is hard to achieve and application-abstractions
are too limited in scope for our purposes, we follow emulation whenever possi-
ble. Note that, given a good framework, an emulation layer can be established
incrementally and on ‘as needed’ basis.

5 http://www.cs.otago.ac.nz/staffpriv/ok/pllib.htm

The need for macro-expansion. Macro-processing is key to performing emula-
tion efficiently. Dealing with incompatibilities only through runtime tests and,
optionally, partial evaluation is insufficient. First of all, runtime tests can only
deal with predicates and not with declarations (directives). Second, portable and
adequate partial evaluation is not provided. Without partial evaluation, runtime
testing is not acceptable for time-critical code and static analysis tools, even the
simple cross-referencers available for SWI-Prolog, will complain about the code
intended for other dialects. Term- and goal-expansion are provided by all target
systems, but the details vary, making it rather awkward to use in application
code. For example, Ciao requires special attention to make the rules available
to the compiler. SWI-Prolog expansion follows its module-inheritance rules, first
expanding in the module, then in the user module and finally in the system

module. SICStus provides additional arguments to deal with source-location,
and so on.

Conditional Compilation. Following the emulation-approach, compatibility li-
braries can use all machinery available to the hosting Prolog environment to
emulate the target. Unfortunately, we still need a way to achieve portable con-
ditional compilation in the application. As an example, features of one system
allow for realizing a better (e.g., faster, more compact) implementation for a
certain subsystem. In the case of SWI-Prolog, nb setarg/3 allows for a clean
reentrant and thread-safe implementation of counting proofs that is faster and
requires less space than portable solutions. We will code this as below.

:- meta_predicate proof_count(0, -).

:- if(current_predicate(nb_setarg/3)).

proof_count(Goal, Count) :-

State = count(0),

(call(Goal),

arg(1, State, C0),

C1 is C0 + 1,

nb_setarg(1, State, C1),

fail

; arg(1, State, Count)

).

:- else.

proof_count(Goal, Count) :-

findall(x, Goal, Xs),

length(Xs, Count).

:- endif.

Notice the use of the if, else, and endif primitives for conditional compilation.

4.1 The SWI-Prolog/YAP portability framework

We can now present the key features of our framework:

– Support :- if(Goal). . . . [:- else. . . .] :- endif. conditional compila-
tion. This is built-in in several systems, such as ECLiPSe [17], and can easily
be provided on top of term-expansion for other systems.

– Provide :- expects_dialect(Dialect). to state that a module is designed
for the given dialect. The effect of this directive is threefold.

1. Load and import library(dialect/Dialect), which provides emulation for
built-ins of the dialect and term/goal expansion rules to resolve compat-
ibility issues.

2. Make the current dialect available through prolog load context(dialect,
Dialect) for term and goal-expansion.

3. Push a new library directory before the current library path. The new
directory can provide additional and replacement libraries that provide
the interface of the target and use the implementation techniques of the
host (currently, we assume confliting libraries are not loaded yet).

– Synchronise some vital features, such as identifying the running dialect using
the Prolog flag dialect.

– Provide a C-header to emulate the target foreign interface and C-code to
implement the foreign interface.

5 Running SWI-Prolog Packages in YAP

YAP currently can run several SWI-Prolog packages, such as clib, http, sgml,
RDF, plunit, jpl, chr, and clpqr. Some of these packages, such as clib and
jpl, are mostly written in C. Other packages, such as chr and clpqr are Prolog
code. The YAP library approach was as follows.

The C-Interface. The first step is to implement the SWI-Prolog C-interface. No-
tice that the SWI-Prolog interface contains significant duplicate functionality, as
old functions are replaced by more powerful newer ones. Correctly implement-
ing the whole functionality in a single go would have been a major endeavour.
Instead, the YAP implementors have implemented functions as they are needed,
and in some case only partially. Error messages are used to inform users that an
interface function is only partially implemented.

A second challenge were the differences in internal objects that were exported
through the interface. For example, YAP strings are 0-terminated C-strings.
SWI-Prolog uses an additional length parameter to accommodate 0-bytes in
atoms. SWI-Prolog internally supports an integer Prolog object that is always
64 bits long. YAP supports an integer that has word size.

There are also major differences in functionality between the two systems,
that are simply almost impossible to cover. For example, the debugging infras-
tructure is much richer in SWI-Prolog. A second typical example are blobs. In
SWI-Prolog, a blob is a symbol (like an atom) that is used to store external data,
such as image-pixels or a handle to C-managed data. SWI-Prolog goes much fur-
ther, and has a sizable infrastructure for blobs that accommodates user defined
blobs with extensions over input, output, garbage-collection, etc. In contrast,

in YAP a blob is an opaque object kept on the stacks. In cases such as this,
supporting the SWI-Prolog interface will require defining a new type of objects
and supporting them. The advantage is that YAP will benefit from the decisions
made by SWI-Prolog. The drawback is that the YAP design is bound by these
decisions.

PLStream. The next step was to support Input/Output. SWI-Prolog basically
exports its Input/Output data structures, which are very different from YAP’s.
A first try at using the standard emulation layer approach was very painful: first
because the interface is complex; and second because it involves reimplementing
a large number of data structures that had to be working before anything could
be experimented with. On the other hand, we could observe that SWI-Prolog’s
I/O was largely self-contained and almost exclusively written in C. This sug-
gested an alternative approach, where it was decided to simply port the whole
I/O subsystem as a C library. The process worked surprisingly well: the I/O
routines are much independent of the rest of the system, and we only required
reimplementing some internal interface functions. The interface layer required
800 lines of code, but much of this code is in fact reused from files in SWI-Prolog.
We did observe several difficulties:

– some I/O functions build lists of characters using low-level abstract machine
functionality; we just abstracted these operations without loss of efficiency.

– the code relies on the address of some atoms being known at compile-time.
This required changes to the C-interface layer.

– SWI-Prolog and YAP streams are different: we allow limited access from
YAP streams to SWI-Prolog streams, but not vice-versa.

The last challenge is simply keeping track of the changes in SWI-Prolog
functionality. SWI-Prolog is a living object: new functions are being added in,
and from time to time, preexisting functions do change. This is a good thing,
and just a small problem with the external interface, but it is a major problem
with the I/O library. As YAP-6 stabilises, we expect to be able to merge the
YAP changes to the main SWI-Prolog distribution, and use git to track down
changes in the SWI-Prolog distribution, with no negative impact on SWI-Prolog.

Evaluation. Table 2 gives an idea of the porting effort. There are about 200
Prolog source files, and a similar number of C source files. Altogether, we needed
28 if statements for cases of conditional code. We discuss some of these problems
in more detail below.

The size of the C-code is similar to the size of the Prolog code. We only
have 15 cases of conditional compilation, with most of these belonging to the
PLStream package, which is unsurprising as this package is SWI-Prolog code.
We believe this shows that most of the compatibility issues have been addressed
at the emulation layer.

Prolog source-files 244
Prolog source-lines 67,532
Prolog clauses ≈14,000
if directives ≈28
C source-files 215
C source-lines 66,437
C predicates 267
YAP conditional compilation 15

Table 2. Metrics on the SWI-Prolog Libraries

6 A First case-study: Portable constraint libraries

We have been able to share three major constraint libraries between the two
systems using this framework: clpfd [19], clpr [7], and chr [8]. YAP originally
implemented a SICStus mechanism for domain variables, so the first step was
to also support the hProlog/SWI-Prolog mechanism [5]. From YAP-6.0.4, YAP
implements the SICStus interface as mostly an extension of the SWI-Prolog
interface (with some extra built-ins). Following SWI-Prolog, YAP now simply
searches the global stack for attributed variables for realizing call residue vars/2,
which is used by the toplevel to report residual constraints.

Given a common infrastructure, the goal was to reduce to a minimum the
amount of effort in porting the constraint libraries between the two different
systems. In the case of chr this was simplified because chr already supported
by two systems: SICStus and SWI-Prolog. Difficulties had to do with the term
expansion mechanism, which is different in the two systems, with SWI-Prolog
having a more liberal syntax, and with supporting SWI-Prolog’s message-writing
mechanism.6 Last, chr was originally implemented in hProlog and expects an
hProlog compatibility library to provide list functionality. This forces YAP to
be both compatible with SWI-Prolog and hProlog.

Markus Triska’s clpfd is a SWI-Prolog native application. It was interesting
that although the two applications were written independently, the challenges
were very much similar: the term expansion mechanism, the message-writing
system, and attribute predicates.

7 A Second Case-study: the Alpino dependency-tree
parser suite

The Alpino dependency-tree parser suite [20] is a large and complex program
developed in SICStus Prolog over a long period of time. Table 3 gives some
metrics of the application. The initiative to port Alpino came from the SWI-
Prolog side based on a desire to use Alpino components as a library in a larger
SWI-Prolog based application. On first contact, the Alpino team was interested,

6 Based on Quintus Prolog. See print message/2.

but had two major worries: “does SWI-Prolog support our current application
without major rewrites”, and “can we achieve one source that compiles and
runs on both”. The first was accompanied with a list of requirements. Most of
these could be answered positively without hesitation. SWI-Prolog however lacks
call residue/2 and a Tcl/Tk interface. SWI-Prolog has a partial implementation
of call residue vars/3.7 Later copy term/3 proved the correct and portable so-
lution for the application’s purposes. Tcl/Tk was no hard requirement and we
hoped that the Ciao implementation might be able to solve this issue. A short
summary of the SWI-Prolog/YAP portability framework convinced the Alpino
team that future maintenance based on a common source could de dealt with.

Prolog source-files 304
Prolog source-lines 473,593
Prolog predicates ≈ 5,500
Prolog clauses ≈ 290,000
C source-files 14
C++ source-files 27
C/C++-defined predicates 46

Table 3. Metrics on the Alpino Parser

Below we summarize the non-trivial issues encountered and their resolution.

– The SICStus block directive declares predicates to suspend until an instan-
tiation pattern is reached. SWI-Prolog has no such concept. Term-expansion
was used to rename the clauses and generate a wrapper that implements the
coroutining using when/2.8

– Operator declarations are mapped to declarations in the user module, SWI-
Prolog’s deprecated support for system-wide operators. The code below il-
lustrates dialect handling here:

system:goal_expansion(op(Pri,Ass,Name),

op(Pri,Ass,user:Name)) :-

\+ qualified(Name),

prolog_load_context(dialect, sicstus).

qualified(Var) :- var(Var), !, fail.

qualified(_:_).

7 The implementation may report variables that are inaccessible due to backtracking
if the application uses non-backtrackable assignment as defined by nb setarg/3 and
nv setval/2.

8 Eventually, it was decided that using when/2 directly was more elegant and natively
supported by both target Prolog systems.

– Alpino depends on predicates from library(lists) that exist under a different name in
SWI-Prolog and that we do not consider for including into SWI-Prolog. Therefore,
we add library(dialect/sicstus/lists) with the following content

:- module(sicstus_lists,

[substitute/4, % +Elem, +List, +NewElem, -List

nth/3

]).

:- reexport(’../../lists’).

<implementation>

Note that in addition, we must map explicitly qualified calls (e.g., lists:nth(N,L,E))
to sicstus lists:nth(N,L,E) if the current dialect is sicstus. The mapping rule is in
sicstus.pl, while clauses for the mapping are provided by the renamed modules.

– database references (assert/2, clause/3, recorda/3, erase/1) are safe in SICStus
and goals fail if the reference does not exist. SWI-Prolog references used to be
unsafe: references were heuristically tested for validity and an existence error was
raised if the reference was known to be invalid. In case the heuristics incorrectly
claims that a reference is valid, the system could crash. Programming around this
in Alpino was considered more effort than providing a compatible API in SWI-
Prolog, so we decided for the latter.9

– We added support for the mode recorded(-,+,-) to the SWI-Prolog runtime. We
also resolved that 〈m〉:clause(H,B) does not qualify H if the predicate is in module
〈m〉.

– SICStus (and Ciao) provide Prolog streams that can both be read and written to.
SWI-Prolog’s streams are either read or write. This makes it hard to provide a
compatible emulation of the sockets library. We decided to support stream-pairs
in the SWI-Prolog runtime system. All I/O predicates are aware of these pairs
and will pick the appropriate member (close/1 addresses both streams). After this
addition, emulating the required features of the socket library was simple.

– SICStus assert and friends can deal with attributed variables, as illustrated below.

?- dif(X, 3), assert(not_3(X)).

SWI-Prolog has no such support and adding this is a non-trivial exercise. As a
work-around, we use the goal-expansion mechanism to map calls to the assert-
predicates onto clp assert. This predicate uses copy term(+Attributed, -Plain,
-Constraints) to extract the constraints from the term and inserts all constraints
at the start of the body, creating the clause below.

not_3(X) :- dif(X, 3).

We consider the approach so specific that we decided to make the emulation part
of the Alpino source-tree rather than the SWI-Prolog system.

– We provide an implementation for the libraries arrays.pl, system.pl and timeout.pl

using SWI-Prolog primitives.
– At some places, we decided that both SICStus and SWI-Prolog provided already

compatible alternatives for legacy SICStus code and adjusted the Alpino sources
accordingly.

9 The necessary infrastructure was developed several years ago.

– We emulate the declaration of foreign predicates using the SICStus primitives
foreign resource/2, foreign/3 and load foreign resource/1. The wrapper-generation
is an extension of the older generator for Quintus (qpforeign.pl). In addition we
wrote a script emulating the features of splfr that we need. This SICStus program
extracts the foreign declaration from a Prolog file, generates a wrapper and calls
the C-compiler to create a loadable foreign module. The SWI-Prolog replacement
swipl-lfr.pl takes the same steps, using the C-compiler and linker front-end swipl-ld
for the platform-specific linking.

In addition, we added sicstus.h to the SWI-Prolog include directory that provides
the necessary mapping from SP * API functions to PL * API functions. The total
amount of code involved is 664 lines of Prolog code and 244 lines of C-header
(which satisfies our requirements, but is otherwise incomplete). No changes were
required to the Alpino C-files, neither to the Prolog code. For the Alpino zlib-
interface, creating a compressed serialization of a Prolog term based on SICStus
fastrw.pl library and zlib, we decided on an alternative route for SWI-Prolog that
was easier to realise than providing fastrw for SWI-Prolog. The Alpino code selects
the implementation using the if/1 conditional compilation.

– Alpino uses the SICStus tcl/tk interface. License issues make it impossible to use
the SICStus library here, while reimplementing from scratch is non-trivial. Initially,
we ported library(tcltk) from Ciao Prolog using the same emulation-approach.
Because Ciao uses a much finer grained module infrastructure, emulating enough
of Ciao to run the tcltk library requires 17 files containing 971 lines of Prolog. In
addition, SWI-Prolog’s write term/3 had to be modified to (by default) omit an
extra space after a comma that separates two arguments (e.g., term(a,b) instead
of term(a, b)).10

Unfortunately, Ciao’s tcltk library could not sufficiently emulate the SICStus li-
brary for running Alpino. Eventually, the Ciao code was used to realise a new and
portable tcl/tk interface that could support Alpino. This interface is part of the
Alpino source-tree.

The above changes required about 20 person-days joint effort from the SWI-
Prolog team and the Alpino team and resulted in a fully operational application
running on the two target platforms. As mentioned above, SWI-Prolog was en-
hanced in several places. Also the Alpino code has been improved. It now relies
less on SICStus legacy code; the application now supports UTF-8 on both Prolog
platforms; the modularity was enhanced and the performance has been improved,
also on SICStus.

The initial Alpino source contained 19 places of conditional compilation based
of the if/1-directive. Since then, more conditional code was added to enhance
performance on SWI-Prolog and use additional features of SWI-Prolog, such
as (partial) support for multi-threading and its interface to GNU readline. The
current code contains 59 places of conditional compilation. This small amount of
conditional code has no significant impact of the maintainability of the Alpino
code-base.

10 This issue also affected Alpino, which contains C-code that relied on the exact term-
layout. The 13211-1 standard describes spaces in the output of write term to separate
tokens where needed. Other spaces are not explicitly forbidden.

8 Conclusions

Portability of Prolog source-code is important. Portability prevents vendor lock-
in, provides backup if an implementation is discontinued or is no longer suitable
for sustaining an application because it lacks features that are important for
future development. Portability is also needed if we want to combine packages
developed on different Prolog implementations. For a long time, the Prolog com-
munity consisted of separated sub-communities associated to an implementation.
The ISO standard has resolved many low-level compatibility issues. Logtalk and
the Leuven/Vienna constraint libraries have created bridges, causing participat-
ing Prolog systems to resolve various incompatibilities. Currently, portability
among four systems with common inspiration (YAP, SICStus, Ciao and SWI-
Prolog) is comparable to other multi-vendor programming environments such as
C on Unix in the 90s.

We present an approach for porting complex libraries and applications be-
tween systems. First, we make an argument for the need of an emulation layer
between different systems. Often, such an emulation can not be complete. In this
case, we propose using the reflexive approaches of Prolog in the fashion of the
autoconf approach.

A number of issues that hinder the development of portable Prolog resources.
Some of these involve major decisions and require major effort. Examples are
non-portable types such as string-objects, advanced numeric types (unbounded,
rationals, complex), and non-portable features (e.g., Unicode support, threads,
tabling). There are a number of issues that are less involved and can greatly
facilitate portability if agreement is reached and implemented. Examples are
‘environment predicates’, such as absolute file name/3, prolog load context/2,
a mechanism to deliver (translated) messages to the user, further standardis-
ation of Prolog flags, including a mechanism to define new flags and a clear
vision on handling extensions to the option-list processed by predicates such as
write term/3.

We strongly advice anyone interested in porting a Prolog resource to get into
contact with the vendors of the targeted Prolog systems. Many incompatibilities
are much easier resolved by the vendor(s) and as a result both systems improve
and get more compatible.
Acknowledgments. This work has been partially supported by the project
STAMPA (PTDC/EIA/67738/2006), HORUS (PTDC/EIA-EIA/100897/2008),
and by the Fundação para a Ciência e Tecnologia.

References

1. AI International ltd., Berkhamsted, UK. Quintus Prolog, User Guide and Reference
Manual, 1997.

2. Roberto Bagnara. Is the ISO prolog standard taken seriously? ALP newsletter,
pages 10–12, February 1999.

3. Roberto Bagnara and Manuel Carro. Foreign language interfaces for Prolog: A
terse survey. ALP newsletter, May 2002.

4. M. Carlsson, J. Widén, J. Andersson, S. Anderson, K. Boortz, H. Nilson, and
T. Sjöland. SICStus Prolog (v3) Users’s Manual. SICS, PO Box 1263, S-164 28
Kista, Sweden, 1995.

5. Bart Demoen. Dynamic attributes, their hProlog implementation, and a first eval-
uation. Report CW 350, Dep of Comp Science, K.U.Leuven, Leuven, Belgium, Oct
2002.

6. M. V. Hermenegildo, F. Bueno, M. Carro, P. López, J. F. Morales, and G. Puebla.
An overview of the CIAO multiparadigm language and program development en-
vironment and its design philosophy. In Concurrency, Graphs and Models, Essays
Dedicated to Ugo Montanari on the Occasion of His 65th Birthday, volume 5065
of LNCS, pages 209–237. Springer, 2008.

7. Christian Holzbaur. Metastructures versus attributed variables in the context of
extensible unification. In PLILP, volume 631 of Lecture Notes in Computer Science,
pages 260–268. Springer, 1992.

8. Leslie De Koninck, Tom Schrijvers, and Bart Demoen. A flexible search framework
for CHR. In Tom Schrijvers and Thom W. Frühwirth, editors, Constraint Handling
Rules, volume 5388 of Lecture Notes in Computer Science, pages 16–47. Springer,
2008.

9. SUN Microsystems. The java compatibility test tools, 2001.
10. Paulo Moura. Logtalk - Design of an Object-Oriented Logic Programming Language.

PhD thesis, Department of Informatics, University of Beira Interior, Portugal,
September 2003.

11. E. Pontelli, T. Schrijvers, B. Demoen, P. Moura and T. Swift. Uniting the Prolog
Community. ALP newsletter, Feb 2009.

12. Thomas Linder Puls. New features in Visual Prolog 7.2. In Proceedings of the
VIP-ALC 08: Visual Prolog Applications And Language Conference, pages 6–9.
Prolog Development Center, July 2008.

13. J. Racine. Review: The cygwin tools: A gnu toolkit for windows. Journal of Applied
Econometrics, 15(3):331–341, 2000.

14. M. Meier, A. Aggoun, D. Chan et al. SEPIA An Extendible Prolog System. In
11th World Computer Congress IFIP’89, Aug 2009.

15. K. Sagonas, T. Swift and D. S. Warren. XSB as an Efficient Deductive Database
Engine. In Proc. of the ACM SIGMOD Int. Conf. on the Management of Data,
pages 442–453, 1994.

16. Vı́tor Santos Costa, Luis Damas, Rogério Reis, and Rúben Azevedo. YAP User’s
Manual, 2002. http://www.ncc.up.pt/˜vsc/Yap.

17. J Schimpf and K Shen. ECLiPSe by Example, 2007. Tutorial given at CP 2007.
18. Peter Szabó and Péter Szeredi. Improving the ISO prolog standard by analyzing

compliance test results. In S. Etalle and M. Truszczynski, editors, ICLP, volume
4079 of LNCS, pages 257–269. Springer, 2006.

19. Markus Triska. Generalising constraint solving over finite domains. In Maria Garcia
de la Banda and Enrico Pontelli, editors, ICLP, volume 5366 of Lecture Notes in
Computer Science, pages 820–821. Springer, 2008.

20. Gertjan van Noord. At Last Parsing Is Now Operational. In TALN 2006 Verbum
Ex Machina, Actes De La 13e Conference sur Le Traitement Automatique des
Langues naturelles, pages 20–42, Leuven, 2006.

21. Gary V. Vaughan, Ben Elliston, Tom Tromey, and Ian L. Taylor. GNU Autoconf,
Automake, and Libtool. Pearson Education, October 2000.

22. J. Wielemaker. SWI-Prolog: Reference Manual. University of Amsterdam, VU
University Amsterdam, Kruislaan 419, 1098 VA Amsterdam/De Boelelaan 1081a,
1081 HV Amsterdam, 1997-2010. http://www.swi-prolog.org/pldoc/index.html.

