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Abstract

One of the advantages of logic programming is the fact that it offers many sources of implicit
parallelism, such as and-parallelism and or-parallelism. A major problem that a parallel model
must address consists in represent the multiple values that shared variables can be binded to when
exploited in parallel. Binding Arrays and Environment Copying are two or-parallel models that
efficiently solve that problem. Recently, research in combining independent and-parallelism and
or-parallelism within the same system has led to two new binding representation approaches: the
Sparse Binding Array (an evolution of binding arrays) and the Copy-On-Write binding models.

In this paper, we investigate whether for or-parallelism the newer models are practical alter-
natives to copying. To address this question, we experimented with YapOr, an or-parallel copying
system using the YAP Prolog engine, and we implemented the Sparse Binding Array (SBA) and
the Copy-On-Write («COWL) over the original system. The three alternative systems share
schedulers and the underlying engine; they differ only in their binding scheme. We compared
their performance on a set of well-known all-solutions benchmarks.

1 Introduction

One of the advantages of logic programming is the fact that one can exploit implicit parallelism in
logic programs. Implicit parallelism reduces the effort required to speedup logic programs through
parallelism. Moreover, implicit parallel systems alleviate the user from the actual details of work
management, which can be quite difficult to program for the irregular problems commonly addressed
in logic programming applications. Logic programs have two major forms of implicit parallelism:
or-parallelism (ORP) and and-parallelism (ANDP). Given an initial query to the logic programming
system, ORP results from trying several different alternatives simultaneously, and ANDP stems from
dividing the work required to solve one alternative.

Arguably, or-parallel systems, such as Aurora [LBDT90] and Muse [AK90a], have been the most
successful parallel logic programming systems so far. One first reason is the large number of logic
programming applications that require search, including structured database querying, expert systems
and knowledge discovery applications. Also, parallelising search can be quite useful for an important
extension of Prolog, the constraint-based systems, commonly used for decision-support applications.

Two major issues must be addressed to exploit ORP. First, one must address the multiple bindings
problem. This problem consists in efficiently represent the multiple values that variables in shared
branches of the search tree can be binded to when exploited in parallel. Several mechanisms have
been proposed for addressing this problem [GJ93]. Second, the ORP system itself must be able to
divide work between each computing agent. This scheduling problem is made complex by the dynamic
nature of work in ORP systems.

Most modern parallel logic programming systems, including SICStus Prolog [CW88], Eclipse [AA95],
and YAP [DSCRA98] use copying as a solution to the multiple bindings problem. Copying was made
popular by the Muse ORP system, a system derived from an early release of SICStus Prolog. The
key idea for copying is that each worker (or computing agent; or engine; or processor; or process)



work in shared memory, but in separate stacks. Whenever a worker, say P, wants to give work to
another, say (), P simply copies its own stacks to ). As we shall see, the actual implementation of
copying requires quite a few more details.

The major advantage of copying is that it has a quite low overhead over the corresponding
sequential system, as was shown in Muse [AK90b]. However, copying does have its problems:

e It is hard to exploit more forms of parallelism than just ORP in copying-based systems. For
instance, one particularly interesting form of ANDP is independent and-parallelism (IAP), found
in divide-and-conquer problems. Because memory management is more complex in the presence
of TAP, copying is more suitable to large overheads, reducing substantially the advantages of
combining TAP and ORP.

e ORP systems often have to suspend branches during execution. One reason is that a side-effect
should only be executed when its execution branch is leftmost. A second reason is that in some
forms of search one may be interested in exploiting more interesting branches. Suspending
branches in copying-based parallel logic programming systems requires copying the branch to
a separate area, and is therefore expensive.

Recent research in the combination of TAP and ORP has led to two new binding represen-
tation approaches: the SBA (Sparse Binding Array) [CSS97] and the «COWL (Copy-On-Write
design) [San99a]. The SBA is an evolution of the original Binding Array representation [War87].
In Binding Array systems, the stacks form a cactus-tree representing the search-tree, and workers
expand tips of this tree. Bindings that may be different are stored locally, in the binding array.
The aCOWL scheme uses a copy-on-write mechanism to do lazy copying. Both of these approaches
elegantly support TAP and ORP.

The question remains of how these systems compare in performance for ORP, in order to verify
whether they are indeed practical alternatives to copying. To address this question, we experimented
with YapOr, an ORP copying system using the YAP engine [RSS99b], and we implemented the SBA
and the aCOWL over the original system. The three alternative systems share schedulers and the
underlying engine: they do only differ in their binding scheme. We then used a set of well-known
ORP all-solutions benchmarks to evaluate how did they perform comparatively.

The paper is organised as follows. In section 2, we review in more detail the three models. Next,
in section 3, we discuss their implementation, and in section 4, we present and discuss experimental
results.

2 Models for Or-Parallelism

A goal in our research is to develop a system capable of exploring implicitly all forms of parallelism in
Prolog programs. A key point to achieve such a goal is to determine a binding model that simplifies
the exploitation of the combined forms of parallelism. In this paper we concentrate in three binding
models: environment copying, copy-on-write and sparse binding array.

2.1 Environment Copying

Environment copying was first introduced by Ali and Karlson in the Muse system [AK90a]. In this
model each worker maintains a separate environment, almost as in sequential Prolog, in which the
bindings it makes are independently recorded, hence solving the multiple bindings problem. When
a worker has no work and becomes idle, it searches for a busy worker from which to request work.
Sharing work among workers thus involves the actual copying of the computation state (WAM stacks)
from the busy worker to the requester. After copying, both workers have exactly the same state and
will diverge by executing alternative branches at the choice-point the work sharing took place. An
efficient implementation of this model requires two optimisations:

e Incremental copying. The overheads of copying the computation state in a sharing work
operation can be reduced by copying just the parts of the execution stacks that are different
among the workers involved.



Figure 1 helps to illustrate this strategy. Suppose that worker () does not find work in its
branch, and that there is a worker P with available work. () asks P for sharing, and backtracks
to the first node that is common to P, therefore becoming partially consistent with part of P.
Consider that worker P decides to share its private nodes and () copies the differences between
P and @. These differences are calculated through the information stored in the common node
found by @ and in the top registers of the local, heap and trail stacks of P. To fully synchronize
the computational state between the two workers, worker @) needs to install from P the bindings
trailed in the copied segments that refers to variables stored in the maintained segments.

Obviously, the scheduler plays an important role here by guiding idle workers to request work
from busy workers which are nearest (in terms of choice-points).

e Tree of public or-frames. In order to efficiently synchronize workers at sharing operations and
to avoid having two workers picking the same branches, a tree of public (or shared) or-frames
is built in a shared space. An or-frame is added to the public tree for each choice-point made
public by the worker that is sharing work.

A bottom-most scheduling strategy has been very successful with this binding model. It requires
for a busy worker at a sharing operation to release all of its current private choice-points. This
allows for the bottom-most choice-point be selected to maximize the amount of shared work
with the requesting worker. This strategy has proven to induce coarse-grained tasks.

P Local Space
Local Stack Heap Trail
|:| ROOt
Shared Area
|:| \
| I — / 0
Private Area N P Top Segments
I - common variable modified in P. P

Figure 1: Some aspects of incremental copying.

2.2 Copy-On-Write

This model, named «COWL, has been proposed by Santos Costa [San99a] with a view to overcome
limitations of the environment copying model to support both ANDP and ORP. The model makes
use of the copy-on-write technique that has proven effective in Operating Systems.

In the aCOWL, as in environment copying, a separate environment is maintained by each worker
and a tree of public or-frames is used to synchronize sharing. The key idea of aCOWL is that:
whenever a worker () wants to share work from a different worker P, it simply logically copies all
execution stacks from P. The insight is that although stacks will be logically copied, they should be
physically copied only on demand. To do so, the «COWL depends on the availability of a Copy-On-
Write mechanism on the host Operating System. The aCOWL has two major advantages:

e It is independent of what we are copying, that is, we need not know what to copy, as we logically
copy everything. Thus, instead of standard Prolog stacks, we may copy the environment for a
constraint solver, or a set of stacks for ANDP computations. Indeed, we might not even have
a Prolog system at all, and the model can be used to parallelise any system that uses a similar
style of search!



e Because copying is done on demand, we do not need to worry about the overheads of copying
large stacks. This is particularly a problem for ANDP computations.

The main drawback of the aCOWL is that the actual setting up of the COW mechanism can be
itself quite expensive, and in fact, more expensive than just copying the stacks. In the next sections
we discuss an implementation and its performance results.

2.3 Sparse Binding Array

The Sparse Binding Array (SBA) derives from the Binding Array model. Binding arrays were
originally proposed by Warren for the SRI model [War87]. In this model execution stacks are
distributed over a shared address space, forming the so-called cactus-stack. In more detail, workers
expand the stacks in the part of the shared space they own, and they can directly access the stacks
originally created by other workers. In Binding Array based systems, workers initially do not inform
the system that they have created new alternatives, and thus have exclusive access to them. This
is called private work. At some point they may be requested to make this work available. They
therefore must make the work public.

Most, but not all, accesses to both private and public work are read-only. The major updates
to public and private work are for bindings of variables. Bindings to the public part of the tree are
temptative, and in fact different alternatives of the search tree may give different values, or even no
value, to the same variable. These bindings are called conditional bindings, and they are also stored
in the trail data-area, so that they can later be undone.

Conditional bindings cannot be stored in the shared tree. Instead, in the original Binding Array,
workers use a private array data structure associated with each computing agent to record conditional
bindings. To implement this mechanism, whenever a new variable is created, it is given a variable
number uniquely identifying its entry in the binding array. The numbering of variables in the binding
array is maintained by a counter that is incremented as every new variable is created. This counter
is saved at every parallel choice-point so that whenever a worker attempts to execute an alternative
branch it can get a copy of the counter and continue its own numbering of the variables it creates
from the same.

Implementing the binding array requires a large number of changes to the original Prolog engine,
and imposes an one-processor overhead of around 30% for Aurora [LBD'90], the most well-known
implementation of binding arrays. Aurora base performance was substantially slower than modern
Prolog systems. Comparison with the copying-based system Muse showed that Aurora had large
overheads and could not get improved speedups.

The major advantage of Aurora was the fact that all work is easily available in the tree. This
makes it simpler to implement sophisticated techniques to handle, say, speculative computations,
often found in single-solution or leftmost-solution problems [Sin93]. On the other hand, Muse did
show a good implementation of speculation [AK92]. Copying therefore became the technique of choice
for parallel logic programming designers.

Interest in binding arrays was rekindled by the integration of TAP. As we have discussed, copying-
based systems cannot handle IAP well [CSS97]. Moreover, IAP also requires fragmented stacks, which
is one the issues that complicate the implementation of binding arrays. Unfortunately, the original
binding array required strict ordering of variables, which is impossible with TAP [CSS97]. A first
proposal, the paged binding array was shown to be too complex [GSC92]. The Sparse Binding Array
(SBA) is a simplification of the Binding Array designed to handle TAP.

The major contribution of the SBA is that each worker has a private virtual address space that
shadows the system shared address space. This address space is mapped at the same fixed location
for each worker in the system. Data structures and unconditional bindings are still stored in the
shared address space. Conditional bindings are stored in the shadow area, which is consulted before
consulting the shared area. The SBA thus solves the multiple bindings problem.

Note that the shadow area inherits the structure of the shared area. This simplifies implemen-
tation, reduces sequential overheads, and allows sharing of the complex stack structure created by
ANDP. On the other hand, still requires some modifications to the original Prolog engine and requires



more memory than the original Binding Array, thus increasing task-switching overhead. An initial
evaluation of the SBA [SCS96] showed that porting Aurora to the SBA improved performance by a
factor of 10-15% on a Sparc machine. The better performance of Aurora in task-switching allowed
it to recover this overhead for larger numbers of workers in fine and medium-grained benchmarks,

3 Implementation Issues

The literature includes several comparisons of copying-based versus Binding Array based systems, and
particularly of Aurora vs. Muse [BRSW91, CSS95]. One problem with these studies is that Aurora
and Muse have very different implementations: it is quite difficult to know whether the differences
stem from the model or from the actual implementation.

In contrast, we experimented our three models by implementing them over the same or-parallel
system: the YapOr system [RSS99b]. YapOr is derived from the Yap engine [San99b], which is one
of the fast emulator-based Prolog systems currently available. Yap is two to four times faster than
the sequential Aurora engine on the same hardware, and only two to three times slower than systems
that generate native-code.

3.1 The YapOr

The YapOr system is based on the sequential Yap engine and was originally designed to implement
copying. The main changes required to implement YapOr were in the instructions that manipulate
choice-points, other changes in the initialisation code for memory allocation and worker creation,
some small changes in the compiler to provide extra information for managing ORP, and a change
designed to support built-in synchronisation.

In a nutshell, the adapted engine communicates with YapOr through a fixed set of interface macros
and through two special instructions. The macros are activated when choice-points are activated,
updated, or removed. The two instructions are activated whenever a worker backtracks to a shared
choice-point. One instruction processes choice-points from standard predicates, and the other choice-
points from sequential predicates (alternatives are exploited in order).

The scheduler is the major component of YapOr. Work is represented as a set of or-frames in
a special shared area. A worker without work consults this area and the GLOBAL data-structure,
which contains data on work and the status of each worker, until it finds work. If there is no
work in the shared tree, the worker becomes idle and tries to share work from a busy worker. This
sharing is implemented by two model dependent functions: p_share work(), for the busy worker,
and q_share work (), for the idle one. After sharing, the previously idle worker will backtrack to a
newly shared choice-point, whereas the previously busy worker continues execution from the same
point. Note that to simplify incremental copying, the idle worker moves up in the tree before sharing.

Sharing is implemented through the algorithm in Figure 2. The idle worker waits for a sharing
signal while the busy worker prepares the operation. Copying is then performed by the idle worker.
The two workers then synchronise again. At the end of the day, the idle worker backtracks whereas
the busy one continues.

Note that this latter component is the one dependent on copying. The engine itself communicates
only with the scheduler, and does not need to know that copying is used. Further support is required
for implementing suspension of work in this model, as stacks must be copied to and from a separate
area in order to restart suspended work.

3.2 The aCOWL

To support sharing of work in the aCOWL, we change p_share_work() and g_share_work() to use
the main function used to implement copy-on-write in Unix-style Operating Systems: the fork()
function. The idea is that whenever a worker P accepts a work request from another worker @),
worker P forks a child process that will assume the identity of worker (), whilst the older process
executing @) exits. At this point, the new process () has the same state as that of P. To start
execution, the process @) is forced to backtrack to the deeper choice-point. Note that scheduling is



Worker P Signals Worker Q

Compute segments to copy Waiting accept signal
---—accept----> .
Copy trail ?
Copy heap ?
Waiting sharing_ok signal

Sharing step

--sharing_ok--> .
. Copy local stack 7
Help Q in copy step? .
S ready-—-->
Waiting installation signal
. <-installation- .
Back to Prolog execution Waiting ready signal

Backtrack to shared node 7 Installation step
Waiting ready signal
<----ready-----

Back to Prolog execution Backtrack to shared area

Figure 2: Sharing between workers in YapOr.

realised in exactly the same way as for the environment copying model, i.e., through the use of a
public tree of or-frames in shared space.

Figure 3 shows the synchronisation steps in the «COWL in some detail. The aCOWL also
simplifies the memory management and requires an extra process to control the terminal.

Worker P Signals Worker Q

Waiting accept signal

. ----accept----> .

Sharing step exit ()

fork() .

Waiting ready signal Child takes Q’s id
{----ready-----

Back to Prolog execution Backtrack to shared area

Figure 3: Sharing between workers in « COWL.

Note that fork() is a rather expensive operation. For programs which have parallelism of high
granularity, one expects that the workers will be busy most of the time and the number of sharing
operations be small. In this case the model is expected to be efficient. On the other hand, we would
expect worse results for fine-grained applications. Note that one could use the mmap () primitive as
an alternative to fork (), but we felt fork() provided the most elegant solution.

3.3 The SBA

Supporting the SBA requires changes to both the engine and the sharing mechanism. The main
changes to the engine affect pointer comparison, and variable and binding representation.

As regards pointer comparison, the Yap system assumes pointers in the stacks follow a well-defined
ordering: the local stack is above the global stack, the local stack grows downwards, and the global
stack grows upwards. These invariants allows one to easily calculate variable age and are useful for
trailing and recovering space. Unfortunately, they are not valid in the SBA, as the cactus stack is
fragmented. Aurora uses the binding array offset as a means for calculating age, but such a counter
is not immediately available. The Aurora/SBA implementation uses an age counter that records the
number of choice-points above. We do not maintain such counters, and instead use the following rule:

1. the sequential invariant is guaranteed to hold for private data;



2. shared data in the cactus-stack are protected as regards recovering space, and age follows the
simple rule: smaller is older.

To implement this rule, each worker manages the so-called frozen registers that separate its private
from the shared parts of the tree. Moreover, an extra register, BB, replaces the WAM’s B register
when detecting whether a binding is conditional. Note that these same problems must be addressed
to support TAP.

The second issue we had to address is variable and binding representation. In the original WAM,
a variable is represented as a pointer to itself. This is unfortunate, because we would need to initialise
the whole of the binding array. Binding Array based systems (with the exception of Andorra-I) thus
assume unbound variables are ultimately null cells. In Aurora, a new variable is initialised as a tagged
pointer to the binding array, itself null. In the SBA we do not need pointers to the binding array,
as it is sufficient to calculate the offset we are at in the shared space, and add it to the SBA base.
Aurora/SBA thus initialises a new variable as a tagged age field.

We decided to optimise for the sequential overhead in the YapOr/SBA implementation. To do
so, a new cell is initialised as a null field. Moreover, and in contrast to previous Binding Array based
systems, conditional bindings will be moved to the SBA only when they are made public, and only
then. This means that private execution in our scheme will not use the SBA at all.

As bindings are made public they will be copied to the SBA. Moreover, the original cell will be
made to point to the SBA. Thus the variable dereferencing mechanism is unaware of the existence of
the SBA. Note that the pointer that is placed in the original cell is independent of workers, although
it points at a private structure.

The changes to the engine are therefore quite extensive. As regards the changes to p_share work ()
and g_share_work(), the new algorithm is explained in Figure 4. Sharing involves creating an or-
frame per choice-point and consulting the trail on which variables are now public.

Worker P Signals Worker Q
Compute segments to share Waiting accept signal
. ----accept----> .
Sharing step Waiting sharing_ok signal

. --sharing_ok--> .
Waiting installation signal .
. <-installation- .

Back to Prolog execution Installation step
Backtrack to shared area

Figure 4: Sharing between workers in SBA.

4 Performance Evaluation

In order to compare the performance of these three models, we experimented the three systems in
two parallel architectures: a Sun SparcCenter2000 with eight CPUs and 256 MB of memory, running
Solaris2.7, and a PC server with four PentiumPro CPUs and 128MB of memory, running Linux2.2.5
from standard RedHat6.0. Each CPU in the PC server runs at 200MHz, contains 256KB of cache
memory, and is about four times as fast as each CPU in the SparcCenter. All systems used the same
compilation flags. Due to a bug in Linux2.2.5, we could not use mmap () for SBA and «COWL in the
PC server. We therefore used the SYSV shm() routines for this purpose.

We used a standard set of all-solutions benchmarks, widely used to compare ORP logic-programming
systems [Sze89]. We preferred all-solutions benchmarks because they are not susceptible to speculative
execution, and our goal was to compare the models. The benchmarks includes the well-know n-
queens problem, two puzzles (puzzle and cubes) from Evan Tick’s book [Tic91], an hamiltonian
graph problem and a naive sorting resolution.



Table 1 shows the base running times, in seconds, for Yap Prolog, and the one worker running
times, over the base runnings, for the parallel models. The overhead for YapOr confirms previous
results, and is averaged over all benchmarks between 8% and 12%. The overhead for SBA is, as
expected, higher but not very much so, averaged between 13% and 29%. We believe this good
result stems from the optimisations discussed in the previous section. In fact, YapOr/SBA performs
relatively better than Aurora compared to Muse. We believe this result supports continuing research
on the SBA.

Yap Prolog YapOr aCOWL SBA
Programs PC |  Sparc PC [ Sparc || PC | Sparc || PC | Sparc
queens12 T (20.980) | 1 (85.970) || 1.09 1.05 || 1.07 T.08 || 1.09 1.14
queens10 1 (0.710) 1 ( 2.850) 1.10 1.07 1.07 1.08 1.10 1.16
cubes? 1(2.545) | 1(9.505) | 1.05 1.05 || 1.03 1.07 || 1.08 1.14
cubes 1(0.220) | 1(0.760) || 1.07 1.20 || 1.05 119 || 1.10 1.25
puzzle 1 (2.290) 1 (9.220) 1.00 1.05 1.00 1.09 1.11 1.23
nsort 1 (35.550) 1 (145.080) 1.11 1.17 1.11 1.23 1.21 1.66
ham 1 (0.470) 1 ( 1.490) 1.12 1.27 1.11 1.43 1.20 1.46
[ Average [108] 1a2[1o06] 117 [113] 1.29 |

Table 1: One worker running times over the base sequential runnings for the parallel models.

The most surprising result was obtained for the aCOWL. The aCOWL is slower than copying
for Solaris, but faster for Linux! This result is consistent across benchmarks, and the variations are
quite above the noise in our measures. We expected performance to be about the same, as for a
single processor we execute quite the same code: the systems only differ in their scheduling code,
and this is never activated. We explain the bad results from the «COWL in the SparcCenter due to
the virtual-memory cache. We obtained similar results in other experiments, and we believed they
stemmed from the virtual-memory cache used in the SparcCenter. There is a limited number of tags
for address spaces, and due to forking, the «COWL requires more tags than the original YapOr. In
contrast, we suppose the good results with the «COWL in Linux derive from the problems in the
Linux mmap () implementation, that is being used for copying.

Table 2 and 3 show speedups relative to the one worker running time on the PC server and
SparcCenter, respectively. The results show that the best speedups are obtained with copying. The
SBA follows quite closely, but the speedups are not as good for higher number of workers. We believe
this is partly a problem with the SBA optimisations. As work becomes more fine-grained, more
bindings need to be stored in the binding array. Execution thus slows down as the system follows
longer memory references and touches more cache-lines and pages.

2 workers 3 workers 4 workers

| £ s| £ s | £

g S Y| 2 S Yl g S Y

@ O (2 O @ O
Programs A N éJv A N 0? A & é)v
queens12 2.00 1.99 | 2.00 3.00 2.87 | 2.99 4.00 3.75 | 3.99
queens10 1.98 1.84 | 1.99 2.90 1.90 | 2.93 3.86 2.03 | 3.91
cubes? 2.00 1.99 | 2.02 2.99 2.91 | 3.03 3.98 3.65 | 4.05
cubesh 2.00 1.89 | 2.02 2.97 2.52 | 3.04 3.95 2.18 | 4.02
puzzle 1.98 1.95 | 1.91 2.97 2.38 | 2.84 3.96 2.74 | 3.79
nsort 2.00 2.02 | 1.92 3.01 2.95 | 2.86 4.02 3.86 | 3.82
ham 1.99 1.88 | 1.98 2.95 2.70 | 2.94 3.90 2.50 | 3.85

| Average || 1.99 | 1.94 | 1.98 || 2.97 | 2.60 | 2.95 || 3.95 | 2.96 | 3.92 |

Table 2: Speedups relative to the one worker running time on the PC server.

The results for the aCOWL are quite good, considering the very simple approach we use to share
work. The aCOWL performs well for smaller number of workers and for coarse-grained applications.
As granularity decreases, the overhead of the fork() operation becomes more costly, and system
performance decreases versus other systems. As implemented, the «COWL is therefore of interest
for parallel workstations or for applications with large running times.



2 workers 4 workers 6 workers 8 workers
s & Vsl & Tel & <] &
Q < Q Q N4 Q Q < Q Q N4

@ O @ O @ O @ O
Programs A < év A < § A~ < év A < §
queens12 2.01 2.00 | 1.97 4.05 3.73 | 3.90 6.07 5.28 | 5.87 8.07 5.67 | 7.57
queensl0 1.99 1.77 | 1.91 3.90 2.22 | 3.78 5.49 2.43 | 5.38 7.31 1.93 | 7.01
cubes? 2.00 1.95 | 1.97 4.00 3.71 | 3.66 5.94 4.83 | 5.28 7.84 5.15 | 7.14
cubesh 1.99 1.77 | 1.99 3.94 2.54 | 3.78 5.76 2.59 | 4.49 7.44 1.78 | 5.91
puzzle 1.97 1.88 | 1.81 3.59 2.71 | 3.57 5.37 3.19 | 5.09 7.06 3.13 | 6.82
nsort 2.04 2.01 | 2.25 3.90 3.82 | 4.51 5.97 5.49 | 6.69 7.38 6.35 | 7.54
ham 1.98 1.75 | 1.91 3.72 2.61 | 3.53 5.52 2.42 | 5.19 7.09 1.93 | 6.71

[ Average ]| 200 ] 188 [ 1.97 [[ 387 ] 3.05 [ 382 573 ] 375 [543 ] 746 [ 3.71 [ 6.96 |

Table 3: Speedups relative to the one worker running time on the SparcCenter.

5 Conclusions

We have discussed the performance of three models for the exploitation of ORP in logic programs.
Our results show that copying has a somewhat better performance for all-solution search problems.
The results confirm the relatively low overheads of copying for ORP systems.

Our results confirm that the SBA is a valid alternative to copying. Although the SBA is slightly
slower than copying and cannot achieve as good speedups, it is an interesting alternative for the
applications where copying does not work so well. As an example, we are using the SBA to implement
TAP.

Our implementation of the «COWL shows good base performance, but suffers heavily as parallelis-
m becomes more fine-grained. Still, we see the aCOWL as a valid alternative since the applications
which interest us the most have very good parallelism. The aCOWL has two interesting advantages
for such applications: it facilitates support of extensions to Prolog, such as sophisticated constraint
systems, and it largely simplifies the implementation of garbage collection, that in this model can
be performed independently by each worker. The next major challenge for the «COWL will be the
support of suspension, required for single-solution applications.

We would like to simulate low-level simulation in order to better quantify how the memory
footprints and miss-rates differs among models. We are working on better application support for
constraint and inductive logic programming systems. Moreover, we are using copying as the basis for
parallelising tabling [RSS99a], useful for model-checking, and the SBA as the basis for TAP [CCGT99],
which has been used in natural language applications.
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