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.up.ptAbstra
tOne of the advantages of logi
 programming is the fa
t that it o�ers many sour
es of impli
itparallelism, su
h as and-parallelism and or-parallelism. A major problem that a parallel modelmust address 
onsists in represent the multiple values that shared variables 
an be binded to whenexploited in parallel. Binding Arrays and Environment Copying are two or-parallel models thateÆ
iently solve that problem. Re
ently, resear
h in 
ombining independent and-parallelism andor-parallelism within the same system has led to two new binding representation approa
hes: theSparse Binding Array (an evolution of binding arrays) and the Copy-On-Write binding models.In this paper, we investigate whether for or-parallelism the newer models are pra
ti
al alter-natives to 
opying. To address this question, we experimented with YapOr, an or-parallel 
opyingsystem using the YAP Prolog engine, and we implemented the Sparse Binding Array (SBA) andthe Copy-On-Write (�COWL) over the original system. The three alternative systems shares
hedulers and the underlying engine; they di�er only in their binding s
heme. We 
omparedtheir performan
e on a set of well-known all-solutions ben
hmarks.1 Introdu
tionOne of the advantages of logi
 programming is the fa
t that one 
an exploit impli
it parallelism inlogi
 programs. Impli
it parallelism redu
es the e�ort required to speedup logi
 programs throughparallelism. Moreover, impli
it parallel systems alleviate the user from the a
tual details of workmanagement, whi
h 
an be quite diÆ
ult to program for the irregular problems 
ommonly addressedin logi
 programming appli
ations. Logi
 programs have two major forms of impli
it parallelism:or-parallelism (ORP) and and-parallelism (ANDP). Given an initial query to the logi
 programmingsystem, ORP results from trying several di�erent alternatives simultaneously, and ANDP stems fromdividing the work required to solve one alternative.Arguably, or-parallel systems, su
h as Aurora [LBD+90℄ and Muse [AK90a℄, have been the mostsu

essful parallel logi
 programming systems so far. One �rst reason is the large number of logi
programming appli
ations that require sear
h, in
luding stru
tured database querying, expert systemsand knowledge dis
overy appli
ations. Also, parallelising sear
h 
an be quite useful for an importantextension of Prolog, the 
onstraint-based systems, 
ommonly used for de
ision-support appli
ations.Two major issues must be addressed to exploit ORP. First, one must address the multiple bindingsproblem. This problem 
onsists in eÆ
iently represent the multiple values that variables in sharedbran
hes of the sear
h tree 
an be binded to when exploited in parallel. Several me
hanisms havebeen proposed for addressing this problem [GJ93℄. Se
ond, the ORP system itself must be able todivide work between ea
h 
omputing agent. This s
heduling problem is made 
omplex by the dynami
nature of work in ORP systems.Most modern parallel logi
 programming systems, in
luding SICStus Prolog [CW88℄, E
lipse [AA95℄,and YAP [DSCRA98℄ use 
opying as a solution to the multiple bindings problem. Copying was madepopular by the Muse ORP system, a system derived from an early release of SICStus Prolog. Thekey idea for 
opying is that ea
h worker (or 
omputing agent; or engine; or pro
essor; or pro
ess)2



work in shared memory, but in separate sta
ks. Whenever a worker, say P , wants to give work toanother, say Q, P simply 
opies its own sta
ks to Q. As we shall see, the a
tual implementation of
opying requires quite a few more details.The major advantage of 
opying is that it has a quite low overhead over the 
orrespondingsequential system, as was shown in Muse [AK90b℄. However, 
opying does have its problems:� It is hard to exploit more forms of parallelism than just ORP in 
opying-based systems. Forinstan
e, one parti
ularly interesting form of ANDP is independent and-parallelism (IAP), foundin divide-and-
onquer problems. Be
ause memory management is more 
omplex in the presen
eof IAP, 
opying is more suitable to large overheads, redu
ing substantially the advantages of
ombining IAP and ORP.� ORP systems often have to suspend bran
hes during exe
ution. One reason is that a side-e�e
tshould only be exe
uted when its exe
ution bran
h is leftmost. A se
ond reason is that in someforms of sear
h one may be interested in exploiting more interesting bran
hes. Suspendingbran
hes in 
opying-based parallel logi
 programming systems requires 
opying the bran
h toa separate area, and is therefore expensive.Re
ent resear
h in the 
ombination of IAP and ORP has led to two new binding represen-tation approa
hes: the SBA (Sparse Binding Array) [CSS97℄ and the �COWL (Copy-On-Writedesign) [San99a℄. The SBA is an evolution of the original Binding Array representation [War87℄.In Binding Array systems, the sta
ks form a 
a
tus-tree representing the sear
h-tree, and workersexpand tips of this tree. Bindings that may be di�erent are stored lo
ally, in the binding array.The �COWL s
heme uses a 
opy-on-write me
hanism to do lazy 
opying. Both of these approa
heselegantly support IAP and ORP.The question remains of how these systems 
ompare in performan
e for ORP, in order to verifywhether they are indeed pra
ti
al alternatives to 
opying. To address this question, we experimentedwith YapOr, an ORP 
opying system using the YAP engine [RSS99b℄, and we implemented the SBAand the �COWL over the original system. The three alternative systems share s
hedulers and theunderlying engine: they do only di�er in their binding s
heme. We then used a set of well-knownORP all-solutions ben
hmarks to evaluate how did they perform 
omparatively.The paper is organised as follows. In se
tion 2, we review in more detail the three models. Next,in se
tion 3, we dis
uss their implementation, and in se
tion 4, we present and dis
uss experimentalresults.2 Models for Or-ParallelismA goal in our resear
h is to develop a system 
apable of exploring impli
itly all forms of parallelism inProlog programs. A key point to a
hieve su
h a goal is to determine a binding model that simpli�esthe exploitation of the 
ombined forms of parallelism. In this paper we 
on
entrate in three bindingmodels: environment 
opying, 
opy-on-write and sparse binding array.2.1 Environment CopyingEnvironment 
opying was �rst introdu
ed by Ali and Karlson in the Muse system [AK90a℄. In thismodel ea
h worker maintains a separate environment, almost as in sequential Prolog, in whi
h thebindings it makes are independently re
orded, hen
e solving the multiple bindings problem. Whena worker has no work and be
omes idle, it sear
hes for a busy worker from whi
h to request work.Sharing work among workers thus involves the a
tual 
opying of the 
omputation state (WAM sta
ks)from the busy worker to the requester. After 
opying, both workers have exa
tly the same state andwill diverge by exe
uting alternative bran
hes at the 
hoi
e-point the work sharing took pla
e. AneÆ
ient implementation of this model requires two optimisations:� In
remental 
opying. The overheads of 
opying the 
omputation state in a sharing workoperation 
an be redu
ed by 
opying just the parts of the exe
ution sta
ks that are di�erentamong the workers involved. 3



Figure 1 helps to illustrate this strategy. Suppose that worker Q does not �nd work in itsbran
h, and that there is a worker P with available work. Q asks P for sharing, and ba
ktra
ksto the �rst node that is 
ommon to P , therefore be
oming partially 
onsistent with part of P .Consider that worker P de
ides to share its private nodes and Q 
opies the di�eren
es betweenP and Q. These di�eren
es are 
al
ulated through the information stored in the 
ommon nodefound by Q and in the top registers of the lo
al, heap and trail sta
ks of P . To fully syn
hronizethe 
omputational state between the two workers, worker Q needs to install from P the bindingstrailed in the 
opied segments that refers to variables stored in the maintained segments.Obviously, the s
heduler plays an important role here by guiding idle workers to request workfrom busy workers whi
h are nearest (in terms of 
hoi
e-points).� Tree of publi
 or-frames. In order to eÆ
iently syn
hronize workers at sharing operations andto avoid having two workers pi
king the same bran
hes, a tree of publi
 (or shared) or-framesis built in a shared spa
e. An or-frame is added to the publi
 tree for ea
h 
hoi
e-point madepubli
 by the worker that is sharing work.A bottom-most s
heduling strategy has been very su

essful with this binding model. It requiresfor a busy worker at a sharing operation to release all of its 
urrent private 
hoi
e-points. Thisallows for the bottom-most 
hoi
e-point be sele
ted to maximize the amount of shared workwith the requesting worker. This strategy has proven to indu
e 
oarse-grained tasks.
Q

P

Local Stack TrailHeap

P Local Space

- Common variable modified in P.

Private Area

Shared Area

P Top Segments

Root

Figure 1: Some aspe
ts of in
remental 
opying.2.2 Copy-On-WriteThis model, named �COWL, has been proposed by Santos Costa [San99a℄ with a view to over
omelimitations of the environment 
opying model to support both ANDP and ORP. The model makesuse of the 
opy-on-write te
hnique that has proven e�e
tive in Operating Systems.In the �COWL, as in environment 
opying, a separate environment is maintained by ea
h workerand a tree of publi
 or-frames is used to syn
hronize sharing. The key idea of �COWL is that:whenever a worker Q wants to share work from a di�erent worker P , it simply logi
ally 
opies allexe
ution sta
ks from P . The insight is that although sta
ks will be logi
ally 
opied, they should bephysi
ally 
opied only on demand. To do so, the �COWL depends on the availability of a Copy-On-Write me
hanism on the host Operating System. The �COWL has two major advantages:� It is independent of what we are 
opying, that is, we need not know what to 
opy, as we logi
ally
opy everything. Thus, instead of standard Prolog sta
ks, we may 
opy the environment for a
onstraint solver, or a set of sta
ks for ANDP 
omputations. Indeed, we might not even havea Prolog system at all, and the model 
an be used to parallelise any system that uses a similarstyle of sear
h! 4



� Be
ause 
opying is done on demand, we do not need to worry about the overheads of 
opyinglarge sta
ks. This is parti
ularly a problem for ANDP 
omputations.The main drawba
k of the �COWL is that the a
tual setting up of the COW me
hanism 
an beitself quite expensive, and in fa
t, more expensive than just 
opying the sta
ks. In the next se
tionswe dis
uss an implementation and its performan
e results.2.3 Sparse Binding ArrayThe Sparse Binding Array (SBA) derives from the Binding Array model. Binding arrays wereoriginally proposed by Warren for the SRI model [War87℄. In this model exe
ution sta
ks aredistributed over a shared address spa
e, forming the so-
alled 
a
tus-sta
k. In more detail, workersexpand the sta
ks in the part of the shared spa
e they own, and they 
an dire
tly a

ess the sta
ksoriginally 
reated by other workers. In Binding Array based systems, workers initially do not informthe system that they have 
reated new alternatives, and thus have ex
lusive a

ess to them. Thisis 
alled private work. At some point they may be requested to make this work available. Theytherefore must make the work publi
.Most, but not all, a

esses to both private and publi
 work are read-only. The major updatesto publi
 and private work are for bindings of variables. Bindings to the publi
 part of the tree aretemptative, and in fa
t di�erent alternatives of the sear
h tree may give di�erent values, or even novalue, to the same variable. These bindings are 
alled 
onditional bindings, and they are also storedin the trail data-area, so that they 
an later be undone.Conditional bindings 
annot be stored in the shared tree. Instead, in the original Binding Array,workers use a private array data stru
ture asso
iated with ea
h 
omputing agent to re
ord 
onditionalbindings. To implement this me
hanism, whenever a new variable is 
reated, it is given a variablenumber uniquely identifying its entry in the binding array. The numbering of variables in the bindingarray is maintained by a 
ounter that is in
remented as every new variable is 
reated. This 
ounteris saved at every parallel 
hoi
e-point so that whenever a worker attempts to exe
ute an alternativebran
h it 
an get a 
opy of the 
ounter and 
ontinue its own numbering of the variables it 
reatesfrom the same.Implementing the binding array requires a large number of 
hanges to the original Prolog engine,and imposes an one-pro
essor overhead of around 30% for Aurora [LBD+90℄, the most well-knownimplementation of binding arrays. Aurora base performan
e was substantially slower than modernProlog systems. Comparison with the 
opying-based system Muse showed that Aurora had largeoverheads and 
ould not get improved speedups.The major advantage of Aurora was the fa
t that all work is easily available in the tree. Thismakes it simpler to implement sophisti
ated te
hniques to handle, say, spe
ulative 
omputations,often found in single-solution or leftmost-solution problems [Sin93℄. On the other hand, Muse didshow a good implementation of spe
ulation [AK92℄. Copying therefore be
ame the te
hnique of 
hoi
efor parallel logi
 programming designers.Interest in binding arrays was rekindled by the integration of IAP. As we have dis
ussed, 
opying-based systems 
annot handle IAP well [CSS97℄. Moreover, IAP also requires fragmented sta
ks, whi
his one the issues that 
ompli
ate the implementation of binding arrays. Unfortunately, the originalbinding array required stri
t ordering of variables, whi
h is impossible with IAP [CSS97℄. A �rstproposal, the paged binding array was shown to be too 
omplex [GSC92℄. The Sparse Binding Array(SBA) is a simpli�
ation of the Binding Array designed to handle IAP.The major 
ontribution of the SBA is that ea
h worker has a private virtual address spa
e thatshadows the system shared address spa
e. This address spa
e is mapped at the same �xed lo
ationfor ea
h worker in the system. Data stru
tures and un
onditional bindings are still stored in theshared address spa
e. Conditional bindings are stored in the shadow area, whi
h is 
onsulted before
onsulting the shared area. The SBA thus solves the multiple bindings problem.Note that the shadow area inherits the stru
ture of the shared area. This simpli�es implemen-tation, redu
es sequential overheads, and allows sharing of the 
omplex sta
k stru
ture 
reated byANDP. On the other hand, still requires some modi�
ations to the original Prolog engine and requires5



more memory than the original Binding Array, thus in
reasing task-swit
hing overhead. An initialevaluation of the SBA [SCS96℄ showed that porting Aurora to the SBA improved performan
e by afa
tor of 10{15% on a Spar
 ma
hine. The better performan
e of Aurora in task-swit
hing allowedit to re
over this overhead for larger numbers of workers in �ne and medium-grained ben
hmarks,3 Implementation IssuesThe literature in
ludes several 
omparisons of 
opying-based versus Binding Array based systems, andparti
ularly of Aurora vs. Muse [BRSW91, CSS95℄. One problem with these studies is that Auroraand Muse have very di�erent implementations: it is quite diÆ
ult to know whether the di�eren
esstem from the model or from the a
tual implementation.In 
ontrast, we experimented our three models by implementing them over the same or-parallelsystem: the YapOr system [RSS99b℄. YapOr is derived from the Yap engine [San99b℄, whi
h is oneof the fast emulator-based Prolog systems 
urrently available. Yap is two to four times faster thanthe sequential Aurora engine on the same hardware, and only two to three times slower than systemsthat generate native-
ode.3.1 The YapOrThe YapOr system is based on the sequential Yap engine and was originally designed to implement
opying. The main 
hanges required to implement YapOr were in the instru
tions that manipulate
hoi
e-points, other 
hanges in the initialisation 
ode for memory allo
ation and worker 
reation,some small 
hanges in the 
ompiler to provide extra information for managing ORP, and a 
hangedesigned to support built-in syn
hronisation.In a nutshell, the adapted engine 
ommuni
ates with YapOr through a �xed set of interfa
e ma
rosand through two spe
ial instru
tions. The ma
ros are a
tivated when 
hoi
e-points are a
tivated,updated, or removed. The two instru
tions are a
tivated whenever a worker ba
ktra
ks to a shared
hoi
e-point. One instru
tion pro
esses 
hoi
e-points from standard predi
ates, and the other 
hoi
e-points from sequential predi
ates (alternatives are exploited in order).The s
heduler is the major 
omponent of YapOr. Work is represented as a set of or-frames ina spe
ial shared area. A worker without work 
onsults this area and the GLOBAL data-stru
ture,whi
h 
ontains data on work and the status of ea
h worker, until it �nds work. If there is nowork in the shared tree, the worker be
omes idle and tries to share work from a busy worker. Thissharing is implemented by two model dependent fun
tions: p share work(), for the busy worker,and q share work(), for the idle one. After sharing, the previously idle worker will ba
ktra
k to anewly shared 
hoi
e-point, whereas the previously busy worker 
ontinues exe
ution from the samepoint. Note that to simplify in
remental 
opying, the idle worker moves up in the tree before sharing.Sharing is implemented through the algorithm in Figure 2. The idle worker waits for a sharingsignal while the busy worker prepares the operation. Copying is then performed by the idle worker.The two workers then syn
hronise again. At the end of the day, the idle worker ba
ktra
ks whereasthe busy one 
ontinues.Note that this latter 
omponent is the one dependent on 
opying. The engine itself 
ommuni
atesonly with the s
heduler, and does not need to know that 
opying is used. Further support is requiredfor implementing suspension of work in this model, as sta
ks must be 
opied to and from a separatearea in order to restart suspended work.3.2 The �COWLTo support sharing of work in the �COWL, we 
hange p share work() and q share work() to usethe main fun
tion used to implement 
opy-on-write in Unix-style Operating Systems: the fork()fun
tion. The idea is that whenever a worker P a

epts a work request from another worker Q,worker P forks a 
hild pro
ess that will assume the identity of worker Q, whilst the older pro
essexe
uting Q exits. At this point, the new pro
ess Q has the same state as that of P . To startexe
ution, the pro
ess Q is for
ed to ba
ktra
k to the deeper 
hoi
e-point. Note that s
heduling is6



Worker P Signals Worker Q____________________________________________________________________. .Compute segments to 
opy Waiting a

ept signal. ----a

ept----> .Sharing step Copy trail ?. Copy heap ?. Waiting sharing_ok signal. --sharing_ok--> .. Copy lo
al sta
k ?Help Q in 
opy step? .. -----ready----> .Waiting installation signal .. <-installation- .Ba
k to Prolog exe
ution Waiting ready signal. .Ba
ktra
k to shared node ? Installation stepWaiting ready signal .. <----ready----- .Ba
k to Prolog exe
ution Ba
ktra
k to shared area. .Figure 2: Sharing between workers in YapOr.realised in exa
tly the same way as for the environment 
opying model, i.e., through the use of apubli
 tree of or-frames in shared spa
e.Figure 3 shows the syn
hronisation steps in the �COWL in some detail. The �COWL alsosimpli�es the memory management and requires an extra pro
ess to 
ontrol the terminal.Worker P Signals Worker Q____________________________________________________________________. .. Waiting a

ept signal. ----a

ept----> .Sharing step exit()fork() .Waiting ready signal Child takes Q's id. <----ready----- .Ba
k to Prolog exe
ution Ba
ktra
k to shared area. .Figure 3: Sharing between workers in �COWL.Note that fork() is a rather expensive operation. For programs whi
h have parallelism of highgranularity, one expe
ts that the workers will be busy most of the time and the number of sharingoperations be small. In this 
ase the model is expe
ted to be eÆ
ient. On the other hand, we wouldexpe
t worse results for �ne-grained appli
ations. Note that one 
ould use the mmap() primitive asan alternative to fork(), but we felt fork() provided the most elegant solution.3.3 The SBASupporting the SBA requires 
hanges to both the engine and the sharing me
hanism. The main
hanges to the engine a�e
t pointer 
omparison, and variable and binding representation.As regards pointer 
omparison, the Yap system assumes pointers in the sta
ks follow a well-de�nedordering: the lo
al sta
k is above the global sta
k, the lo
al sta
k grows downwards, and the globalsta
k grows upwards. These invariants allows one to easily 
al
ulate variable age and are useful fortrailing and re
overing spa
e. Unfortunately, they are not valid in the SBA, as the 
a
tus sta
k isfragmented. Aurora uses the binding array o�set as a means for 
al
ulating age, but su
h a 
ounteris not immediately available. The Aurora/SBA implementation uses an age 
ounter that re
ords thenumber of 
hoi
e-points above. We do not maintain su
h 
ounters, and instead use the following rule:1. the sequential invariant is guaranteed to hold for private data;7



2. shared data in the 
a
tus-sta
k are prote
ted as regards re
overing spa
e, and age follows thesimple rule: smaller is older.To implement this rule, ea
h worker manages the so-
alled frozen registers that separate its privatefrom the shared parts of the tree. Moreover, an extra register, BB, repla
es the WAM's B registerwhen dete
ting whether a binding is 
onditional. Note that these same problems must be addressedto support IAP.The se
ond issue we had to address is variable and binding representation. In the original WAM,a variable is represented as a pointer to itself. This is unfortunate, be
ause we would need to initialisethe whole of the binding array. Binding Array based systems (with the ex
eption of Andorra-I) thusassume unbound variables are ultimately null 
ells. In Aurora, a new variable is initialised as a taggedpointer to the binding array, itself null. In the SBA we do not need pointers to the binding array,as it is suÆ
ient to 
al
ulate the o�set we are at in the shared spa
e, and add it to the SBA base.Aurora/SBA thus initialises a new variable as a tagged age �eld.We de
ided to optimise for the sequential overhead in the YapOr/SBA implementation. To doso, a new 
ell is initialised as a null �eld. Moreover, and in 
ontrast to previous Binding Array basedsystems, 
onditional bindings will be moved to the SBA only when they are made publi
, and onlythen. This means that private exe
ution in our s
heme will not use the SBA at all.As bindings are made publi
 they will be 
opied to the SBA. Moreover, the original 
ell will bemade to point to the SBA. Thus the variable dereferen
ing me
hanism is unaware of the existen
e ofthe SBA. Note that the pointer that is pla
ed in the original 
ell is independent of workers, althoughit points at a private stru
ture.The 
hanges to the engine are therefore quite extensive. As regards the 
hanges to p share work()and q share work(), the new algorithm is explained in Figure 4. Sharing involves 
reating an or-frame per 
hoi
e-point and 
onsulting the trail on whi
h variables are now publi
.Worker P Signals Worker Q____________________________________________________________________. .Compute segments to share Waiting a

ept signal. ----a

ept----> .Sharing step Waiting sharing_ok signal. --sharing_ok--> .Waiting installation signal .. <-installation- .Ba
k to Prolog exe
ution Installation step. Ba
ktra
k to shared area. .Figure 4: Sharing between workers in SBA.4 Performan
e EvaluationIn order to 
ompare the performan
e of these three models, we experimented the three systems intwo parallel ar
hite
tures: a Sun Spar
Center2000 with eight CPUs and 256MB of memory, runningSolaris2.7, and a PC server with four PentiumPro CPUs and 128MB of memory, running Linux2.2.5from standard RedHat6.0. Ea
h CPU in the PC server runs at 200MHz, 
ontains 256KB of 
a
hememory, and is about four times as fast as ea
h CPU in the Spar
Center. All systems used the same
ompilation 
ags. Due to a bug in Linux2.2.5, we 
ould not use mmap() for SBA and �COWL in thePC server. We therefore used the SYSV shm() routines for this purpose.We used a standard set of all-solutions ben
hmarks, widely used to 
ompare ORP logi
-programmingsystems [Sze89℄. We preferred all-solutions ben
hmarks be
ause they are not sus
eptible to spe
ulativeexe
ution, and our goal was to 
ompare the models. The ben
hmarks in
ludes the well-know n-queens problem, two puzzles (puzzle and 
ubes) from Evan Ti
k's book [Ti
91℄, an hamiltoniangraph problem and a na��ve sorting resolution. 8



Table 1 shows the base running times, in se
onds, for Yap Prolog, and the one worker runningtimes, over the base runnings, for the parallel models. The overhead for YapOr 
on�rms previousresults, and is averaged over all ben
hmarks between 8% and 12%. The overhead for SBA is, asexpe
ted, higher but not very mu
h so, averaged between 13% and 29%. We believe this goodresult stems from the optimisations dis
ussed in the previous se
tion. In fa
t, YapOr/SBA performsrelatively better than Aurora 
ompared to Muse. We believe this result supports 
ontinuing resear
hon the SBA. Yap Prolog YapOr �COWL SBAPrograms PC Spar
 PC Spar
 PC Spar
 PC Spar
queens12 1 (20.980) 1 ( 85.970) 1.09 1.05 1.07 1.08 1.09 1.14queens10 1 ( 0.710) 1 ( 2.850) 1.10 1.07 1.07 1.08 1.10 1.16
ubes7 1 ( 2.545) 1 ( 9.505) 1.05 1.05 1.03 1.07 1.08 1.14
ubes5 1 ( 0.220) 1 ( 0.760) 1.07 1.20 1.05 1.19 1.10 1.25puzzle 1 ( 2.290) 1 ( 9.220) 1.00 1.05 1.00 1.09 1.11 1.23nsort 1 (35.550) 1 (145.080) 1.11 1.17 1.11 1.23 1.21 1.66ham 1 ( 0.470) 1 ( 1.490) 1.12 1.27 1.11 1.43 1.20 1.46Average 1.08 1.12 1.06 1.17 1.13 1.29Table 1: One worker running times over the base sequential runnings for the parallel models.The most surprising result was obtained for the �COWL. The �COWL is slower than 
opyingfor Solaris, but faster for Linux! This result is 
onsistent a
ross ben
hmarks, and the variations arequite above the noise in our measures. We expe
ted performan
e to be about the same, as for asingle pro
essor we exe
ute quite the same 
ode: the systems only di�er in their s
heduling 
ode,and this is never a
tivated. We explain the bad results from the �COWL in the Spar
Center due tothe virtual-memory 
a
he. We obtained similar results in other experiments, and we believed theystemmed from the virtual-memory 
a
he used in the Spar
Center. There is a limited number of tagsfor address spa
es, and due to forking, the �COWL requires more tags than the original YapOr. In
ontrast, we suppose the good results with the �COWL in Linux derive from the problems in theLinux mmap() implementation, that is being used for 
opying.Table 2 and 3 show speedups relative to the one worker running time on the PC server andSpar
Center, respe
tively. The results show that the best speedups are obtained with 
opying. TheSBA follows quite 
losely, but the speedups are not as good for higher number of workers. We believethis is partly a problem with the SBA optimisations. As work be
omes more �ne-grained, morebindings need to be stored in the binding array. Exe
ution thus slows down as the system followslonger memory referen
es and tou
hes more 
a
he-lines and pages.2 workers 3 workers 4 workersPrograms YapOr �COWL SBA YapOr �COWL SBA YapOr �COWL SBAqueens12 2.00 1.99 2.00 3.00 2.87 2.99 4.00 3.75 3.99queens10 1.98 1.84 1.99 2.90 1.90 2.93 3.86 2.03 3.91
ubes7 2.00 1.99 2.02 2.99 2.91 3.03 3.98 3.65 4.05
ubes5 2.00 1.89 2.02 2.97 2.52 3.04 3.95 2.18 4.02puzzle 1.98 1.95 1.91 2.97 2.38 2.84 3.96 2.74 3.79nsort 2.00 2.02 1.92 3.01 2.95 2.86 4.02 3.86 3.82ham 1.99 1.88 1.98 2.95 2.70 2.94 3.90 2.50 3.85Average 1.99 1.94 1.98 2.97 2.60 2.95 3.95 2.96 3.92Table 2: Speedups relative to the one worker running time on the PC server.The results for the �COWL are quite good, 
onsidering the very simple approa
h we use to sharework. The �COWL performs well for smaller number of workers and for 
oarse-grained appli
ations.As granularity de
reases, the overhead of the fork() operation be
omes more 
ostly, and systemperforman
e de
reases versus other systems. As implemented, the �COWL is therefore of interestfor parallel workstations or for appli
ations with large running times.9



2 workers 4 workers 6 workers 8 workersPrograms YapOr �COWL SBA YapOr �COWL SBA YapOr �COWL SBA YapOr �COWL SBAqueens12 2.01 2.00 1.97 4.05 3.73 3.90 6.07 5.28 5.87 8.07 5.67 7.57queens10 1.99 1.77 1.91 3.90 2.22 3.78 5.49 2.43 5.38 7.31 1.93 7.01
ubes7 2.00 1.95 1.97 4.00 3.71 3.66 5.94 4.83 5.28 7.84 5.15 7.14
ubes5 1.99 1.77 1.99 3.94 2.54 3.78 5.76 2.59 4.49 7.44 1.78 5.91puzzle 1.97 1.88 1.81 3.59 2.71 3.57 5.37 3.19 5.09 7.06 3.13 6.82nsort 2.04 2.01 2.25 3.90 3.82 4.51 5.97 5.49 6.69 7.38 6.35 7.54ham 1.98 1.75 1.91 3.72 2.61 3.53 5.52 2.42 5.19 7.09 1.93 6.71Average 2.00 1.88 1.97 3.87 3.05 3.82 5.73 3.75 5.43 7.46 3.71 6.96Table 3: Speedups relative to the one worker running time on the Spar
Center.5 Con
lusionsWe have dis
ussed the performan
e of three models for the exploitation of ORP in logi
 programs.Our results show that 
opying has a somewhat better performan
e for all-solution sear
h problems.The results 
on�rm the relatively low overheads of 
opying for ORP systems.Our results 
on�rm that the SBA is a valid alternative to 
opying. Although the SBA is slightlyslower than 
opying and 
annot a
hieve as good speedups, it is an interesting alternative for theappli
ations where 
opying does not work so well. As an example, we are using the SBA to implementIAP.Our implementation of the �COWL shows good base performan
e, but su�ers heavily as parallelis-m be
omes more �ne-grained. Still, we see the �COWL as a valid alternative sin
e the appli
ationswhi
h interest us the most have very good parallelism. The �COWL has two interesting advantagesfor su
h appli
ations: it fa
ilitates support of extensions to Prolog, su
h as sophisti
ated 
onstraintsystems, and it largely simpli�es the implementation of garbage 
olle
tion, that in this model 
anbe performed independently by ea
h worker. The next major 
hallenge for the �COWL will be thesupport of suspension, required for single-solution appli
ations.We would like to simulate low-level simulation in order to better quantify how the memoryfootprints and miss-rates di�ers among models. We are working on better appli
ation support for
onstraint and indu
tive logi
 programming systems. Moreover, we are using 
opying as the basis forparallelising tabling [RSS99a℄, useful for model-
he
king, and the SBA as the basis for IAP [CCG+99℄,whi
h has been used in natural language appli
ations.A
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