
Three Amigos: A Tale of Three ExeutionModels for Or-ParallelismV��tor Santos Costa Riardo Roha Fernando Silva
Tehnial Report Series: DCC-99-2

Departamento de Ciênia de Computadores { Fauldade de Ciênias&Laborat�orio de Inteligênia Arti�ial e Ciênia de ComputadoresUniversidade do PortoRua do Campo Alegre, 823 4150 Porto, PortugalTel: +351+226078830 { Fax: +351+226003654http://www.n.up.pt/fup/DCC/Pubs/treports.html



Three Amigos: A Tale of Three Exeution Models forOr-ParallelismV��tor Santos CostaCOPPE/Sistemas, UFRJBrasilvitor�os.ufrj.br Riardo Roha, Fernando SilvaUniversidade do PortoPortugalfriro,fdsg�n.up.ptAbstratOne of the advantages of logi programming is the fat that it o�ers many soures of impliitparallelism, suh as and-parallelism and or-parallelism. A major problem that a parallel modelmust address onsists in represent the multiple values that shared variables an be binded to whenexploited in parallel. Binding Arrays and Environment Copying are two or-parallel models thateÆiently solve that problem. Reently, researh in ombining independent and-parallelism andor-parallelism within the same system has led to two new binding representation approahes: theSparse Binding Array (an evolution of binding arrays) and the Copy-On-Write binding models.In this paper, we investigate whether for or-parallelism the newer models are pratial alter-natives to opying. To address this question, we experimented with YapOr, an or-parallel opyingsystem using the YAP Prolog engine, and we implemented the Sparse Binding Array (SBA) andthe Copy-On-Write (�COWL) over the original system. The three alternative systems shareshedulers and the underlying engine; they di�er only in their binding sheme. We omparedtheir performane on a set of well-known all-solutions benhmarks.1 IntrodutionOne of the advantages of logi programming is the fat that one an exploit impliit parallelism inlogi programs. Impliit parallelism redues the e�ort required to speedup logi programs throughparallelism. Moreover, impliit parallel systems alleviate the user from the atual details of workmanagement, whih an be quite diÆult to program for the irregular problems ommonly addressedin logi programming appliations. Logi programs have two major forms of impliit parallelism:or-parallelism (ORP) and and-parallelism (ANDP). Given an initial query to the logi programmingsystem, ORP results from trying several di�erent alternatives simultaneously, and ANDP stems fromdividing the work required to solve one alternative.Arguably, or-parallel systems, suh as Aurora [LBD+90℄ and Muse [AK90a℄, have been the mostsuessful parallel logi programming systems so far. One �rst reason is the large number of logiprogramming appliations that require searh, inluding strutured database querying, expert systemsand knowledge disovery appliations. Also, parallelising searh an be quite useful for an importantextension of Prolog, the onstraint-based systems, ommonly used for deision-support appliations.Two major issues must be addressed to exploit ORP. First, one must address the multiple bindingsproblem. This problem onsists in eÆiently represent the multiple values that variables in sharedbranhes of the searh tree an be binded to when exploited in parallel. Several mehanisms havebeen proposed for addressing this problem [GJ93℄. Seond, the ORP system itself must be able todivide work between eah omputing agent. This sheduling problem is made omplex by the dynaminature of work in ORP systems.Most modern parallel logi programming systems, inluding SICStus Prolog [CW88℄, Elipse [AA95℄,and YAP [DSCRA98℄ use opying as a solution to the multiple bindings problem. Copying was madepopular by the Muse ORP system, a system derived from an early release of SICStus Prolog. Thekey idea for opying is that eah worker (or omputing agent; or engine; or proessor; or proess)2



work in shared memory, but in separate staks. Whenever a worker, say P , wants to give work toanother, say Q, P simply opies its own staks to Q. As we shall see, the atual implementation ofopying requires quite a few more details.The major advantage of opying is that it has a quite low overhead over the orrespondingsequential system, as was shown in Muse [AK90b℄. However, opying does have its problems:� It is hard to exploit more forms of parallelism than just ORP in opying-based systems. Forinstane, one partiularly interesting form of ANDP is independent and-parallelism (IAP), foundin divide-and-onquer problems. Beause memory management is more omplex in the preseneof IAP, opying is more suitable to large overheads, reduing substantially the advantages ofombining IAP and ORP.� ORP systems often have to suspend branhes during exeution. One reason is that a side-e�etshould only be exeuted when its exeution branh is leftmost. A seond reason is that in someforms of searh one may be interested in exploiting more interesting branhes. Suspendingbranhes in opying-based parallel logi programming systems requires opying the branh toa separate area, and is therefore expensive.Reent researh in the ombination of IAP and ORP has led to two new binding represen-tation approahes: the SBA (Sparse Binding Array) [CSS97℄ and the �COWL (Copy-On-Writedesign) [San99a℄. The SBA is an evolution of the original Binding Array representation [War87℄.In Binding Array systems, the staks form a atus-tree representing the searh-tree, and workersexpand tips of this tree. Bindings that may be di�erent are stored loally, in the binding array.The �COWL sheme uses a opy-on-write mehanism to do lazy opying. Both of these approaheselegantly support IAP and ORP.The question remains of how these systems ompare in performane for ORP, in order to verifywhether they are indeed pratial alternatives to opying. To address this question, we experimentedwith YapOr, an ORP opying system using the YAP engine [RSS99b℄, and we implemented the SBAand the �COWL over the original system. The three alternative systems share shedulers and theunderlying engine: they do only di�er in their binding sheme. We then used a set of well-knownORP all-solutions benhmarks to evaluate how did they perform omparatively.The paper is organised as follows. In setion 2, we review in more detail the three models. Next,in setion 3, we disuss their implementation, and in setion 4, we present and disuss experimentalresults.2 Models for Or-ParallelismA goal in our researh is to develop a system apable of exploring impliitly all forms of parallelism inProlog programs. A key point to ahieve suh a goal is to determine a binding model that simpli�esthe exploitation of the ombined forms of parallelism. In this paper we onentrate in three bindingmodels: environment opying, opy-on-write and sparse binding array.2.1 Environment CopyingEnvironment opying was �rst introdued by Ali and Karlson in the Muse system [AK90a℄. In thismodel eah worker maintains a separate environment, almost as in sequential Prolog, in whih thebindings it makes are independently reorded, hene solving the multiple bindings problem. Whena worker has no work and beomes idle, it searhes for a busy worker from whih to request work.Sharing work among workers thus involves the atual opying of the omputation state (WAM staks)from the busy worker to the requester. After opying, both workers have exatly the same state andwill diverge by exeuting alternative branhes at the hoie-point the work sharing took plae. AneÆient implementation of this model requires two optimisations:� Inremental opying. The overheads of opying the omputation state in a sharing workoperation an be redued by opying just the parts of the exeution staks that are di�erentamong the workers involved. 3



Figure 1 helps to illustrate this strategy. Suppose that worker Q does not �nd work in itsbranh, and that there is a worker P with available work. Q asks P for sharing, and baktraksto the �rst node that is ommon to P , therefore beoming partially onsistent with part of P .Consider that worker P deides to share its private nodes and Q opies the di�erenes betweenP and Q. These di�erenes are alulated through the information stored in the ommon nodefound by Q and in the top registers of the loal, heap and trail staks of P . To fully synhronizethe omputational state between the two workers, worker Q needs to install from P the bindingstrailed in the opied segments that refers to variables stored in the maintained segments.Obviously, the sheduler plays an important role here by guiding idle workers to request workfrom busy workers whih are nearest (in terms of hoie-points).� Tree of publi or-frames. In order to eÆiently synhronize workers at sharing operations andto avoid having two workers piking the same branhes, a tree of publi (or shared) or-framesis built in a shared spae. An or-frame is added to the publi tree for eah hoie-point madepubli by the worker that is sharing work.A bottom-most sheduling strategy has been very suessful with this binding model. It requiresfor a busy worker at a sharing operation to release all of its urrent private hoie-points. Thisallows for the bottom-most hoie-point be seleted to maximize the amount of shared workwith the requesting worker. This strategy has proven to indue oarse-grained tasks.
Q

P

Local Stack TrailHeap

P Local Space

- Common variable modified in P.

Private Area

Shared Area

P Top Segments

Root

Figure 1: Some aspets of inremental opying.2.2 Copy-On-WriteThis model, named �COWL, has been proposed by Santos Costa [San99a℄ with a view to overomelimitations of the environment opying model to support both ANDP and ORP. The model makesuse of the opy-on-write tehnique that has proven e�etive in Operating Systems.In the �COWL, as in environment opying, a separate environment is maintained by eah workerand a tree of publi or-frames is used to synhronize sharing. The key idea of �COWL is that:whenever a worker Q wants to share work from a di�erent worker P , it simply logially opies allexeution staks from P . The insight is that although staks will be logially opied, they should bephysially opied only on demand. To do so, the �COWL depends on the availability of a Copy-On-Write mehanism on the host Operating System. The �COWL has two major advantages:� It is independent of what we are opying, that is, we need not know what to opy, as we logiallyopy everything. Thus, instead of standard Prolog staks, we may opy the environment for aonstraint solver, or a set of staks for ANDP omputations. Indeed, we might not even havea Prolog system at all, and the model an be used to parallelise any system that uses a similarstyle of searh! 4



� Beause opying is done on demand, we do not need to worry about the overheads of opyinglarge staks. This is partiularly a problem for ANDP omputations.The main drawbak of the �COWL is that the atual setting up of the COW mehanism an beitself quite expensive, and in fat, more expensive than just opying the staks. In the next setionswe disuss an implementation and its performane results.2.3 Sparse Binding ArrayThe Sparse Binding Array (SBA) derives from the Binding Array model. Binding arrays wereoriginally proposed by Warren for the SRI model [War87℄. In this model exeution staks aredistributed over a shared address spae, forming the so-alled atus-stak. In more detail, workersexpand the staks in the part of the shared spae they own, and they an diretly aess the staksoriginally reated by other workers. In Binding Array based systems, workers initially do not informthe system that they have reated new alternatives, and thus have exlusive aess to them. Thisis alled private work. At some point they may be requested to make this work available. Theytherefore must make the work publi.Most, but not all, aesses to both private and publi work are read-only. The major updatesto publi and private work are for bindings of variables. Bindings to the publi part of the tree aretemptative, and in fat di�erent alternatives of the searh tree may give di�erent values, or even novalue, to the same variable. These bindings are alled onditional bindings, and they are also storedin the trail data-area, so that they an later be undone.Conditional bindings annot be stored in the shared tree. Instead, in the original Binding Array,workers use a private array data struture assoiated with eah omputing agent to reord onditionalbindings. To implement this mehanism, whenever a new variable is reated, it is given a variablenumber uniquely identifying its entry in the binding array. The numbering of variables in the bindingarray is maintained by a ounter that is inremented as every new variable is reated. This ounteris saved at every parallel hoie-point so that whenever a worker attempts to exeute an alternativebranh it an get a opy of the ounter and ontinue its own numbering of the variables it reatesfrom the same.Implementing the binding array requires a large number of hanges to the original Prolog engine,and imposes an one-proessor overhead of around 30% for Aurora [LBD+90℄, the most well-knownimplementation of binding arrays. Aurora base performane was substantially slower than modernProlog systems. Comparison with the opying-based system Muse showed that Aurora had largeoverheads and ould not get improved speedups.The major advantage of Aurora was the fat that all work is easily available in the tree. Thismakes it simpler to implement sophistiated tehniques to handle, say, speulative omputations,often found in single-solution or leftmost-solution problems [Sin93℄. On the other hand, Muse didshow a good implementation of speulation [AK92℄. Copying therefore beame the tehnique of hoiefor parallel logi programming designers.Interest in binding arrays was rekindled by the integration of IAP. As we have disussed, opying-based systems annot handle IAP well [CSS97℄. Moreover, IAP also requires fragmented staks, whihis one the issues that ompliate the implementation of binding arrays. Unfortunately, the originalbinding array required strit ordering of variables, whih is impossible with IAP [CSS97℄. A �rstproposal, the paged binding array was shown to be too omplex [GSC92℄. The Sparse Binding Array(SBA) is a simpli�ation of the Binding Array designed to handle IAP.The major ontribution of the SBA is that eah worker has a private virtual address spae thatshadows the system shared address spae. This address spae is mapped at the same �xed loationfor eah worker in the system. Data strutures and unonditional bindings are still stored in theshared address spae. Conditional bindings are stored in the shadow area, whih is onsulted beforeonsulting the shared area. The SBA thus solves the multiple bindings problem.Note that the shadow area inherits the struture of the shared area. This simpli�es implemen-tation, redues sequential overheads, and allows sharing of the omplex stak struture reated byANDP. On the other hand, still requires some modi�ations to the original Prolog engine and requires5



more memory than the original Binding Array, thus inreasing task-swithing overhead. An initialevaluation of the SBA [SCS96℄ showed that porting Aurora to the SBA improved performane by afator of 10{15% on a Spar mahine. The better performane of Aurora in task-swithing allowedit to reover this overhead for larger numbers of workers in �ne and medium-grained benhmarks,3 Implementation IssuesThe literature inludes several omparisons of opying-based versus Binding Array based systems, andpartiularly of Aurora vs. Muse [BRSW91, CSS95℄. One problem with these studies is that Auroraand Muse have very di�erent implementations: it is quite diÆult to know whether the di�erenesstem from the model or from the atual implementation.In ontrast, we experimented our three models by implementing them over the same or-parallelsystem: the YapOr system [RSS99b℄. YapOr is derived from the Yap engine [San99b℄, whih is oneof the fast emulator-based Prolog systems urrently available. Yap is two to four times faster thanthe sequential Aurora engine on the same hardware, and only two to three times slower than systemsthat generate native-ode.3.1 The YapOrThe YapOr system is based on the sequential Yap engine and was originally designed to implementopying. The main hanges required to implement YapOr were in the instrutions that manipulatehoie-points, other hanges in the initialisation ode for memory alloation and worker reation,some small hanges in the ompiler to provide extra information for managing ORP, and a hangedesigned to support built-in synhronisation.In a nutshell, the adapted engine ommuniates with YapOr through a �xed set of interfae marosand through two speial instrutions. The maros are ativated when hoie-points are ativated,updated, or removed. The two instrutions are ativated whenever a worker baktraks to a sharedhoie-point. One instrution proesses hoie-points from standard prediates, and the other hoie-points from sequential prediates (alternatives are exploited in order).The sheduler is the major omponent of YapOr. Work is represented as a set of or-frames ina speial shared area. A worker without work onsults this area and the GLOBAL data-struture,whih ontains data on work and the status of eah worker, until it �nds work. If there is nowork in the shared tree, the worker beomes idle and tries to share work from a busy worker. Thissharing is implemented by two model dependent funtions: p share work(), for the busy worker,and q share work(), for the idle one. After sharing, the previously idle worker will baktrak to anewly shared hoie-point, whereas the previously busy worker ontinues exeution from the samepoint. Note that to simplify inremental opying, the idle worker moves up in the tree before sharing.Sharing is implemented through the algorithm in Figure 2. The idle worker waits for a sharingsignal while the busy worker prepares the operation. Copying is then performed by the idle worker.The two workers then synhronise again. At the end of the day, the idle worker baktraks whereasthe busy one ontinues.Note that this latter omponent is the one dependent on opying. The engine itself ommuniatesonly with the sheduler, and does not need to know that opying is used. Further support is requiredfor implementing suspension of work in this model, as staks must be opied to and from a separatearea in order to restart suspended work.3.2 The �COWLTo support sharing of work in the �COWL, we hange p share work() and q share work() to usethe main funtion used to implement opy-on-write in Unix-style Operating Systems: the fork()funtion. The idea is that whenever a worker P aepts a work request from another worker Q,worker P forks a hild proess that will assume the identity of worker Q, whilst the older proessexeuting Q exits. At this point, the new proess Q has the same state as that of P . To startexeution, the proess Q is fored to baktrak to the deeper hoie-point. Note that sheduling is6



Worker P Signals Worker Q____________________________________________________________________. .Compute segments to opy Waiting aept signal. ----aept----> .Sharing step Copy trail ?. Copy heap ?. Waiting sharing_ok signal. --sharing_ok--> .. Copy loal stak ?Help Q in opy step? .. -----ready----> .Waiting installation signal .. <-installation- .Bak to Prolog exeution Waiting ready signal. .Baktrak to shared node ? Installation stepWaiting ready signal .. <----ready----- .Bak to Prolog exeution Baktrak to shared area. .Figure 2: Sharing between workers in YapOr.realised in exatly the same way as for the environment opying model, i.e., through the use of apubli tree of or-frames in shared spae.Figure 3 shows the synhronisation steps in the �COWL in some detail. The �COWL alsosimpli�es the memory management and requires an extra proess to ontrol the terminal.Worker P Signals Worker Q____________________________________________________________________. .. Waiting aept signal. ----aept----> .Sharing step exit()fork() .Waiting ready signal Child takes Q's id. <----ready----- .Bak to Prolog exeution Baktrak to shared area. .Figure 3: Sharing between workers in �COWL.Note that fork() is a rather expensive operation. For programs whih have parallelism of highgranularity, one expets that the workers will be busy most of the time and the number of sharingoperations be small. In this ase the model is expeted to be eÆient. On the other hand, we wouldexpet worse results for �ne-grained appliations. Note that one ould use the mmap() primitive asan alternative to fork(), but we felt fork() provided the most elegant solution.3.3 The SBASupporting the SBA requires hanges to both the engine and the sharing mehanism. The mainhanges to the engine a�et pointer omparison, and variable and binding representation.As regards pointer omparison, the Yap system assumes pointers in the staks follow a well-de�nedordering: the loal stak is above the global stak, the loal stak grows downwards, and the globalstak grows upwards. These invariants allows one to easily alulate variable age and are useful fortrailing and reovering spae. Unfortunately, they are not valid in the SBA, as the atus stak isfragmented. Aurora uses the binding array o�set as a means for alulating age, but suh a ounteris not immediately available. The Aurora/SBA implementation uses an age ounter that reords thenumber of hoie-points above. We do not maintain suh ounters, and instead use the following rule:1. the sequential invariant is guaranteed to hold for private data;7



2. shared data in the atus-stak are proteted as regards reovering spae, and age follows thesimple rule: smaller is older.To implement this rule, eah worker manages the so-alled frozen registers that separate its privatefrom the shared parts of the tree. Moreover, an extra register, BB, replaes the WAM's B registerwhen deteting whether a binding is onditional. Note that these same problems must be addressedto support IAP.The seond issue we had to address is variable and binding representation. In the original WAM,a variable is represented as a pointer to itself. This is unfortunate, beause we would need to initialisethe whole of the binding array. Binding Array based systems (with the exeption of Andorra-I) thusassume unbound variables are ultimately null ells. In Aurora, a new variable is initialised as a taggedpointer to the binding array, itself null. In the SBA we do not need pointers to the binding array,as it is suÆient to alulate the o�set we are at in the shared spae, and add it to the SBA base.Aurora/SBA thus initialises a new variable as a tagged age �eld.We deided to optimise for the sequential overhead in the YapOr/SBA implementation. To doso, a new ell is initialised as a null �eld. Moreover, and in ontrast to previous Binding Array basedsystems, onditional bindings will be moved to the SBA only when they are made publi, and onlythen. This means that private exeution in our sheme will not use the SBA at all.As bindings are made publi they will be opied to the SBA. Moreover, the original ell will bemade to point to the SBA. Thus the variable dereferening mehanism is unaware of the existene ofthe SBA. Note that the pointer that is plaed in the original ell is independent of workers, althoughit points at a private struture.The hanges to the engine are therefore quite extensive. As regards the hanges to p share work()and q share work(), the new algorithm is explained in Figure 4. Sharing involves reating an or-frame per hoie-point and onsulting the trail on whih variables are now publi.Worker P Signals Worker Q____________________________________________________________________. .Compute segments to share Waiting aept signal. ----aept----> .Sharing step Waiting sharing_ok signal. --sharing_ok--> .Waiting installation signal .. <-installation- .Bak to Prolog exeution Installation step. Baktrak to shared area. .Figure 4: Sharing between workers in SBA.4 Performane EvaluationIn order to ompare the performane of these three models, we experimented the three systems intwo parallel arhitetures: a Sun SparCenter2000 with eight CPUs and 256MB of memory, runningSolaris2.7, and a PC server with four PentiumPro CPUs and 128MB of memory, running Linux2.2.5from standard RedHat6.0. Eah CPU in the PC server runs at 200MHz, ontains 256KB of ahememory, and is about four times as fast as eah CPU in the SparCenter. All systems used the sameompilation ags. Due to a bug in Linux2.2.5, we ould not use mmap() for SBA and �COWL in thePC server. We therefore used the SYSV shm() routines for this purpose.We used a standard set of all-solutions benhmarks, widely used to ompare ORP logi-programmingsystems [Sze89℄. We preferred all-solutions benhmarks beause they are not suseptible to speulativeexeution, and our goal was to ompare the models. The benhmarks inludes the well-know n-queens problem, two puzzles (puzzle and ubes) from Evan Tik's book [Ti91℄, an hamiltoniangraph problem and a na��ve sorting resolution. 8



Table 1 shows the base running times, in seonds, for Yap Prolog, and the one worker runningtimes, over the base runnings, for the parallel models. The overhead for YapOr on�rms previousresults, and is averaged over all benhmarks between 8% and 12%. The overhead for SBA is, asexpeted, higher but not very muh so, averaged between 13% and 29%. We believe this goodresult stems from the optimisations disussed in the previous setion. In fat, YapOr/SBA performsrelatively better than Aurora ompared to Muse. We believe this result supports ontinuing researhon the SBA. Yap Prolog YapOr �COWL SBAPrograms PC Spar PC Spar PC Spar PC Sparqueens12 1 (20.980) 1 ( 85.970) 1.09 1.05 1.07 1.08 1.09 1.14queens10 1 ( 0.710) 1 ( 2.850) 1.10 1.07 1.07 1.08 1.10 1.16ubes7 1 ( 2.545) 1 ( 9.505) 1.05 1.05 1.03 1.07 1.08 1.14ubes5 1 ( 0.220) 1 ( 0.760) 1.07 1.20 1.05 1.19 1.10 1.25puzzle 1 ( 2.290) 1 ( 9.220) 1.00 1.05 1.00 1.09 1.11 1.23nsort 1 (35.550) 1 (145.080) 1.11 1.17 1.11 1.23 1.21 1.66ham 1 ( 0.470) 1 ( 1.490) 1.12 1.27 1.11 1.43 1.20 1.46Average 1.08 1.12 1.06 1.17 1.13 1.29Table 1: One worker running times over the base sequential runnings for the parallel models.The most surprising result was obtained for the �COWL. The �COWL is slower than opyingfor Solaris, but faster for Linux! This result is onsistent aross benhmarks, and the variations arequite above the noise in our measures. We expeted performane to be about the same, as for asingle proessor we exeute quite the same ode: the systems only di�er in their sheduling ode,and this is never ativated. We explain the bad results from the �COWL in the SparCenter due tothe virtual-memory ahe. We obtained similar results in other experiments, and we believed theystemmed from the virtual-memory ahe used in the SparCenter. There is a limited number of tagsfor address spaes, and due to forking, the �COWL requires more tags than the original YapOr. Inontrast, we suppose the good results with the �COWL in Linux derive from the problems in theLinux mmap() implementation, that is being used for opying.Table 2 and 3 show speedups relative to the one worker running time on the PC server andSparCenter, respetively. The results show that the best speedups are obtained with opying. TheSBA follows quite losely, but the speedups are not as good for higher number of workers. We believethis is partly a problem with the SBA optimisations. As work beomes more �ne-grained, morebindings need to be stored in the binding array. Exeution thus slows down as the system followslonger memory referenes and touhes more ahe-lines and pages.2 workers 3 workers 4 workersPrograms YapOr �COWL SBA YapOr �COWL SBA YapOr �COWL SBAqueens12 2.00 1.99 2.00 3.00 2.87 2.99 4.00 3.75 3.99queens10 1.98 1.84 1.99 2.90 1.90 2.93 3.86 2.03 3.91ubes7 2.00 1.99 2.02 2.99 2.91 3.03 3.98 3.65 4.05ubes5 2.00 1.89 2.02 2.97 2.52 3.04 3.95 2.18 4.02puzzle 1.98 1.95 1.91 2.97 2.38 2.84 3.96 2.74 3.79nsort 2.00 2.02 1.92 3.01 2.95 2.86 4.02 3.86 3.82ham 1.99 1.88 1.98 2.95 2.70 2.94 3.90 2.50 3.85Average 1.99 1.94 1.98 2.97 2.60 2.95 3.95 2.96 3.92Table 2: Speedups relative to the one worker running time on the PC server.The results for the �COWL are quite good, onsidering the very simple approah we use to sharework. The �COWL performs well for smaller number of workers and for oarse-grained appliations.As granularity dereases, the overhead of the fork() operation beomes more ostly, and systemperformane dereases versus other systems. As implemented, the �COWL is therefore of interestfor parallel workstations or for appliations with large running times.9



2 workers 4 workers 6 workers 8 workersPrograms YapOr �COWL SBA YapOr �COWL SBA YapOr �COWL SBA YapOr �COWL SBAqueens12 2.01 2.00 1.97 4.05 3.73 3.90 6.07 5.28 5.87 8.07 5.67 7.57queens10 1.99 1.77 1.91 3.90 2.22 3.78 5.49 2.43 5.38 7.31 1.93 7.01ubes7 2.00 1.95 1.97 4.00 3.71 3.66 5.94 4.83 5.28 7.84 5.15 7.14ubes5 1.99 1.77 1.99 3.94 2.54 3.78 5.76 2.59 4.49 7.44 1.78 5.91puzzle 1.97 1.88 1.81 3.59 2.71 3.57 5.37 3.19 5.09 7.06 3.13 6.82nsort 2.04 2.01 2.25 3.90 3.82 4.51 5.97 5.49 6.69 7.38 6.35 7.54ham 1.98 1.75 1.91 3.72 2.61 3.53 5.52 2.42 5.19 7.09 1.93 6.71Average 2.00 1.88 1.97 3.87 3.05 3.82 5.73 3.75 5.43 7.46 3.71 6.96Table 3: Speedups relative to the one worker running time on the SparCenter.5 ConlusionsWe have disussed the performane of three models for the exploitation of ORP in logi programs.Our results show that opying has a somewhat better performane for all-solution searh problems.The results on�rm the relatively low overheads of opying for ORP systems.Our results on�rm that the SBA is a valid alternative to opying. Although the SBA is slightlyslower than opying and annot ahieve as good speedups, it is an interesting alternative for theappliations where opying does not work so well. As an example, we are using the SBA to implementIAP.Our implementation of the �COWL shows good base performane, but su�ers heavily as parallelis-m beomes more �ne-grained. Still, we see the �COWL as a valid alternative sine the appliationswhih interest us the most have very good parallelism. The �COWL has two interesting advantagesfor suh appliations: it failitates support of extensions to Prolog, suh as sophistiated onstraintsystems, and it largely simpli�es the implementation of garbage olletion, that in this model anbe performed independently by eah worker. The next major hallenge for the �COWL will be thesupport of suspension, required for single-solution appliations.We would like to simulate low-level simulation in order to better quantify how the memoryfootprints and miss-rates di�ers among models. We are working on better appliation support foronstraint and indutive logi programming systems. Moreover, we are using opying as the basis forparallelising tabling [RSS99a℄, useful for model-heking, and the SBA as the basis for IAP [CCG+99℄,whih has been used in natural language appliations.AknowledgmentsThe authors would like to aknowledge and thank the ontribution and support from Eduardo Correia.The work has also bene�tted from disussions with Lu��s Fernando Castro, Inês de Castro Dutra, KishShen, Gopal Gupta, and Enrio Pontelli. Our work has been partly supported by Funda�~ao da Ciêniae Tenologia and JNICT under the projets Melodia (JNICT/PBIC/C/TIT/2495/95) and Dolphin(PRAXIS/2/2.1/TIT/1577/95).Referenes[AA95℄ et. al. Abderrahamane Aggoun. ECLiPSe 3.5 User Manual. ECRC, Deember 1995.[AK90a℄ Khayri A. M. Ali and Roland Karlsson. The Muse Approah to OR-Parallel Prolog.International Journal of Parallel Programming, 19(2):129{162, April 1990.[AK90b℄ Khayri A. M. Ali and Roland Karlsson. The Muse Or-parallel Prolog Model and itsPerformane. In Proeedings of the North Amerian Conferene on Logi Programming,pages 757{776. MIT Press, Otober 1990.10



[AK92℄ Khayri A. M. Ali and Roland Karlsson. Sheduling Speulative Work in Muse andPerformane Results. International Journal of Parallel Programming, 21(6):449{476,Deember 1992. Published in Sept. 1993.[BRSW91℄ Anthony Beaumont, S Muthu Raman, P�eter Szeredi, and David H. D. Warren.Flexible Sheduling of OR-Parallelism in Aurora: The Bristol Sheduler. In PARLE91:Conferene on Parallel Arhitetures and Languages Europe, volume 2, pages 403{420.Springer Verlag, June 1991.[CCG+99℄ L. F. Castro, V. Santos Costa, C. Geyer, F. Silva, P. Kayser, and M. E. Correia. DAOS {Distributed And-Or in Salable Systems. In EuroPar'99. Springer-Verlag, LNCS, August1999.[CSS95℄ Manuel E. Correia, Fernando Silva, and V��tor Santos Costa. Aurora vs. Muse;A Performane Study of Two Or-Parallel Prolog Systems. Computing Systems inEngineering, 6(4/5):345{349, 1995.[CSS97℄ Manuel E. Correia, Fernando Silva, and V��tor Santos Costa. The SBA: ExploitingOrthogonality in AND-OR Parallel Systems. In ILPS97, pages 117{131. The MIT Press,Otober 1997.[CW88℄ Mats Carlsson and Johan Widen. SICStus Prolog User's Manual. SICS Researh ReportR88007B, Swedish Institute of Computer Siene, Otober 1988.[DSCRA98℄ L. Damas, V. Santos Costa, R Reis, and R. Azevedo. YAP User's Guide and RefereneManual, 1998. http://www.n.up.pt/~vs/Yap.[GJ93℄ Gopal Gupta and B. Jayaraman. Analysis of Or-parallel Exeution Models. ACMTOPLAS, 15(4):659{680, 1993.[GSC92℄ Gopal Gupta and V��tor Santos Costa. And-Or Parallelism in Full Prolog with PagedBinding Arrays. In PARLE'92 Parallel Arhitetures and Languages Europe, pages 617{632. Springer-Verlag, LNCS 605, June 1992.[LBD+90℄ Ewing Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, R. Stevens, David H. D. Warren,A. Calderwood, P. Szeredi, Seif Haridi, P. Brand, M. Carlsson, A. Ciepelewski, andB. Hausman. The Aurora Or-parallel Prolog System. New Generation Computing,7(2,3):243{271, 1990.[RSS99a℄ Riardo Roha, Fernando Silva, and V��tor Santos Costa. Or-Parallelism within Tabling.In 1st International Workshop on Pratial Aspets of Delarative Languages, pages137{151. Springer-Verlag, LNCS 1551, January 1999.[RSS99b℄ Riardo Roha, Fernando Silva, and V��tor Santos Costa. YapOr: an Or-Parallel PrologSystem based on Environment Copying. In Proeedings of the 9th Portuguese Confereneon Arti�ial Intelligene, pages 178{192. Springer-Verlag, LNAI 1695, September 1999.[San99a℄ V��tor Santos Costa. COWL: Copy-On-Write for Logi Programs. In Proeedings ofIPPS'99. IEEE Press, May 1999.[San99b℄ V��tor Santos Costa. Optimising Byteode Emulation for Prolog. In Proeedings ofPPDP'99. Springer-Verlag, LNCS, September 1999.[SCS96℄ V��tor Santos Costa, Manuel E. Correia, and Fernando Silva. Performane of SparseBinding Arrays for Or-Parallelism. In Proeedings of the VIII Brazilian Symposium onComputer Arhiteture and High Performane Proessing { SBAC-PAD, August 1996.[Sin93℄ Ra�ed Sindaha. Branh-Level Sheduling in Aurora: The Dharma Sheduler. In ILPS93,pages 403{419, 1993. 11



[Sze89℄ P�eter Szeredi. Performane Analysis of the Aurora Or-parallel Prolog System. InProeedings of the North Amerian Conferene on Logi Programming, pages 713{732.MIT Press, Otober 1989.[Ti91℄ Evan Tik. Parallel Logi Programming. MIT Press, 1991.[War87℄ David H. D. Warren. The SRI Model for Or-Parallel Exeution of Prolog|AbstratDesign and Implementation Issues. In Proeedings of the 1987 Symposium on LogiProgramming, pages 92{102, 1987.

12


