
The MYDDAS Programmer’s Manual

Tiago Soares, Michel Ferreira, Ricardo Rocha

Technical Report Series: DCC-2005-10

Departamento de Ciência de Computadores – Faculdade de Ciências

&

Laboratório de Inteligência Artificial e Ciência de Computadores

Universidade do Porto

Rua do Campo Alegre, 823 4150 Porto, Portugal

Tel: +351+2+6078830 – Fax: +351+2+6003654

http://www.ncc.up.pt/fcup/DCC/Pubs/treports.html

The MYDDAS Programmer’s Manual

Tiago Soares, Michel Ferreira, Ricardo Rocha

DCC-FC & LIACC

University of Porto, Portugal

{tiagosoares,michel,ricroc}@ncc.up.pt

version 0.1

Abstract

This document describes the MySQL/Yap Deductive Databese System (MYDDAS) interface predi-
cates. It includes description of the native MySQL interface and ODBC interface that can be used to
couple Yap Prolog with a number of relational database systems.

1 Requirements and Instalation Guide

To use this interface we must have installed at least one of the following development libraries: the MySQL
developement library or the developement library for ODBC (mysql-devel and libodbc-devel, respectively).
Also, we must manually edit the Makefile.in file, to include the flag MYDDAS MYSQL or the flag MYDDAS ODBC,
or even both, if we want to enable both MYSQL and ODBC on YAP. This is done by editing the line:

YAP_EXTRAS=@YAP_EXTRAS@

to

YAP_EXTRAS=@YAP_EXTRAS@ -DMYDDAS_MYSQL -DMYDDAS_ODBC

Finally, we must enable the cut c option on YAP compilation by given to configure the option --enable-cut-c.

2 MYDDAS MySQL interface

Next we describe the MyDDAS MySQL interface.

2.1 Introduction

The YAP - MySQL interface provides the programmer with two levels of interaction. The first, relation level
interface, offers a tuple-at-a-time retrieval of information from the MySQL relations. The second, view level
interface, can translate an entire Prolog clause into a single SQL query to the MySQL, including joins and
aggregate operations.

This interface allows MySQL relations to be accessed from YAP’s environment as though they existed as
facts. All database accesses are done on the fly allowing YAP to sit alongside other concurrent tasks.

2.2 Using the Interface

Begin by starting YAP and loading the library:

?- use_module(library(myddas_mysql)).

This library already includes the Prolog to SQL Compiler described in [2] and [1].

2

2.3 Connecting to and disconnecting from MySQL Server

db my open(+,+,+,+,+).

db my close(+).

Assuming the MySQL server is running, we have an account, we can login to MySQL by invoking
db my open/5 as:

?- db_my_open(Host,User,Password,Db,Conn).

If the login is successful, there will be a response of yes. For example

?- db_my_open(’kheque.ncc.up.pt’,db_user,keyWord,guest,con1).

indicates to the runtime system that we want to contact an MySQL server instance on the host kheque.ncc.up.pt,
to the guest database, whose user is db user that as keyWord has password. The con1 atom, will be the
identifier of this connection.

To disconnect one connection use:

?- db_my_close(Conn).

where Conn is the identifier of the connection given by db open/5.

2.4 Accessing an MySQL Relation: Relational Level Interface

db my import(+,+,+).

Assuming we have access permission for the relation you wish to import, you can use db my import/3

as:

?- db_my_import(RelationName,PredName,Conn).

where RelationName, is the name of relation we wish to access, PredName is the name of the predicate
we wish to use to access the relation from YAP. Conn, is the connection identifier. For example, if we wanted
to access the relation Hello World, using the predicate helloWorld/N 1 make:

?- db_my_import(’Hello World’,helloWorld,con1).

yes

?- helloWorld(Number,Name,Letter).

Letter = ’T’,

Name = ’Tiago’,

Number = 18 ?

yes

In this example we assume that con1 is the identifier for the connection. The Hello World relation as
three fields. Backtracking can then be used to retrieve the next row of the relation Hello World.

Records with particular field values may be selected in the same way as in Prolog. (In particular, no
mode specification for database predicates is required). For example:

?- helloWorld(Number,’Tiago’,Letter).

Letter = ’T’,

Number = 18 ?

yes

1The arity of this predicate would be automatically calculated by db my import

3

generates the query

SELECT A.Number , "Tiago" , A.Letter

FROM "Hello World" A

WHERE A.Name = "Tiago"

2.5 View Level Interface

db my view(+,+,+).

The view level interface can be used for the definition of rules whose bodies includes only imported
database predicates (by using the relation level interface) described above.

One can use the view level interface through the predicate db my view/3:

?- db_my_view(PredName(Arg_1,...,Arg_n),DbGoal,Conn).

All arguments are standard Prolog terms. Arg 1 through Arg n defines the attributes to be retrieved from
the database, while DbGoal defines the selection restrictions and join conditions. Conn is the connection
identifier.

The compiler is the ’Prolog to SQL Compiler’ implemented by Christoph Draxler.
In the following, we show the definition of a simple join view between the two database predicates

helloWorld and goodbyeWorld.
Assuming the declarations:

?- db_my_import(’Hello World’,helloWorld,con1).

yes

?- db_my_import(’Goodbye World’,goodbyeWorld,con1).

yes

use:

?- db_my_view(middleWorld(A,B),(helloWorld(A,B,C),goodbyeWorld(A,B,C)),con1).

yes

?- middleWorld(Arg1,Arg2).

generates the SQL statement:

SELECT A.Number , A.Name

FROM "Hello World" A , "Goodbye World" B

WHERE B.Number = A.Number AND B.Name = A.Name AND B.Letter = A.Letter

Backtracking, as in relational level interface, can be used to retrieve the next row of the view.
The view interface also supports aggregate functions predicates sum, avg, count, min and max. For

example:

?- db_my_view(avg(X),(X is avg(Number,A ^ B ^ helloWorld(Number,A,B))),con1).

generates the query :

SELECT AVG(A.Number)

FROM "Hello World" A

4

2.6 Connecting to an SQL query

db my sql select(+,+,?).

It is also possible to connect to any SQL query using the db my sql select/3 predicate which takes an
SQL string as its input and returns a list of field values. For example:

?- db_my_sql_select(con1,’SELECT * FROM HELLO WORLD’,LA).

LA = [18,’Tiago’,’T’];

LA = etc ...

2.7 Insertion of rows

db my insert(+,+).

Assuming you have imported the related base table using db my import/2, you can insert to that table
by using db my insert/2 predicate. The first argument is the imported database predicate and the second
argument is the connection identifier. The first argument must be declared with with all of its arguments
bound to constants. For example assuming helloWorld is imported through db my import/2:

?- db_my_import(’Hello World’,helloWorld,con1).

yes

?- db_my_insert(helloWorld(’A’,’Ana’,31),con1).

yes

This, would generate the following query INSERT INTO helloWorld VALUES (’A’,’Ana’,31), which
would insert into the helloWorld, the following row: A,Ana,31. If we want to insert NULL values into the
relation, we call db my insert/2 with a uninstanciated variable in the data base imported predicate. For
example, the following question on the YAP-prolog system,

?- db_my_insert(helloWorld(’A’,NULL,31),con1).

yes

Would insert the row: A,null value,31 into the relation Hello World, assuming that the second row
allows null values.

db my insert(+,+,+).

This predicate would create a new database predicate, which will insert any given tuple into the database.

?- db_my_insert(RelationName,PredName,Conn).

This would create a new predicate with name PredName, that will insert tuples into the relation RelationName.
is the connection identifier. For example, if we wanted to insert the new tuple :’A’,null,31 into the relation
Hello World, we do:

?- db_my_insert(’Hello World’,helloWorldInsert,con1).

yes

?- helloWorldInsert(’A’,NULL,31).

yes

5

2.8 Knowing the fields attributes types

db my get attributes types(+,+,?).

You also can use the predicate db my get attributes types/3, to know what are the names and
attributes types of the fields of a given relation. For example:

?- db_my_get_attributes_types(’Hello World’,con1,LA).

LA = [’Number’,integer,’Name’,string,’Letter’,string] ?

yes

where Hello World is the name of the relation and con1 is the connection identifier.

2.9 Knowing the number of fields

db my number of fields(+,+,?).

You also can use the predicate db my number of fields/3, to know what is the arity of a given relation.
Example:

?- db_my_number_of_fields(’Hello World’,con1,Arity).

Arity = 3 ?

yes

where Hello World is the name of the relation and con1 is the connection identifier.

2.10 Describing a relation

db my describe(+,+).

The db my describe/2 predicate dosen’t reality returns any value. It simply prints to the screen the
result of the MySQL describe command, the same way as describe in the MySQL prompt would.

?- db_my_describe(’Hello World’,con1).

+----------+----------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+----------+------+-----+---------+-------+

| Number | int(11) | YES | | NULL | |

| Name | char(10) | YES | | NULL | |

| Letter | char(1) | YES | | NULL | |

+----------+----------+------+-----+---------+-------+

yes

db my describe(+,+,?).

The db my describe/3 predicate does the same action as db my describe/2 predicate but with one
major difference. The results are returned by backtracking. For example, the last query done:

?- db_my_describe(’Hello World’,con1,Term).

Term = tableInfo(’Number’,int(11),’YES’,’’,null(0),’’) ? ;

Term = tableInfo(’Name’,char(10),’YES’,’’,null(1),’’) ? ;

Term = tableInfo(’Letter’,char(1),’YES’,’’,null(2),’’) ? ;

no

6

2.11 Knowing the relations in the MySQL Schema

db my show tables(+).

If we need to know what relations exists in a given MySQL Schema, we use the db my show tables/1

predicate. As db my describe/2, dosen’t returns any value, but prints to the screen the result of the show

tables command, the same way as it would be in the MySQL prompt.

?- db_my_show_tables(con1).

+-----------------+

| Tables_in_guest |

+-----------------+

| Hello World |

+-----------------+

yes

db my show tables(+,?).

The db my show tables/2 predicate does the same action as db my show tables/1 predicate but with
one major difference. The results are returned by backtracking. For example, the last query done:

?- db_my_show_tables(con1,Table).

Table = table(’Hello World’) ? ;

no

2.12 Verifying if is a database predicate

db my is database predicate(+,+,+).

After a while it could be useful to know if a given predicate was asserted by one of the previous predicate.
For example, db import/3 or db view/3. This predicate tells if a given predicate is a database one.

?- db_my_is_database_predicate(helloWorld,3,user).

yes

?- db_my_is_database_predicate(helloWorld,2,user).

no

In the example above, we can see that the predicate user:helloWorld/3 exists, but the predicate
user:helloWorld/2 dosen’t.

db my describe(+,+).

2.13 Other properties

db my verbose(+).

When we ask a question to YAP, using a predicate asserted by db my import/3, or by db my view/3,
this would generate a SQL QUERY. If we want to see that query, we must to this at a given point in our
session on YAP.

?- db_my_verbose(1).

yes

?-

If we want to disable this feature, we must call the db my verbose/1 predicate with any other value than
1.

7

db my module(?).

When we create a new database predicate, by using db my import/3 or db my view/3 or db my insert/3,
that predicate will be asserted by default on the user module. If we want to change this value, we can use
the db my module/1 predicate to do so.

?- db_my_module(lists).

yes

?-

By executing this predicate, all of the predicates asserted by the predicates enumerated earlier will created
in the lists module.

If we want to put back the value on default, we can manually put the value user. Example:

?- db_my_module(user).

yes

?-

We can also see in what module the predicates are being asserted by doing:

?- db_my_module(X).

X=user

yes

?-

db my result set(?).

The MySQL C API permits two modes for transfering the data generated by a query to the client, in
our case Yap. The first mode, and the default mode used by the MYDDAS-MySQL, is store result. This
mode copies all the information generated to the client side.

?- db_my_result_set(X).

X=store_result

yes

The other mode that we can use is use result. This one uses the result set created directly from the
server. If we want to use this mode, he simply do

?- db_my_result_set(use_result).

yes

After this command, all of the database predicates will use use result by default. We can change this
by doing again db my result set(store result).

3 MYDDAS ODBC interface

Next we describe the MyDDAS ODBC interface.

3.1 Introduction

The YAP - ODBC interface provides the programmer with two levels of interaction. The first, relation level
interface, offers a tuple-at-a-time retrieval of information from the databases relations, witch are connected
to a ODBC Driver. The second, view level interface, can translate an entire Prolog clause into a single SQL
query to the ODBC, including joins and aggregate operations.

This interface allows ODBC relations to be accessed from YAP’s environment as though they existed as
facts. All database accesses are done on the fly allowing YAP to sit alongside other concurrent tasks.

8

3.2 Using the Interface

Begin by starting YAP and loading the library:

?- use_module(library(myddas_odbc)).

This library already includes the Prolog to SQL Compiler described in [2] and [1].

3.3 Connecting to and disconnecting from ODBC Driver

db odbc open(+,+,+,+).

db odbc close(+).

Assuming the ODBC Driver is installed, we have an account, we can login to ODBC by invoking
db odbc open/4 as:

?- db_odbc_open(ODBCDriver,User,Password,Conn).

The ODBCDriver variable must the name of the ODBC Driver. In Linux based systems, this can
consulted in the file /etc/odbc.ini. If the login is successful, there will be a response of yes. For example

?- db_odbc_open(myodbc3,db_user,keyWord,con1).

indicates to the runtime system that we want to contact an ODBC Driver instance myodbc3, whose user
is db user that as keyWord has password. The con1 atom, will be the identifier of this connection.

To disconnect one connection use:

?- db_odbc_close(Conn).

where Conn is the identifier of the connection given by db odbc open/5.

3.4 Accessing a Relation Throw a ODBC Driver: Relational Level Interface

db odbc import(+,+,+).

Assuming we have access permission for the relation you wish to import, you can use db odbc import/3

as:

?- db_odbc_import(RelationName,PredName,Conn).

where RelationName, is the name of relation we wish to access, PredName is the name of the predicate
we wish to use to access the relation from YAP. Conn, is the connection identifier. For example, if we wanted
to access the relation Hello World, using the predicate helloWorld/N 2 make:

?- db_odbc_import(’Hello World’,helloWorld,con1).

yes

?- helloWorld(Number,Name,Letter).

Letter = ’T’,

Name = ’Tiago’,

Number = 18 ?

yes

2The arity of this predicate would be automatically calculated by db odbc import

9

In this example we assume that con1 is the identifier for the connection. The Hello World relation as
three fields. Backtracking can then be used to retrieve the next row of the relation Hello World.

Records with particular field values may be selected in the same way as in Prolog. (In particular, no
mode specification for database predicates is required). For example:

?- helloWorld(Number,’Tiago’,Letter).

Letter = ’T’,

Number = 18 ?

yes

generates the query

SELECT A.Number , "Tiago" , A.Letter

FROM "Hello World" A

WHERE A.Name = "Tiago"

3.5 View Level Interface

db odbc view(+,+,+).

The view level interface can be used for the definition of rules whose bodies includes only imported
database predicates (by using the relation level interface) described above.

One can use the view level interface through the predicate db odbc view/3:

?- db_dobc_view(PredName(Arg_1,...,Arg_n),DbGoal,Conn).

All arguments are standard Prolog terms. Arg 1 through Arg n defines the attributes to be retrieved from
the database, while DbGoal defines the selection restrictions and join conditions. Conn is the connection
identifier.

The compiler is the ’Prolog to SQL Compiler’ implemented by Christoph Draxler.
In the following, we show the definition of a simple join view between the two database predicates

helloWorld and goodbyeWorld.
Assuming the declarations:

?- db_odbc_import(’Hello World’,helloWorld,con1).

yes

?- db_odbc_import(’Goodbye World’,goodbyeWorld,con1).

yes

use:

?- db_odbc_view(middleWorld(A,B),(helloWorld(A,B,C),goodbyeWorld(A,B,C)),con1).

yes

?- middleWorld(Arg1,Arg2).

generates the SQL statement:

SELECT A.Number , A.Name

FROM "Hello World" A , "Goodbye World" B

WHERE B.Number = A.Number AND B.Name = A.Name AND B.Letter = A.Letter

10

Backtracking, as in relational level interface, can be used to retrieve the next row of the view.
The view interface also supports aggregate functions predicates sum, avg, count, min and max. For

example:

?- db_odbc_view(avg(X),(X is avg(Number,A ^ B ^ helloWorld(Number,A,B))),con1).

generates the query :

SELECT AVG(A.Number)

FROM "Hello World" A

3.6 Connecting to an SQL query

db odbc sql select(+,+,?).

It is also possible to connect to any SQL query using the db odbc sql select/3 predicate which takes
an SQL string as its input and returns a list of field values. For example:

?- db_sql_select(con1,’SELECT * FROM HELLO WORLD’,LA).

LA = [18,’Tiago’,’T’];

LA = etc ...

3.7 Insertion of rows

db odbc insert(+,+).

Assuming you have imported the related base table using db odbc import/2, you can insert to that table
by using db odbc insert/2 predicate. The first argument is the imported database predicate and the second
argument is the connection identifier. The first argument must be declared with with all of its arguments
bound to constants. For example assuming helloWorld is imported through db odbc import/2:

?- db_odbc_import(’Hello World’,helloWorld,con1).

yes

?- db_odbc_insert(helloWorld(’A’,’Ana’,31),con1).

yes

This, would generate the following query INSERT INTO helloWorld VALUES (’A’,’Ana’,31), which
would insert into the helloWorld, the following row: A,Ana,31. If we want to insert NULL values into the
relation, we call db dobc insert/2 with a uninstanciated variable in the data base imported predicate. For
example, the following question on the YAP-prolog system,

?- db_insert(helloWorld(’A’,NULL,31),con1).

yes

Would insert the row: A,null value,31 into the relation Hello World, assuming that the second row
allows null values.

db odbc insert(+,+,+).

This predicate would create a new database predicate, which will insert any given tuple into the database.

?- db_odbc_insert(RelationName,PredName,Conn).

11

This would create a new predicate with name PredName, that will insert tuples into the relation RelationName.
is the connection identifier. For example, if we wanted to insert the new tuple :’A’,null,31 into the relation
Hello World, we do:

?- db_odbc_insert(’Hello World’,helloWorldInsert,con1).

yes

?- helloWorldInsert(’A’,NULL,31).

yes

3.8 Knowing the fields attributes types

db odbc get attributes types(+,+,?).

You also can use the predicate db odbc get attributes types/3, to know what are the names and
attributes types of the fields of a given relation. For example:

?- db_odbc_get_attributes_types(’Hello World’,con1,LA).

LA = [’Number’,integer,’Name’,string,’Letter’,string] ?

yes

where Hello World is the name of the relation and con1 is the connection identifier.

3.9 Knowing the number of fields

db odbc number of fields(+,+,?).

You also can use the predicate db odbc number of fields/3, to know what is the arity of a given relation.
Example:

?- db_odbc_number_of_fields(’Hello World’,con1,Arity).

Arity = 3 ?

yes

where Hello World is the name of the relation and con1 is the connection identifier.

3.10 Other properties

db odbc verbose(+).

When we ask a question to YAP, using a predicate asserted by db odbc import/3, or by db odbc view/3,
this would generate a SQL QUERY. If we want to see that query, we must to this at a given point in our
session on YAP.

db_odbc_verbose(1).

If we want to disable this feature, we must call the db odbc verbose/1 predicate with any other value
than 1.

db odbc module(?).

When we create a new database predicate, by using db odbc import/3 or db odbc view/3 or db odbc insert/3,
that predicate will be asserted by default on the user module. If we want to change this value, we can use
the db odbc module/1 predicate to do so.

12

?- db_odbc_module(lists).

yes

?-

By executing this predicate, all of the predicates asserted by the predicates enumerated earlier will created
in the lists module.

If we want to put back the value on default, we can manually put the value user. Example:

?- db_odbc_module(user).

yes

?-

We can also see in what module the predicates are being asserted by doing:

?- db_odbc_module(X).

X=user

yes

?-

References

[1] C. Draxler. Accessing Relational and Higher Databases Through Database Set Predicates. PhD thesis,
Zurich University, 1991.

[2] C. Draxler. Accessing Relational and NF2 Databases Through Database Set Predicates. In Third UK

Annual Conference on Logic Programming, Workshops in Computing, pages 156–173. Springer Verlag,
1992.

13

