
Logic Programming

The descriptive power of Prolog
How Prolog works

Aĺıpio Jorge
DCC-FCUP

vsc@dcc.fc.up.pt (room: 1.45)

These slides are largely based on Prof. Inês Dutra’s and Prof. Aĺıpio Jorge

17 de março de 2022



The West/East trains

How to recognize a train going East?

I We need a rule that is true for all Eastbound trains

I and false for the others.

I Let’s define predicate eastbound/1.



The West/East trains

Let’s describe the first train

train(t1).

car(t1,c1). car(t1,c2). car(t1,c3). car(t1,c4).

open(c1). open(c3). open(c4).

closed(c2). small(c2).

load(c1,o1). load(c1,o2). load(c1,o3).

square(o1). square(o2). square(o3).

% to complete first train

How to complete?



The West/East trains

I How to describe some of the other trains?

I Are predictes missing?

I When to stop describing?



The West/East trains

I Define predicate eastbound/1.



The West/East trains

eastbound(T):-car(T,C), closed(C), small(C).



The West/East trains

What if the rule is:

I “trains with a square load in an open car” ?

I “trains with a square load and an open car” ?

I “trains with a square load or a round load” ?

I “trains with an empty car” ?

I “trains with no car” ?



How Prolog works

Given the query ?-eastbound(X).

I Look for a clause with a head that unifies with
eastbound(X).

I Prove that the body of the clause is true.

I Provide the resulting substitution.



How Prolog works

A proof that eastbound(X) is true for some X.

?-eastbound(X).

:-car(X,C),closed(C),small(C).

:-closed(c2),small(c2).

:-small(c2).

∅

eastbound(T):-car(T,C), closed(C), small(C)

car(t1,c2)

closed(c2)

small(c2)

θ1 = {T = X}

θ2 = {X = t1,C = c2}



Unification

Two terms unify if they:

I are the same term, or.

I contain variables that can be uniformly instantiated with
terms in such a way that the resulting terms are equal

Unifyable pairs

I adam and adam

I adam and X

I father(adam,abel) and father(X,abel)



Unification

Two terms unify if they:

I are the same term, or.

I contain variables that can be uniformly instantiated with
terms in such a way that the resulting terms are equal

Non unifyable pairs

I adam and eve

I adam and male(X)

I father(adam,abel) and father(X,X)

I X and s(X)



Unification

I At each step, Prolog performs the strictly necessary
substitutions to unify (if possible).

I This is also called mgu = most general unifier.

I We can obtain the mgu of two terms with =/2.

?- s(X,f(a)) = s(b,Y).

x=b,

Y=f(a).



Unification: Occur Check

I For efficiency reasons Prolog implementations do not check
the occurrence of a variable inside a term.

I In other words no occur check is done.

I So sometimes Prolog can give a wrong answer.

I In practice this is (typically) not a problem.

Example of a wrong unification in Prolog:

?- s(X)=X.

X = s(X).



SLD-resolution
SLD stands for Selective, Linear for Definite Clauses

I SLD-resolution is the inference method used in Logic
Programming.

I It is a particular, more restricted, form of resolution of first
order logic.

I It is used in logic programming due to its efficiency.

I It is correct and complete for Horn clauses.

A Horn Clause is a FOL disjunction with at most one positive
literal.

¬L1 ∨ ¬L2 ∨ ¬L3 ∨ ... ∨ ¬Ln ∨ P

Examples of Horn Clauses:

p(X):-q(x),r(X,Y).

:-man(X),mortal(X).

man(socrates).

:-true. %The null clause



SLD-resolution

Definition of SLD-derivation:

I Given a set of Horn clauses S and a set of goals
G = G1, ...,Gq

I An SLD-derivation is a sequence of negative clauses
< N0,N1, ...,Np > such that:
I N0 = Gj , where Gj is one of the goals
I For every Ni with the form :- A1,...,Ai, ... An

I ...there is some clause A :- B1,...,Bm

I ...such that A and Ai unify
I Ni+1 is :-σi (A1, ...,Ak−1,B1, ...,Bm,Ak+1, ...,An)

I If Np = � (the empty clause) we have a refutation, i.e., a
proof.

I In that case the combination of all σi is the answer
substitution



SLD-resolution

In Prolog typically:

I Goals are processed from left to right

I Clause are searched from top to bottom



SLD-resolution

Example program:

grandfather(X,Z) :- father(X,Y), parent(Y,Z).

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).

father(a,b).

mother(b,c).

Goal:

:-grandfather(a,X).



SLD-resolution
Refutation proof tree:

[http://soft.vub.ac.be/~cderoove/declarative_programming/
decprog3_sld_cut_naf.pdf]

http://soft.vub.ac.be/~cderoove/declarative_programming/decprog3_sld_cut_naf.pdf
http://soft.vub.ac.be/~cderoove/declarative_programming/decprog3_sld_cut_naf.pdf


SLD-resolution

SLD-tree:

I a proof tree shows a possible resolution path

I an SLD-tree represents the search for that path

[http://soft.vub.ac.be/~cderoove/declarative_programming/
decprog3_sld_cut_naf.pdf]

http://soft.vub.ac.be/~cderoove/declarative_programming/decprog3_sld_cut_naf.pdf
http://soft.vub.ac.be/~cderoove/declarative_programming/decprog3_sld_cut_naf.pdf


SLD-resolution

SLD-tree:

I a proof tree shows a possible resolution path

I when one branch fails, Prolog backtracks

[http://soft.vub.ac.be/~cderoove/declarative_programming/
decprog3_sld_cut_naf.pdf]

http://soft.vub.ac.be/~cderoove/declarative_programming/decprog3_sld_cut_naf.pdf
http://soft.vub.ac.be/~cderoove/declarative_programming/decprog3_sld_cut_naf.pdf


SLD-resolution

Backtracking example:

daughter(X,Y) :- parent(Y,X), female(X).

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).

father(homer,bart).

father(homer,lisa).

mother(marge,bart).

mother(marge,lisa).

male(homer). male(bart).

female(marge). female(lisa).

Query 1: ?-daughter(lisa,homer).

Query 2: ?-daughter(lisa,marge).


	Descriptive Power

