Logic Programming

The descriptive power of Prolog

How Prolog works
Alipio Jorge
DCC-FCUP

vsc@dcc.fc.up.pt (room: 1.45)

These slides are largely based on Prof. Inés Dutra’s and Prof. Alipio Jorge

17 de marco de 2022

The West/East trains

How to recognize a train going East?

Trains going East Trains going West

» We need a rule that is true for all Eastbound trains
» and false for the others.
» Let's define predicate eastbound/1.

The West/East trains

Let's describe the first train

o H Fq i L4[]D[] [ﬁ :
0 0

train(til).
car(til,cl). car(ti,c2). car(tl,c3). car(ti,cd).
open(cl). open(c3). open(c4) .
closed(c2). small(c2).

load(cl,01). load(cl,02). load(cl,03).
square(ol). square(o2). square(o3).
/4 to complete first train

How to complete?

The West/East trains

> How to describe some of the other trains?
» Are predictes missing?
» When to stop describing?

Trains going East Trains going West
I
o HEFoooHI)
. L] . L] L] L] L] L] L]
I
-
]] LI LN] L]

The West/East trains

» Define predicate eastbound/1.

Trains going East Trains going West

Lo H ...@.ﬂﬂ@

The West/East trains

Trains going East Trains going West

oH, o B,

eastbound(T) :-car(T,C), closed(C), small(C).

The West/East trains

Trains going East Trains going West

oH, o HEHooor—) il 5

oHG) =il
I I

.Cli \CA—.‘ IA. ﬁ m .O. .:l. \‘Q/

-0 HgHoo

What if the rule is:
» “trains with a square load in an open car” ?
» “trains with a square load and an open car” 7
» “trains with a square load or a round load” ?
> “trains with an empty car” 7
» “trains with no car" 7

How Prolog works

Given the query 7-eastbound (X) .

» Look for a clause with a head that unifies with
eastbound (X).

» Prove that the body of the clause is true.

P Provide the resulting substitution.

How Prolog works

A proof that eastbound (X) is true for some X.

?-eastbound(X). eastbound(T):-car(T,C), closed(C), small

= {T=X)

:-car(X,C),closed(C),small(C). car(tl,c2)

| /egz{xzﬂ,czd}

:-closed(c2),small(c2). closed(c2)

l

--small(c2). small(c2)

i

Unification

Two terms unify if they:
P are the same term, or.

P contain variables that can be uniformly instantiated with
terms in such a way that the resulting terms are equal

Unifyable pairs
> adam and adam
> adam and X
» father (adam,abel) and father(X,abel)

Unification

Two terms unify if they:
> are the same term, or.

» contain variables that can be uniformly instantiated with
terms in such a way that the resulting terms are equal

Non unifyable pairs
> adam and eve
» adam and male(X)
» father (adam,abel) and father(X,X)
» X and s(X)

Unification

» At each step, Prolog performs the strictly necessary
substitutions to unify (if possible).
» This is also called mgu = most general unifier.
» We can obtain the mgu of two terms with =/2.
7- s(X,f(a)) = s(b,Y).
x=b,
Y=f(a).

Unification: Occur Check

» For efficiency reasons Prolog implementations do not check
the occurrence of a variable inside a term.

» In other words no occur check is done.

» So sometimes Prolog can give a wrong answer.

» In practice this is (typically) not a problem.
Example of a wrong unification in Prolog:

7- s(X)=X.
X =sX).

SLD-resolution
SLD stands for Selective, Linear for Definite Clauses

» SLD-resolution is the inference method used in Logic
Programming.

» It is a particular, more restricted, form of resolution of first
order logic.

» It is used in logic programming due to its efficiency.
» It is correct and complete for Horn clauses.

A Horn Clause is a FOL disjunction with at most one positive
literal.

Ly V-alyaValsVv...Val, VP

Examples of Horn Clauses:
p(X):—qx),rX,Y).

:—man (X) ,mortal (X).
man(socrates).

:—true. /The null clause

SLD-resolution

Definition of SLD-derivation:

» Given a set of Horn clauses S and a set of goals
G = Gy,...,Gq
» An SLD-derivation is a sequence of negative clauses
< No, Ny, ..., Ny > such that:
» Ny = Gj, where G; is one of the goals
» For every N; with the form :-= Ay, ..., A;, ... A,
» ...there is some clause A :- Bi,...,Bn
» .such that A and A; unify
> N,’+1 is Z—O’,'(Al7 ceey Ak,]_7 Bl» ceey Bm7 AkJrl7 ceny An)
» If N, = O (the empty clause) we have a refutation, i.e., a
proof.

» In that case the combination of all o; is the answer
substitution

SLD-resolution

In Prolog typically:
» Goals are processed from left to right

» Clause are searched from top to bottom

SLD-resolution

Example program:

grandfather(X,Z) :- father(X,Y), parent(Y,Z).
parent(X,Y) :- father(X,Y).

parent (X,Y) :- mother(X,Y).

father(a,b).

mother(b,c).

Goal:

:—grandfather(a,X) .

SLD-resolution

Refutation proof tree:

:-grandfather (a,X) ©-- - - goal (query)

grandfather (C,D) :—father (C,E) ,parent (E,D) .

|_— {c/a,D/x}

father(a,b).

{E/b}

:—parent (b,X).

parent (U,V) : —mother (U,V) .

{U/b,V/X}

:—mother (b, X) .

mother (b, c) . computed substitution

/ {X/c} /

]
th
V)
o
o
0
H
[
5]
g
V]
H
0
5
o
]
x

v
a
o
3
<
o
o
Q
o
o

i___-.. computed answer substitution

[http://soft.vub.ac.be/~cderoove/declarative_programming/
decprog3_sld_cut_naf.pdf]

http://soft.vub.ac.be/~cderoove/declarative_programming/decprog3_sld_cut_naf.pdf
http://soft.vub.ac.be/~cderoove/declarative_programming/decprog3_sld_cut_naf.pdf

SLD-resolution
SLD-tree:

P> a proof tree shows a possible resolution path

» an SLD-tree represents the search for that path

grandfather (X,2) :- father(X,Y), parent(Y,Z).
parent (X,Y) :- father (X,V¥).
parent (X,Y) :— mother (X,VY).
father (a,b) .
mother (b,c) .
program clauses resolved

with are not shown, nor are

alternative :—grandfather(a,X) the resulting substitutions
resolution |
steps are ~ :~father(a,E), parent (E, X)

shown ‘

:—parent (b, X)
failure T success

branch :—father (b, X) :-mother (b, X) branch
: |

. blocked O

[http ://soft.vub.ac.be/~cderoove/declarative_programming/
decprog3_sld_cut_naf.pdf]

http://soft.vub.ac.be/~cderoove/declarative_programming/decprog3_sld_cut_naf.pdf
http://soft.vub.ac.be/~cderoove/declarative_programming/decprog3_sld_cut_naf.pdf

SLD-resolution
SLD-tree:

P> a proof tree shows a possible resolution path

» when one branch fails, Prolog backtracks

grandfather (X,2) :- father(X,Y), parent(Y,Z).
parent (X,Y) :- father (X,V¥).
parent (X,Y) :— mother (X,VY).
father (a,b) .
mother (b,c) .
program clauses resolved

with are not shown, nor are

alternative :—grandfather(a,X) the resulting substitutions
resolution |
steps are ~ :~father(a,E), parent (E, X)

shown ‘

:—parent (b, X)
failure T success

branch :—father (b, X) :-mother (b, X) branch
: |

. blocked O

[http ://soft.vub.ac.be/~cderoove/declarative_programming/
decprog3_sld_cut_naf.pdf]

http://soft.vub.ac.be/~cderoove/declarative_programming/decprog3_sld_cut_naf.pdf
http://soft.vub.ac.be/~cderoove/declarative_programming/decprog3_sld_cut_naf.pdf

SLD-resolution

Backtracking example:

daughter (X,Y) :- parent(Y,X), female(X).
parent (X,Y) :- father(X,Y).

parent (X,Y) :- mother(X,Y).

father (homer,bart) .

father (homer,lisa).

mother (marge,bart) .

mother (marge,lisa).

male (homer). male(bart).

female(marge). female(lisa).

Query 1: 7-daughter(lisa,homer) .
Query 2: 7-daughter(lisa,marge) .

	Descriptive Power

