Logic Programming

Arithmetic
Lecturer: Vítor Santos Costa
DCC-FCUP
vsc@dcc.fc.up.pt (room: 1.45)

These slides are largely based on Prof. Inês Dutra's and Prof. Alípio Jorge

Arithmetics in Prolog

In Prolog we can do artihmetics in at least two ways:

- Using logic only and functors;
- Using built-in predicates.

The first option is worth visiting, but the practical solution is usually the second one.

Using the s/1 functor

The natural number.

- The number zero is represented as 0 .
- one as $s(0)$, two as $s(s(0))$ and so on.
s is a functor of arity 1, i.e. it has one argument.
natural (0).
natural(s(X)):-natural(X).

Using the s/1 functor

The sum example.
How to define the predicate sum/3 ?
$\operatorname{sum}(0, X, X)$.
sum(s(X),Y,s(Z)):-sum(X,Y,Z).

Using the s/1 functor

The sum example.
We can check type.
$\operatorname{sum}(0, X, X):-n a t u r a l(X)$. sum(s(X),Y,s(Z)):-sum(X,Y,Z).

Using the s/1 functor

Querying:
?- $\operatorname{sum}(\mathrm{s}(0), \mathrm{s}(\mathrm{s}(0)), \mathrm{X})$.
$\mathrm{X}=\mathrm{s}(\mathrm{s}(\mathrm{s}(0))$)
We can ask which two numbers added result in a given number.

Using the s/1 functor

Which two numbers added result in a given number.
?- $\operatorname{sum}(X, Y, s(s(s(0))))$.
$\mathrm{X}=0$,
$\mathrm{Y}=\mathrm{s}(\mathrm{s}(\mathrm{s}(0)))$
$X=s(0)$,
$Y=s(s(0))$
$X=s(s(0))$,
$\mathrm{Y}=\mathrm{s}(0)$
$X=s(s(s(0)))$,
$\mathrm{Y}=0$

Using the s/1 functor

Is a given number pair?
pair(X): - sum(Y,Y,X).

Multiplication

Multiplication

```
mult(0,_,0).
mult(s(X),Y,Z):-mult(X,Y,A), sum(Y,A,Z).
```


Other predicates

Define predicates

- gte/2 (greater than or equal).
- minimum/3.
- mod/3.

Power

Define predicate $\exp / 3$, such that $\exp (\mathrm{X}, \mathrm{N}, \mathrm{Y})$ is true if $X^{N}=Y$. $\exp (0, s(0), 0)$.

Factorial

Define predicate fact/2, such that $\operatorname{fact}(X, Y)$ is true if $Y=X$!. fact(0,s(0)).

Using built in operators

```
sum(X,Y,Z) :- Z is X+Y. % X and Y must be numbers.
mult(X,Y,Z) :- Z is X*Y. % Works for floats as well.
gte(X,Y) :- X>=Y.
- Common operators are available.
- Common functions are available too: \(\sin (x), \exp (x), \log (x)\),
```

For SWI prolog, you can find more in http://www.swi-prolog.org/pldoc/man?section=arith.

Using built in operators

- Define fact/2 using built in predicates.
- Common functions are available too: $\sin (x), \exp (x), \log (x)$,

