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Abstract— We present Dolphin, an extensible programming
language for autonomous vehicle networks. A Dolphin pro-
gram expresses an orchestrated execution of tasks defined
compositionally for multiple vehicles. Building upon the base
case of elementary one-vehicle tasks, the built-in operators
include support for composing tasks in several forms, for
instance according to concurrent, sequential, or event-based
task flow. The language is implemented as a Groovy DSL,
facilitating extension and integration with external software
packages, in particular robotic toolkits. The paper describes the
Dolphin language, its integration with an open-source toolchain
for autonomous vehicles, and results from field tests using
unmanned underwater vehicles (UUVs) and unmanned aerial
vehicles (UAVs).

I. INTRODUCTION

The use of autonomous vehicles is now mainstream for
several applications, in particular those making use of sev-
eral vehicles deployed at once for a common purpose, in
networked integration with sensors, human users, and cyber-
infrastructures [1–4]. As part of these developments, several
software toolkits became popular for networked operation of
autonomous vehicles [5–7], allowing for remote control of a
single vehicle or basic forms of networked interaction among
vehicles. To program a network of autonomous vehicles as an
integrated whole, though, we feel that high-level abstractions
are required, materialised by the use of domain-specific
languages (DSLs) that directly capture the modelling traits
of multi-vehicle applications.

In particular, we are concerned with mixed-initiative sys-
tems, where humans are part of the control loop and bur-
dened by the intricate complexity of a system-of-systems [8].
In multi-vehicle applications, part of this burden results from
the need of separately programming each vehicle without
principled mechanisms for coordinated behavior, and the lack
of a convenient abstraction for the global state of the system
once it is deployed. To attack these problems, we advocate
that humans-in-the-loop should be able to write programs
that orchestrate the a global behavior of multiple vehicles.

This motivation led us to the development of Dolphin,
an extensible task orchestration language for autonomous
vehicle networks, that is available open-source [9]. A Dol-
phin program expresses an orchestrated execution of tasks
defined compositionally for multiple vehicles dynamically
available in a network. Building upon the base case of
elementary one-vehicle tasks, the built-in operators include
support for composing tasks in several forms, for instance
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according to concurrent, sequential, or event-based opera-
tors, partially inspired by process calculi approaches, e.g.,
Milner’s CCS [10]. The core language is agnostic and
independent of the underlying platform for networked vehicle
operations. The system is concretely instantiated through
the implementation of abstract programming bindings at the
platform level of a robotic toolkit. This is facilitated by the
design of Dolphin as a Groovy domain-specific language
(DSL) [11], allowing direct integration/embedding with/in
other Groovy/Java software packages, and seamless addition
of extended DSL features.

We developed Dolphin bindings for an open-source
toolchain [7] developed by Laboratório de Sistemas e Tec-
nologia Subaquática (LSTS)1, used to operate heterogeneous
types of unmanned vehicles in several experiments over the
years (e.g., [12–14]), and bindings for the MAVLink drone
protocol [6] are in progress [9]. The LSTS toolchain includes
IMC, a message-based interoperability protocol, that has a
dedicated subset for the specification and execution of single-
vehicle tasks, called IMC plans. Using Dolphin, we were able
to orchestrate IMC plans in expressive manner for multiple
vehicles in field tests using unmanned underwater vehicles
(UUVs) and unmanned aerial vehicles (UAVs). We present a
field test scenario where three UUVs concurrently perform a
bathymetry survey over a given area, and one simulated UAV
also in the control loop engaged in a rendezvous maneuver
with each of the UUVs at a time.

The rest of the paper is structured as follows. In section II
we present Dolphin in terms of the underlying architecture,
an example scenario, task definition operators, execution
engine, and platform bindings. Section III describes the
integration of Dolphin with the LSTS toolchain and the
related tools developed for that purpose. Section IV reports
results of field test experiments we conducted for the exam-
ple scenario using multiple autonomous vehicles. Section V
discusses related work. Finally, Section VI ends the paper
with concluding remarks and a discussion of future work.

II. THE DOLPHIN LANGUAGE

A. Architecture

The architecture of Dolphin is illustrated in Fig. 1. The
language engine takes a program supplied by the user
and executes it, delegating platform-dependent networked
operations to the platform runtime, e.g., polling vehicles
in the network or firing tasks for vehicles. Thus, the ex-
ecution of a Dolphin program is centralised, in interface
with networked vehicles. We believe this is a convenient

1http://github.com/LSTS
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Fig. 1: Dolphin architecture.

approach for mixed-initiative systems, allowing a human to
orchestrate an entire network of vehicles based on a global
specification. Furthermore, it does not assume the need for
peer-to-peer communication among vehicles or any form of
tightly coupled interaction among them, even if, of course,
these aspects may be relevant for many applications. Later
in the paper, we contrast this approach with others (Sec. V)
and identify aspects of future work to handle some of the
inherent limitations (Sec. VI).

In the Dolphin architecture, the base components support
the core DSL embedded in Groovy, and the engine required
to execute programs in Java. Platform instantiations may
extend the DSL, and must provide a runtime for networked
interaction, implementing abstract Java bindings provided
by the Dolphin engine. The platform’s DSL extensions and
runtime are responsible for implementing suitable constructs
for platform tasks and their implementation. The use of
Groovy provides a number of features useful for defining the
DSL, e.g., operator overloading, meta-class programming,
or the use of closures [11]. Moreover, Groovy is fully
interoperable with the Java SE API and the Java Virtual
Machine.

B. Example program

We now present an example scenario and a corresponding
Dolphin program. The scenario at stake, a generalisation
of an example given in [15], is illustrated schematically in
Fig. 2. It comprises the use of 3 UUVs for joint surveys,
executing concurrently over a given area, and of a UAV that
responds to the completion of each individual UUV survey
by approaching that UUV with a rendezvous behavior (e.g.,
to retrieve survey data on-the-fly). In Section IV we present
an actual configuration and deployment of a variant of this
scenario in field tests; here we merely concentrate on its
overall meaning and realisation by a Dolphin program.

The Dolphin program is listed in Fig. 3. The code is
basically structured in 5 segments: (1) configuration (lines 1–
3); (2) vehicle selection (4–14); (3) an auxiliary function for
parameterising the UUV tasks (16–24); (4) the execution of
desired tasks using all 4 vehicles (25–38), and; (5) program
termination, decoupling the vehicles from the program and
displaying a simple final message (39–41).

The program begins by asking the user to input a radius

survey1

sk1

survey2

sk2

survey3

sk3

rv1 rv2 rv3

Fig. 2: Example scenario.

1 // (1) Configuration
2 r = ask ’Radius of operation area? (km)’
3 APDL = (location 41.18500, -8.70620) ˆ r.km
4 // (2) Vehicle selection
5 UUVs = pick {
6 count 3
7 type ’UUV’
8 payload ’DVL’,’Sidescan’
9 region APDL
10 }
11 UAV = pick {
12 type ’UAV’
13 region APDL
14 }
15 setConnectionTimeout UUVs, 2.min
16 // (3) Function yielding UUV task i
17 def UUVTask ( i ) {
18 imcPlan(’survey’ + i) >>
19 action { post ready:i } >>
20 imcPlan {
21 planName ’sk’ + i
22 skeeping duration: 600
23 }
24 }
25 // (4) Execute tasks
26 execute UUVs:
27 UUVTask(1) |
28 UUVTask(2) |
29 UUVTask(3) ,
30 UAV:
31 allOf {
32 when { consume ready:1 }
33 then imcPlan(’rv1’)
34 when { consume ready:2 }
35 then imcPlan(’rv2’)
36 when { consume ready:3 }
37 then imcPlan(’rv3’)
38 }
39 // (5) End
40 release UUVs + UAV
41 message ’Done!’

Fig. 3: Dolphin program for the example scenario.

r of a geo-referenced area named APDL. The UUVs and
UAVs are then selected through two pick blocks, one for
the UUVs and another one for the UUV. The requirements
are that the vehicles are located within the bounds of APDL,
and, additionally, that each UUV is equipped with specific
payload components, a Doppler velocity logger (DVL), and
a side-scan sonar. Both the UUVs and UAV variables stand
for vehicle sets (UAV is a singleton) that can later be bound
to the execution of tasks. Vehicle sets can be manipulated
using standard set operators, e.g., a + b (as in line 40 of
the program), a & b , and a - b respectively represent the
union, intersection, and difference of two sets a and b.

Following the vehicle selection, a connection timeout of 2
minutes is set for the UUVs using setConnectionTimeout
(line 15). Up to this time frame, the Dolphin runtime will as-
sume the state of each UUV to be steady in the event that the
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connection to it is (intermittently) lost. The timeout setting
attends to the fact that UUVs may operate underwater for a
long time, during which they may only report state through
error-prone and intermittent acoustic communications.

Each UUV task results from the UUVTask Groovy func-
tion, parameterised by an argument i; since Dolphin is
embedded in Groovy, we may integrate Groovy code within
the program at will, making use of standard imperative
and object-oriented programming features. The UUVTask
function yields the sequential composition of three tasks,
as specified by the use of the >> Dolphin-specific operator:
(1) the actual survey task surveyi; (2) a notification action
signalling readiness for rendezvous, post ready:i, that
proceeds instantaneously and involves no vehicle interaction;
and; (3) at the end, a “station-keeping” ski task to make
the UUV maintain a fixed position for rendezvous. The
survey and station-keeping tasks are IMC plans (discussed in
Section III) to be executed by vehicles. Note that the survey
task are merely identified by name, thus they are assumed
to be pre-programmed for the vehicles, whilst the station-
keeping task is programmed inline in the code through the
use of an DSL for IMC plans integrated into the Dolphin
engine (see Section III-D).

Actual execution of tasks proceeds using an execute
block. In the code, we see that the UUVs are tasked
with a composition of three tasks to execute concur-
rently, as specified by the use of the | Dolphin operator:
UUVTask(1) | UUVTask(2) | UUVTask(3). Also con-
currently, UUV is tasked with an allOf event-based task that
works as follows: as each UUV task posts a ready:i noti-
fication, the allOf task may consume it in line with guard
conditions when { consume ready: i} and executing a
corresponding then block, issuing an IMC plan rvi for
rendezvous. An allOf task terminates only when each of
the components when-then blocks have been completed. In
alternative to allOf, a oneOf task, specified with a similar
structure, would require only one of the when-then blocks
to fire, i.e., only one rendezvous would execute instead.

The entire execute block terminates when all component
tasks terminate. This implies that some vehicles may remain
idle (executing some vehicle-dependent fallback behavior
such as loitering) while waiting for the completion of on-
going tasks. In sequence, at the end of the program, the
release UUVs + UAV instruction decouples the vehicles
from the program, i.e., release is the inverse operation of
pick. The instruction is redundant in this case, as an implicit
release instruction is issued for all bound vehicles at the end
of a program, but we show it in the example for the sake of
clarity. Note that pick and release can generally be used
at any point in a program to acquire and release vehicles
on-the-fly, as illustrated later on (Fig. 5).

C. Task definition

The full definition of Dolphin tasks is summarised by
the BNF-style grammar of Fig. 4. In addition to the task
operators discussed above, a few others are defined, as
follows:

Task := PlatformTask // Platform task
| action ’{’ Code ’}’ // Program-level action
| condition ’{’ Cond ’}’ // Program-level condition
| Task ’>>’ Task // Sequential composition
| Task ’|’ Task // Concurrent composition
| Task ’[’ VSet ’]’ // Vehicle set allocation
| allOf ’{’ WhenThen+ ’}’ // All-of block
| oneOf ’{’ WhenThen+ ’}’ // One-of block (choice)
| waitFor ’{’ Cond ’}’ // Execution subject
then Task // to start condition

| until ’{’ Cond ’}’ // Execution subject
run Task // to stop condition

| idle Time // Idle task
| during Time // Execution subject
run Task // to time limit

| watch Task // Error handling
onError ’{’ Code ’}’

WhenThen := when ’{’ Cond ’}’ then Task
// For IMC-based platform
PlatformTask := imcPlan ’(’ Id ’)’

| imcPlan ’{’ IMC_DSL_Spec ’}’

Fig. 4: Grammar for Dolphin tasks.

— The task allocation operator, T [ V ], defines the al-
location of task T to vehicle set V, and is already implicit
in the example program: execute V1: T1, v2: T2, ...
(as in the program) is merely syntactic sugar for
execute T1[V1] | T2[V2] | ... .
— condition C prevents progress until condition C is
satisfied.
— Two operators combine event and control flow, waiting
for an condition C before starting or stopping a task T, i.e.,
resp. waitFor C then T and until C run T.
— Two other operators relate to behavior based on a duration
of time t: idle tasks, idle t, or task execution subject to a
duration of t, during t run T.
— Finally, watch T onError { C } watches for errors
during the execution of T (e.g., connection timeouts, internal
errors), and executes C if one is detected. The code in C may
include three special actions: ignore(), propagate(),
and halt() that respectively ignore the error, propagate
it allowing the possibility of being handled by an higher-
level onError block, or halt the program immediately. A
onError { propagate() } behavior is the default for
each task. When no onError block is set to handle an error,
the engine halts the program.

...
supplier = getSupplier();
while (supplier.active()) {
// Await for task
T = suppler.queue.await()
// Pick AUV
UAV = pick { type: ’UAV’ }
// Execute
execute UAV:

watch
( during 10.minutes run T )

onError {
err -> {
message ’Error: ’ + err
ignore()

}
// Release UAV
release UAV

}

Fig. 5: Illustration of additional task composition operators.

Some of these additional operators are exemplified in the
fragment of Fig. 5. that also provides an illustration of the
possible tight integration of Dolphin with Groovy/Java. In the
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code, a task supplier is assumed to be implemented exter-
nally, possibly mediating interaction with a human user. The
supplier yields tasks to be executed by an UAV iteratively,
that the Groovy while loop executes while the supplier is
active. In each iteration a UAV is picked and executes a
supplied task for no more than 10 minutes. The constraint
is conceivable, e.g., due to battery restrictions. Note that we
use one UAV at a time, but different ones may be used in
distinct iterations, allowing for vehicle churn in the network.
An onError block is set notifying the user of any errors
with a message, but ignoring it otherwise, thus letting the
program resume execution.

D. The Dolphin engine

The Dolphin engine is responsible for executing a pro-
gram. We now provide some detail of how it works in
abstract terms. The main state of a program may be modelled
as a partial map representing platform task allocations A :
V 7→ T ∪ {⊥}, where V and T are resp. the vehicle and
platform task domains and ⊥ stands for no task allocation,
plus a set B ⊆ V of vehicles that are bound (associated) to
the program. This state varies dynamically according to the
use of pick, release, and execute:
— A pick block first queries the platform for all connected
vehicles Vc, filters out those in B (already bound) and those
that do not match the selection filters (e.g., type, location, or
payload as in the example program of Fig. 3), obtaining a set
Vf . The result Vp of selected vehicles is a subset of Vf with a
fixed cardinality specified by the count parameter (in Fig. 3:
3 in line 6, and 1 by default in line 11) or the full Vf itself
when the count parameter is specified as a wildcard value
(denoted _ in the language). The program state is then
updated as follows: B := B ∪ Vp, and A[v] := ⊥,∀v ∈ Vp.
— release Vr (as in Fig. 3, l. 40) corresponds to updating
the state as B := B−Vr, and removing any mappings for Vr
in A (which should in any case equal ⊥ at this stage, i.e.,
no tasks will be executing for Vr).
— execute T allocates vehicles on-the-fly to platform tasks
encoded in T, i.e., it dynamically changes A, guided by
explicit vehicle allocation specifications through the [ ]
operator. If no vehicle allocation is specified, an allowed
alternative, the engine allocates all bound vehicles (B). Given
that execute only terminates only when the overall T has
fully completed, A[v] for a vehicle v may alternate between
a platform task t, while t executes, and ⊥, while v is waiting
for task allocation according to global flow of T. We stick to
the informal description of previous sections for the overall
flow of composed tasks in terms of sequence, concurrency, or
event-flow, operating in the spirit of process calculi [10]. The
engine basically executes composed tasks by interpreting the
abstract syntax tree of T and the nature of each operator used
in it. A full description is outside the scope of this paper for
reasons of space.

In addition to the above characterisation of semantics,
event-based program flow through notifications may be ac-
complished through the post and consume operations (illus-
trated in Fig. 3), plus an additional poll operation. These

public interface Platform ... {
// Query nodes and tasks
NodeSet getConnectedNodes();
PlatformTask getPlatformTask(String id);
// I/O
String askForInput(String prompt);
void displayMessage(String format, Object... args);
// Extensibility
void
customizeGroovyCompilation(CompilerConfiguration cc);
List<File> getExtensionFiles();

}
public interface Node {
// Attributes
String getId();
String getType();
Position getPosition();
Payload getPayload();
// Task binding & vehicle release
Task getRunningTask();
void setRunningTask(Task task);
void release();
// Connection handling.
double getConnectionTimeout();
void setConnectionTimeout(double timeout); ...

}
public interface Task ... {
String getId();
TaskExecutor getExecutor();
boolean allocate(NodeSet available,

Map<Task,List<Node>> allocation);
}
public abstract class TaskExecutor ... {
// Lifecycle methods
protected abstract void
onInitialize(Map<Task,List<Node>> allocation);

protected abstract void onStart();
protected abstract CompletionState onStep();
protected abstract void onCompletion(); ...

}
public abstract class PlatformTask implements Task {
public abstract List<NodeFilter> getRequirements();
public Optional<Position> getReferencePosition() ...

}

Fig. 6: Java types for Dolphin platform bindings.

use a simple tuple-space abstraction that can be modelled
as multi-set N of key-value pairs. Each operation works as
follows:
— post k:v adds (k,v) to N .
— consume k:v removes a (k,v) pair from N , if one
exists, and returns true in that case (note that the operation
is normally used as a guard condition), otherwise it returns
false. If v equals the wildcard value _, the operation tries to
remove the oldest tuple in insertion order with key k.
— poll k:v merely inspects for the existence of a (k,v)
pair in N , also possibly using the _ wildcard for v.

E. Platform bindings

For using Dolphin with a concrete platform, a set of Java
interfaces and abstract classes are defined for implementation
at the platform level. An overview of the main ones are
listed in Fig. 6. Platform defines the abstract platform op-
erations: querying connected vehicles and existing platform
tasks, providing simple user I/O, and extensibility features
that include the customisation of Groovy compilation (e.g.,
automatic imports of certain APIs) and inclusion of DSL
extension files to load on startup. Vehicles are instances of
Node, with associated operations for querying basic attributes
(id, type, payload, position), tasking them or releasing them
from the program, and connectivity parametrisation. Tasks
are instances of Task, with an associated id, task allocation
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procedure, and task executor instance. A TaskExecutor
represents a task during execution, defining abstract methods
for its lifecycle. Platform tasks are extensions of tasks that
must implement PlatformTask, providing information re-
garding vehicle requirements (e.g., vehicle type and payload),
and an optional reference position to aid task allocation by
the Dolphin engine.

III. INTEGRATION WITH THE LSTS TOOLCHAIN

A. Overview

Over the years, LSTS developed several autonomous ve-
hicles, with an associated open-source toolchain [7]. This
toolchain comprises three main components: (1) Neptus, a
Java-based command-and-control tool for human operators
to configure, plan, and monitor autonomous vehicles using
a GUI; (2) DUNE, a C++ on-board software platform for
autonomous vehicles, including a simulation mode, and; (3)
IMC, an extensible message-based protocol for networked
interoperability between all LSTS systems, with bindings in
several languages such as C++ and Java.

A subset of IMC is dedicated to the specification, exe-
cution, and monitoring of tasks called IMC plans, that we
considered as the basic unit of computation for IMC-based
Dolphin platforms. An IMC plan is a sequence of maneuvers
for a single vehicle, comprising simple maneuvers such as
waypoint tracking but also more complex ones such as area
surveys. Typically, IMC plans are programmed in Neptus and
executed within vehicles by DUNE.

We developed two IMC-based Dolphin platforms taking
form as (1) a simple command-line based tool, and (2)
integrated in the Neptus tool as a plugin. For both, we
had to implement the Dolphin abstract bindings, in partic-
ular vehicles and IMC plans respectively as instances of
PlatformTask and Node, presented earlier in Section II-
E. In complement, we developed a Groovy DSL specifically
devoted to the specification of IMC plans, as we felt the need
to define IMC plans directly within Dolphin programs, rather
than just relying on the Neptus tool for that purpose.

B. IMC standalone platform

The IMC standalone platform is a command-line tool for
executing Dolphin programs. To support IMC interaction,
we made use of the IMC Java bindings, and networking
code for discovering vehicles in the network using multi-
cast UDP, and then exchanging messages with them over
standard UDP. For IMC plan interaction, we made use of
PlanSpecification (for plan definition), PlanControl
(control), and PlanControlState (monitoring) messages
from the IMC specification2. The platform extends the Dol-
phin DSL with imcPlan tasks, identified by id or defined
inline using the IMC DSL (discussed below).

C. Dolphin plugin for Neptus

The Dolphin plugin for Neptus allows users to edit and
run Dolphin programs through a custom window, embedded
in the overall GUI environment for editing and monitoring

2http://github.com/LSTS/imc

Fig. 7: Dolphin plugin running in Neptus.

t = imcPlan {
// Id
planName ’waterSurvey’
// Set reference speed, depth, and location
speed 1.5, Speed.Units.METERS_PS
z 0.0, Z.Units.DEPTH
locate Location.APDL
// Goto maneuver, activating the camera payload
move 30,-125
goTo payload:[[name: ’Camera’]]
// Loiter maneuver
move (-30,-50)
loiter radius:100

}

Fig. 8: Task specified using the IMC DSL.

of IMC plans, as illustrated in Fig 7. During execution,
the behavior of a program can be simultaneously monitored
using the Dolphin console and the standard Neptus GUI.
The implementation traits are similar to the stand-alone IMC
platform, apart from a delegation of networking functions to
the pre-existing Neptus infrastructure, and an integration with
the database of IMC plans associated to a Neptus console.

D. The IMC DSL

The IMC DSL may be used to automate IMC plan
generation with relatively succinct textual descriptions. The
listing of Fig. 8 illustrates a richer example than the one
given in the sample program of Fig. 3, defining an IMC plan
with two maneuvers (Goto and a Loiter), and associated
parameterisation.

IV. FIELD TESTS

Dolphin has been evaluated in field tests that took place
at the Leixões harbour, and in open sea at Tróia during
the 2017 Rapid Environmental Picture (REP’17) exercise3

in collaboration with the Portuguese Navy [16, 17]. Here
we only present results for the example scenario/program
of Section II-B at Leixões.

A. Setup

In Fig. 9 we present an overview of the scenario (9a)
and a photo of the vehicles we used (9b). The scenario
overview is a Neptus screenshot, with the scenario already
being executed, depicting three IMC plans for the water
surveys to be executed by UUVs, and one of the rendezvous
plans executed by a simulated UAV (the circular loiter). Due
to operational restrictions at Leixões, we could only deploy

3http://rep17.lsts.pt
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(a) IMC plans in Neptus.

(b) Noptilus UUVs (orange-colored vehicles).

Fig. 9: Test setup.

a simulated UAV as part of the control loop. The harbour
location is shown bottom right in the same image4. For the
tests, we used three LAUV-class vehicles [18] shown in the
photo of Fig. 9b (an additional fourth vehicle shown was used
for unrelated operations), named Noptilus-1, Noptilus-2, and
Noptilus-3. The same photo shows a Manta communications
gateway [7], used for WiFi and underwater communications
between vehicles and Neptus consoles.

Each of the UUVs was equipped with a DVL, allow-
ing us to fulfil the purpose of gathering bathymetry data
(distance to the seafloor) for the area of operation, thus
the vehicles were programmed to operate at the surface.
A variant of the program in Fig. 3 was edited in Neptus
using the Dolphin plugin, and the associated IMC plans
were edited using a Neptus plan edition console. The main
differences of the program variant were that we used named
vehicle selection (through an id attribute in pick blocks)
to avoid unexpected movements in the relatively short area
we had for operation, and that the IMC plans for UUVs
did not include a station-keeping maneuver after the survey.
Moreover, we left the connection timeout for UUVs (through
setConnectionTimeout, discussed in Section II) to the
default minimum of 1 minute, since they operated at the
surface and always in WiFi reach. During tests in Tróia [16,
17], the same overall scenario was executed, but a timeout
of several minutes was set instead to cope with connectivity
issues raised by the use of underwater acoustic communi-
cations. The difference is that, in Tróia, the UUVs operated
underwater for long periods with a bottom-tracking approach
(i.e., maintaining a constant distance to the seafloor) for the

4https://goo.gl/maps/hHvdiTt3xAH2

(a) Execution timeline.

Xstart
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(b) Vehicle positions (XY).

(c) Bathymetry values measured using DVL.

(d) Bathymetry map.

Fig. 10: Results for the field test scenario.

purpose of gathering side-scan sonar data.

B. Results

The results of one of the executions of the target scenario
are shown in Fig. 10a comprising: a timeline of executed
IMC plans (10a), vehicle positions (10b), DVL measure-
ments over time per vehicle (10c), and a global bathymetry
plot derived from the DVL measurements (10d).

As shown in the timeline of Fig. 10a, the whole execution
took roughly 9 minutes. The UUVs started their surveys
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simultaneously, but each of the three surveys terminated at
different times. Even if the surveys had similar path lengths,
non-linear factors such as initial position, sea currents, ve-
hicle calibration obviously impact on execution times. As
each survey terminated, the UUV initiated a corresponding
rendezvous. Purely by chance, the order of completion of the
survey and rendezvous maneuvers was in line with vehicle
numbering (1, 2, 3). Other executions of the scenario yielded
a different order of completion.

The XY plot in Fig. 10b shows that the UUV paths are in
line with the programmed survey plans. In the same figure,
for clarity, the UUV path is annotated in terms of rendezvous
plan trajectories (rv1, rv2, and rv3), where we can notice
an approach of the UAV to each survey area. For a non-
cluttered plot, we omit the UAV paths in between rendezvous
plans, during which the vehicle loitered in the air. The DVL
values of Fig. 10c indicate different depths and variations
according to each vehicle/survey area, with values ranging
approximately from 4.0 to 7.5 meters. The vehicle logs were
collected and post-processed to obtain the bathymetry plot
of the overall operation area in Fig. 10d.

V. RELATED WORK

Dolphin follows on from NVL [15], also a task orchestra-
tion language. Similarly to Dolphin, NVL defines primitives
for selecting vehicles over a network, but only a single “step”
primitive for firing tasks concurrently for multiple vehicles
in contrast to compositionally-defined tasks in Dolphin. NVL
requires explicit task-vehicle allocation with the granularity
of single vehicles rather than vehicle sets, and is not exten-
sible out-of-the-box for new constructs or robotic platforms,
as these require direct changes on the base code of NVL.
Integration with the LSTS toolchain is also very limited:
apart from the use of IMC, a command line executor and a
language-specific editor had to be used with no interface to
Neptus. It also relied on previously programmed IMC plans,
in contrast to the Dolphin integration where we have the
option of using the IMC DSL.

We now survey other DSLs for coordinated task execution
of networked robotic systems, then make a final discussion
contextualising Dolphin in the overall research landscape.

Karma [19] implements an orchestration architecture for
programming micro-aerial vehicle (MAVs) networks, called
the hive-drone model. Orchestrated behavior is conducted
by a centralised coordinator, called the hive. Tasks, called
drone behaviours, can be allocated to multiple vehicles and
interact through a centralised datastore running at the hive.
Each behavior is specified independently, with an associated
activation predicate and a progress function, both of which
feed on information the hive datastore. The progress function
governs the on-the-fly allocation of more or less drones by
the hive to a single behavior, according to task completion
results reported by drones. Though there are no composition
constructs, composed behaviours may be defined implicitly
by datastore value dependencies. The hive-drone model of
Karma is also used by the Simbeeotic simulator for MAV
swarms [20]. Other languages used with aerial vehicles

follow the spirit of Karma’s centralised architecture, using
different kinds of abstractions, e.g., TeCoLa [21] is a Python
DSL built around the notions of vehicle teams and services
accessible via remote procedure calls, and CSL [22] uses
reconfigurable Petri nets for task orchestration.

Proto [23] is a functional programming language for
homogeneous robots. The conceptual approach is based on
computational fields, whereby a collection of devices approx-
imates a continuous field in space/time. A Proto program
specifies choreographed swarm-like behavior through the
composition of operators for restricting execution in space
and time, feedback-loops that define state and execution
flow, and neighbourhood-based computation. Programs are
compiled to abstract bytecode that is deployed using a viral
propagation mechanism over the network, and then executed
by each robot in distributed manner. Bytecode execution uses
a stack-based virtual machine for programs that may run on
very lightweight microprocessor chips with only a few KB
of RAM. Protelis [24] is a more recent language based on
Proto, embedded in/interoperable with Java.

Meld [25] is a logic programming language that, like
Proto, also realizes a top-down synthesis approach. The
state at each robot defined by a set of logical facts that
evolve according to rules producing new facts. Rules take
into account local robot state, but also a special constructs
that access the state of neighbouring robots. Like Proto, the
Meld compiler derives local robot programs that run on very
lightweight embedded platforms.

Buzz [26] is a DSL for programming heterogeneous robot
swarms. Programs directly run locally on each robot, instead
of being derived from top-level specification as in Proto or
Meld, but have a notion of belonging to a specific swarm
with the intent of emergent collective behavior. Multiple
swarms of heterogenous robots may be formed, making
use of primitives for swarm formation, neighbourhood-based
queries and broadcast operations, and additional communi-
cation through a distributed tuple space. Buzz is compiled
onto abstract bytecode that is executed by a lightweight
virtual machine, and can be integrated with C/C++ code.
In particular, ROSBuzz [27] integrates Buzz in ROS. In the
line of Buzz, Swarmorph-script [28] is a rule-based language
for self-assembling robot swarms for morphogenesis.

Voltron [29] is a language for mobile sensing using
autonomous vehicles. The network of available vehicles is
tasked as a whole, regardless of how many vehicles are
available and without having to associate tasks to vehicles.
Tasks are defined by actions to be executed at a set of loca-
tions, using a key-value store for coordinated behavior, and
can be started/stopped and engage less/more vehicles on-the-
fly, in line with an active sensing strategy that accounts for
the evolution of accomplished goals. Voltron is implemented
through source-to-source translators to C++ and Java, and
supports centralised and distributed execution modes. In the
distributed execution mode, every vehicle bound to the same
task executes the same program (as in Proto), and virtual
synchrony mechanisms are employed for the consistency of
the shared key-value store.
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Summarising the above discussion, we observe three
main types of approach for globally tasking autonomous
vehicle networks: (1) orchestration, where a single pro-
gram/coordinator tasks nodes on-the-fly without need for
explicit coupling between nodes and optional node-to-node
communication (Dolphin, NVL, Karma, TeCoLa, CSL); (2)
choreography, where nodes are programmed through a global
specification (Proto, Protelis, Meld) leading to synthesised
programs that organise as swarms, and; (3) distributed pro-
grams without an explicit global specification but emergent
swarm behavior (Buzz, Swarmorph-script). Voltron allows
both orchestration and choreography, given the choice be-
tween centralised and distributed implementations.

Dolphin shares common features to the discussed lan-
guages, such as: the ability of tasking vehicle teams in
most of them; a design for extensibility and integration with
other languages as in the case of TeCoLa, Buzz, Protelis,
or Voltron, and; an explicitly compositional definition of
tasks as in Proto and Meld. In regard to the later aspect, a
distinguishing feature of Dolphin lies in the use of a process-
calculi approach for task definition. On the other hand,
Dolphin lacks relevant features, some of which discussed
as future work in the next section: tasks that are associated
dynamically to multiple vehicles in line with a notion of
progress as in Karma and Voltron, or the possibility of
neighbour-based and team-level primitives for cooperative
behavior as in Meld, Proto, Buzz, and Voltron.

VI. CONCLUSION

We presented Dolphin, a programming language for task
orchestration in autonomous vehicle networks, its integration
with the LSTS toolchain for autonomous vehicles, and the
use of the language in a field tests involving multiple
vehicles. A Dolphin program is a global specifications of
multi-vehicle tasks that are defined compositionally. The
language is also naturally extensible by virtue of its definition
as a Groovy DSL and of the abstract platform bindings that
made the LSTS toolchain integration possible.

As future work, we are interested in extending Dolphin
in a number of ways such as: the representation of human
operators or sensors as nodes, in addition to vehicles; ve-
hicle interaction constructs in support of cooperative tasks,
in complement to the centralised tuple-space scheme we
now employ; tasks that aggregate vehicle sets with varying
cardinality, for example according to progress measured as
set of accomplished goals or in reaction to vehicle faults
during execution, and; more expressive operators for a space-
time characterisation of task flow, for now only implicit in
vehicle selection criteria or the nature of IMC-based plans we
used in the LSTS platform. Additional platform bindings for
popular toolkits such as ROS [5] would also be interesting,
beyond the current support for the LSTS toolchain and the
work in progress regarding MAVLink [6, 9].
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