
On Improving the Efficiency and Robustness of

Table Storage Mechanisms for Tabled Evaluation

Ricardo Rocha

DCC-FC & LIACC
University of Porto, Portugal

ricroc@ncc.up.pt

Abstract. Most of the recent proposals in tabling technology were de-
signed as a means to improve some practical deficiencies of current
tabling execution models that reduce their applicability in particular
applications. The discussion we address in this paper was also motivated
by practical deficiencies we encountered, in particular, on the table stor-
age mechanisms used for tabling support. To improve such mechanisms,
we propose two new implementation techniques that make tabling mod-
els more efficient when dealing with incomplete tables and more robust
when recovering memory from the table space. To validate our proposals,
we have implemented them in the YapTab tabling system as an elegant
extension of the original design.

1 Introduction

Tabling [1, 2] is a technique of resolution that overcomes some limitations of tra-
ditional Prolog models in dealing with recursion and redundant sub-computations.
As a result, in the past years several alternative tabling models have been pro-
posed [3–8] and implemented in systems like XSB, Yap, B-Prolog, ALS-Prolog
and Mercury.

More recently, the increasing interest in tabling technology led to further
developments and proposals that improve some practical deficiencies of current
tabling execution models. In [9], Sagonas and Stuckey proposed a mechanism,
named just enough tabling, that offers the capability to arbitrarily suspend and
resume a tabled evaluation without requiring full re-computation. In [10], Saha
and Ramakrishnan proposed an incremental evaluation algorithm for maintain-
ing the freshness of tables that avoids recomputing the full set of answers when
the program changes upon addition or deletion of facts/rules. In [11], Rocha et
al. proposed the ability to support dynamic mixed-strategy evaluation of the
two most successful tabling scheduling strategies, batched and local scheduling.

All these recent proposals were designed as a means to improve the per-
formance of particular applications in key aspects of tabled evaluation like re-
computation and scheduling. The discussion we address in this work was also
motivated by our recent attempt of applying tabling to Inductive Logic Pro-
gramming (ILP) [12]. ILP applications are very interesting for tabling because
they have huge search spaces and do a lot of re-computation. In [13] we showed



that tabling is indeed a promising approach to minimize re-computation in ILP
systems and that one can have impressive gains through tabling. However, we
found that current tabling execution models suffer from significant limitations
that reduce their applicability in many ILP applications. Analysis showed two
major issues with the table storage mechanisms used for tabling support.

A first problem is incomplete tabling. Tabling is about storing answers for
subgoals so that they can be reused when a repeated call appears. On the other
hand, most ILP algorithms are interested in example satisfiability, not in the
answers: query evaluation stops as soon as an answer is found. This is usually
implemented by pruning at the Prolog level. Unfortunately, pruning over tabled
computations results in incomplete tables : we may have found several answers
but not the complete set. Thus, usually, when a repeated call appears we cannot
simply trust the answers from an incomplete table because we may lose part of
the computation. The simplest approach, and the one that has been implemented
in most tabling systems, is to throw away incomplete tables, and restart the
evaluation from scratch. In this work, we propose a more aggressive approach
where, by default, we keep incomplete tables around. Whenever a call for an
incomplete table appears, we first consume the answers from the table. If the
table is exhausted, then we will restart the evaluation from the beginning. The
main goal of this proposal is to avoid re-computation when the already stored
answers are enough to evaluate a repeated call.

A second problem is memory recovery. When we use tabling for applications
that build very many queries or that store a huge number of answers, we can
build arbitrarily many or very large tables, quickly running out of memory space.
In general, we will have no choice but to throw away some of the tables (ideally,
the least likely to be used next). Tabling systems have not really addressed this
problem. At most, they have a set of tabling primitives that the programmer
can use to dynamically abolish some of the tables. However, this can be hard
to use and very difficult to decide what are the potentially useless tables that
should be deleted. In this work, we propose a more suitable approach for large
dynamic searches, a memory management strategy based on a least recently used
algorithm, that dynamically recovers space from the least recently used tables
when the system runs out of memory.

Both proposals have been implemented in the YapTab tabling system [14]
with minor changes to the original design. Preliminaries results using the April
ILP system [15] showed very substantial performance gains and a substantial
increase of the size of the problems that can be solved by combining ILP with
tabling. Despite the fact that we used ILP as the motivation for this work,
our proposals are not restricted to ILP applications and can be generalised and
applied to most other applications.

The remainder of the paper is organized as follows. First, we briefly intro-
duce some background concepts and discuss the motivation for our work. Next,
we present our proposals and describe the issues involved in providing engine
support for integrating them in the YapTab tabling system. We then present
some experimental results and outline some conclusions.



2 Background and Motivation

To discuss the motivation for our work, we start by introducing some basic
concepts about tabling and ILP and then we address the practical deficiencies
encountered when combining them.

2.1 Basic Tabling Definitions

The basic idea behind tabling is straightforward: programs are evaluated by
storing answers for current subgoals in a proper data space, called the table
space. Whenever a repeated call is found, the subgoal’s answers are recalled from
the table instead of being re-evaluated against the program clauses. The nodes
in a tabled evaluation are classified as either: generator nodes, corresponding to
first calls to tabled subgoals; consumer nodes, corresponding to repeated calls to
tabled subgoals; or interior nodes, corresponding to non-tabled subgoals. Tabling
based models have four main types of operations for definite programs:

1. The tabled subgoal call operation is a call to a tabled subgoal. It checks if
the subgoal is in the table. If so, it allocates a consumer node and starts
consuming the available answers. If not, it adds a new entry to the table,
and allocates a new generator node.

2. The new answer operation checks whether a newly found answer is already
in the table, and if not, inserts the answer. Otherwise, the operation fails.

3. The answer resolution operation checks whether extra answers are available
for a particular consumer node and, if so, consumes the next one. If no
unconsumed answers are available, it suspends the current computation and
schedules a backtracking node to continue the execution.

4. The completion operation determines whether a tabled subgoal is completely
evaluated. A table is said to be complete when its set of stored answers rep-
resent all the conclusions that can be inferred from the set of facts and rules
in the program for the subgoal call associated with the table. Otherwise, it
is said to be incomplete. A table for a tabled subgoal is thus marked as com-
plete when, during evaluation, it is determined that all possible resolutions
have been made and, therefore, no more answers can be found.

We could delay completion until the very end of the execution. Unfortu-
nately, doing so would also mean that we could only recover space for consumers
(suspended subgoals) at the very end of the execution. Instead we shall try to
achieve incremental completion [16] to detect whether a generator node has been
fully exploited and, if so, to recover space for all its consumers. Moreover, if we
call a repeated subgoal that is already completed, then we can avoid consumer
node allocation and perform instead what is called a completed table optimiza-
tion [17]. This optimization allocates a node, similar to an interior node, that
will consume the set of found answers executing compiled code directly from the
table data structures associated with the completed subgoal.



2.2 Inductive Logic Programming

The fundamental goal of an ILP system is to find a consistent and complete the-
ory (logic program), from a set of examples and prior knowledge, the background
knowledge, that explains all given positive examples, while being consistent with
the given negative examples. Since it is not usually obvious which set of hypothe-
ses should be picked as the theory, an ILP system must traverse the hypotheses
space searching for a set of hypotheses (clauses) with the desired properties.

Computing the coverage of a hypothesis requires, in general, running positive
and negative examples against the clause. For instance, to evaluate if the hy-
pothesis ‘theory(X):- a1(X),a2(X,Y).’ covers the example theory(p1), the
system executes the goal once(a1(p1),a2(p1,Y)). The once/1 predicate is a
primitive that prunes over the search space preventing the unnecessary search
for further answers. It is defined in Prolog as ‘once(Goal):- call(Goal),!.’.
Note that the ILP system is only interested in evaluating the coverage of the
hypothesis, and not in finding answers for the goal.

Now assume that the previous hypothesis obtains a good coverage, that is,
the number of positive examples covered by it is high and the number of negative
examples is low. Then, it is quite possible that the system will use it to generate
more specific hypotheses such as ‘theory(X):- a1(X),a2(X,Y),a3(Y).’. If the
same example, theory(p1), is then evaluated against this new hypothesis, goal
once(a1(p1),a2(p1,Y),a3(Y)), part of the computation will be repeated. For
data-sets with a large number of examples, we can do an arbitrarily large amount
of re-computation.

2.3 Tabling and Inductive Logic Programming

In previous work, we have already proposed two approaches of using tabling to
minimize re-computation in ILP systems [13]. The first approach is simply to
table subgoals. This approach requires minimal changes to the ILP system and
comes for free if using a Prolog engine with tabling support. A second approach
is to table prefixes, that is, replace the conjunction of subgoals in the hypotheses
with proper tabled predicates inferred during execution. If we are able to table
these conjunction of subgoals, we only need to compute them once. This strategy
can be recursively applied as the system generates more specific hypotheses. This
idea is similar to the query packs technique proposed by Blockeel et al. [18].

However, we have found two major problems with the table storage mecha-
nisms currently used for tabling support that reduce their applicability in many
ILP applications. One of these problems is memory recovery. To recursively table
conjunction of subgoals, we need to store a large number of tables, and thus, we
may increase the table memory usage arbitrarily and quickly run out of mem-
ory [13]. Therefore, at some point, we need to compromise efficiency and throw
away some of the tables in order to recover space. A first approach is to let the
programmer dynamically control the deletion of the tables. However, this puts
the burden on the ILP designer, and in the worst case may result in removing
useful tables. In order to allow useful deletion without compromising efficiency,



we propose in this work a more robust approach, a memory management strategy
based on a least recently used replacement algorithm that dynamically recovers
space from the tables when the system runs out of memory.

The other problem is incomplete tabling. Consider again the evaluation of
once(a1(p1),a2(p1,Y),a3(Y)) but now with a2/2 declared as tabled. Cov-
erage computation with tabled evaluation works fine when examples are not
covered by hypotheses. In such cases, all tabled subgoals in a clause are com-
pleted. For instance, when evaluating the goal once(a1(p1),a2(p1,Y),a3(Y)),
if the subgoal a3(Y) never succeeds then, by backtracking, a2(p1,Y) will be
completely evaluated. On the other hand, tabled evaluation can be a prob-
lem when examples are successfully covered by hypotheses. For example, if
once(a1(p1),a2(p1,Y),a3(Y)) eventually succeeds, then the once/1 primitive
will reclaim space by pruning the goal at hand. However, as a2(p1,Y) may still
succeed with other answers for Y, its table entry cannot be marked as complete.
Thus, when a repeated call to a2(p1,Y) appears, we cannot simply load answers
from its incomplete table, because we may lose part of the computation. A ques-
tion then arises: how can we make tabling worthwhile in an environment that
potentially generates so many incomplete tables?

We first tackled this problem by taking advantage of YapTab’s functionality
that allows to combine different scheduling strategies within the same tabled eval-
uation [11]. Our results showed that best performance can be achieved when we
evaluate some subgoals using batched scheduling and others using local schedul-
ing. Batched scheduling is the default strategy, it schedules the program clauses
in a depth-first manner as does the WAM. This strategy favors forward execu-
tion, when a new answer is found the evaluation automatically propagates the
answer to solve the goal at hand. Local scheduling is an alternative strategy
that tries to force completion before returning answers. The key idea is that
whenever new answers are found, they are added to the table space, as usual,
but execution fails. Answers are only returned when all program clauses for the
subgoal at hand were resolved.

At first, local scheduling seems more attractive because it avoids incomplete
tabling. When the once/1 primitive prunes the search space, the tables are
already completed. On the other hand, if the cost of fully generating the complete
set of answers is very expensive, then the ILP system may not always benefit from
it. It can happen that, after completing a subgoal, the subgoal always succeeds
just by using the initial answers, making it useless to compute beforehand the
full set of answers. We believe that it is very difficult to define the best strategy
to evaluate each subgoal. The approach we propose in this work can be seen as a
compromise between the efficiency of batched scheduling and the effectiveness of
local scheduling. We want to favor forward execution in order to quickly succeed
with the coverage evaluation of the hypotheses, but we also want to be able to
reuse the answers already found in order to avoid re-computation.

We next describe how we extended the YapTab tabling system to be more
efficient when dealing with incomplete tables and more robust when recovering
memory from the table space.



3 Incomplete Tabling

This section describes how we extended YapTab to support incomplete tabling.
The main goal of our proposal is to avoid re-computation when the answers in
an incomplete table are enough to evaluate a repeated call. To support that,
we thus keep incomplete tables for pruned subgoals. Then, when a repeated call
to a pruned subgoal appears, we start by consuming the available answers from
its incomplete table, and only if we exhaust all such answers, we restart the
evaluation from the beginning. Later, if the subgoal is pruned again, then the
same process is repeated until eventually the subgoal is completely evaluated.

3.1 Implementation Details

In YapTab, tables are implemented using tries as proposed in [17]. An impor-
tant data structure in the table space is the subgoal frame. For each different
tabled subgoal call, a different subgoal frame is used to store information about
the subgoal. In particular, part of that information includes a pointer to where
answers are stored, the SgFr answers field, and a flag indicating the state of the
subgoal, the SgFr state field (see Fig. 1 for details).

Choice Point Stack Table Space

generator
choice point

CP_SgFr SgFr_state

answer
trie

structure

subgoal frame

SgFr_answers

SgFr_try_answer

ready
evaluating
complete
incomplete

Fig. 1. Generator choice points and subgoal frames in YapTab

During evaluation, a subgoal frame can be in one of the following states:
ready, i.e., without a corresponding generator in the choice point stack; evaluat-
ing, i.e., with a generator being evaluated; or complete, i.e., with the generator
no longer present but with the subgoal fully evaluated. At the engine level, gen-
erator nodes are implemented as WAM choice points extended with two extra
fields [11]. One of these fields, the CP SgFr field, points to the associated subgoal
frame in the table space.

To support incomplete tabling, we have introduced two minor changes to the
subgoal frame data structure. First, a new incomplete state, marks the subgoals
whose corresponding generators were pruned from the execution stacks. Second,
when we are consuming answers from an incomplete table as a result of a re-
peated call to a previously pruned subgoal, a new SgFr try answer field marks
the currently loaded answer (similarly to what consumer nodes have).



Handling incomplete tables also required minor changes to the tabled subgoal
call operation. Figure 2 shows how we extended the tabled subgoal call()

instruction to deal with incomplete tables.

tabled_subgoal_call(subgoal SG) {
sg_fr = search_table_space(SG) // sg_fr is the subgoal frame for SG
if (SgFr_state(sg_fr) == ready) {

gen_cp = store_generator_node(sg_fr)
SgFr_state(sg_fr) = evaluating
CP_AP(gen_cp) = failure_continuation_instruction() // second clause
goto next_instruction()

} else if (SgFr_state(sg_fr) == evaluating) {
cons_cp = store_consumer_node(sg_fr)
goto answer_resolution(cons_cp) // start consuming answers

} else if (SgFr_state(sg_fr) == complete) {
goto SgFr_answers(sg_fr) // execute compiled code from the trie

} else if (SgFr_state(sg_fr) == incomplete) { // new block of code
gen_cp = store_generator_node(sg_fr)
SgFr_state(sg_fr) = evaluating
first = get_first_answer(sg_fr)
load_answer_from_trie(first)
SgFr_try_answer(sg_fr) = first // mark the current loaded answer
CP_AP(gen_cp) = table_try_answer // new instruction
goto continuation_instruction()

}
}

Fig. 2. Pseudo-code for tabled subgoal call()

The new block of code that deals with incomplete tables is similar to the
block of code that deals with first calls to tabled subgoals (ready state flag).
It also stores a generator node, but instead of using the program clauses to
evaluate the subgoal call, as usual, it starts by loading the first available an-
swer from the incomplete table. The subgoal’s SgFr try answer field is made
to point to this first answer. A second difference is that the failure continuation
pointer of the generator choice point, the CP AP field, is now updated to a special
table try answer instruction.

When backtracking occurs, the table try answer instruction implements a
variant of the answer resolution operation (see section 2.1). Figure 3 shows the
pseudo-code for it. Initially, the table try answer instruction checks if there

table_try_answer(generator GEN) {
sg_fr = CP_SgFr(GEN)
last = SgFr_try_answer(sg_fr) // get the last loaded answer
next = get_next_answer(last)
if (next) { // answers still available

load_answer_from_trie(next)
SgFr_try_answer(sg_fr) = next // update the current loaded answer
goto continuation_instruction()

} else { // restart the evaluation from the first clause
load_compiled_code(sg_fr) // adjust the program counter
CP_AP(GEN) = failure_continuation_instruction() // second clause
goto next_instruction()

}
}

Fig. 3. Pseudo-code for table try answer()



are more answers to be consumed, and if so, it loads the next one and updates
the SgFr try answer field. When this is not the case, all available answers have
been already consumed. Thus, we need to restart the computation from the be-
ginning. The program counter is made to point to the first clause corresponding
to the subgoal call at hand and the failure continuation pointer of the generator
is updated to the second clause. At this point, the evaluation is in the same
computational state as if we had executed a first call to the tabled subgoal call
operation. The difference is that the table space for our subgoal already stores
some answers.

We should remark that the use of generator nodes to implement the calls
to incomplete tables is strictly necessary to keep unchanged all the remaining
data structures and algorithms of the tabling engine. Note that, at the engine
level, these calls are again the first representation of the subgoal in the execution
stacks because the previous representation has been pruned.

3.2 Discussion

Let us consider again the previous ILP example and the evaluation of the goal
once(a1(p1),a2(p1,Y),a3(Y)) with predicate a2/2 declared as tabled. Con-
sider also that, after a long computation for a2(p1,Y), we have found three
answers: Y=y1, Y=y2, and Y=y3, and that a3(Y) only succeeds for Y=y3. Primi-
tive once/1 then prunes the goal at hand and a2(p1,Y) is marked as incomplete.
Now assume that, later, the ILP system calls again a2(p1,Y) when evaluating a
different goal, for example, once(a2(p1,Y),a4(Y)). If a4(Y) succeeds with one
of the previously found answers, then no evaluation will be required for subgoal
a2(p1,Y). This is the typical case where we can profit from having incomplete
tables. The gain in the execution time is proportional to the cost of evaluating
the subgoal from the beginning until generating the proper answer.

On the other hand, if a4(Y) does not succeed with any of the previously
found answers, then a2(p1,Y) will be reevaluated as a first call. This means
that the answers Y=y1, Y=y2 and Y=y3 will be generated again. However, as
these answers are repeated, the evaluation will fail and a4(Y) will not be called
again for them. The evaluation will fail until a non-repeated answer is eventually
found. Thus, the computation time required to evaluate once(a2(p1,Y),a4(Y)),
either with or without the incomplete table, is then equivalent. Therefore, we
may not benefit from having maintained the incomplete table, but we do not
pay any cost either.

Our proposal is close to the spirit of the just enough tabling (JET) proposal
of Sagonas and Stuckey [9]. In a nutshell, the JET proposal offers the capabil-
ity to arbitrarily suspend and resume a tabled evaluation without requiring any
re-computation. The basic idea is that JET copies the execution stacks corre-
sponding to pruned subgoals to an auxiliary area in order to be able to resume
them later when a repeated call appears. The authors argue that the cost of JET
is linear in the number of choice points which are pruned. However, to the best
of our knowledge, no practical implementation of JET was yet been done.



Compared to JET, our approach does not require an auxiliary data space,
does not require any complex dependencies to maintain information about pruned
subgoals, and does not introduce any overhead in the pruning process. We thus
believe that the simplicity of our approach can produce comparable results to
JET when applied to real applications like ILP applications.

4 Memory Recovery

This section describes our proposal to handle tables when the system runs out
of memory. We propose a memory management strategy that automatically re-
covers space from the least recently used tables. Note that this proposal is com-
pletely orthogonal to the previous one, that is, we can support either or both
simultaneously. In what follows, we will thus consider the case where YapTab
also includes support for incomplete tabling as described in the previous section.

4.1 Implementation Details

In YapTab, each tabled subgoal call is represented by a different subgoal frame in
the table space. Besides this representation, a subgoal can also be represented in
the execution stacks. First calls to tabled subgoals or calls to previously pruned
subgoals are represented by generator nodes; repeated calls to tabled subgoals
are represented by consumer nodes; and calls to completed subgoals are repre-
sented by interior nodes that execute compiled code directly from the answer trie
structure associated with the completed subgoal. A subgoal is said to be active
if it is represented in the execution stacks. Otherwise, it is said to be inactive.
Inactive subgoals are thus only represented in the table space.

A subgoal can also be in one of the following states: ready, evaluating, com-
plete or incomplete. The ready and incomplete states correspond to situations
where the subgoal is inactive, while the evaluating state corresponds to a situa-
tion where the subgoal is active. The complete state is a special case because it
can correspond to both active and inactive situations. In order to be able to dis-
tinguish these two situations, we introduced a new state named complete-active.
We use the complete-active state to mark the completed subgoals that are also
active in the execution stacks, while the previous complete state is used to mark
the completed subgoals that are only represented in the table space. With this
simple extension, we can now use the SgFr state field of the subgoal frames to
decide if a subgoal is currently active or inactive.

Knowing what subgoals are active or inactive is important when the system
runs out of memory. Obviously, active subgoals cannot be removed from the table
space because otherwise we may lose part of the computation or produce errors.
Therefore, when the system runs out of memory, we should try to recover space
from the inactive subgoals. Figure 4 shows how we handle inactive subgoals in
YapTab.

Subgoal frames corresponding to inactive subgoals are kept in a double linked
list that is accessible by two new global registers. The Inact most register points



answer
trie

structure

answer
trie

structure

Table Space

SgFr_previous

subgoal frame

SgFr_answers

SgFr_next

SgFr_previous

subgoal frame

SgFr_answers

SgFr_next

SgFr_previous

subgoal frame

SgFr_answers

SgFr_next

SgFr_previous

subgoal frame

SgFr_answers

SgFr_next

space that can be potentially recovered

Inact_recover

Inact_most

ready complete incomplete complete

empty trie yes/no answer

space recovered

Fig. 4. Inactive subgoals in YapTab

to the most recently inactive subgoal frame and the Inact recover register
points to the least recently inactive subgoal frame from where space can be
potentially recovered. Two subgoal frame fields, SgFr next and SgFr previous,
link the list. Space from inactive subgoals is recovered as presented next in Fig. 5.

recover_space(structure data type STR_TYPE) {
// STR_TYPE is the data type that we failed to allocate space for
sg_fr = Inact_recover
do {

if (sg_fr == NULL) // end of list
return

if (get_first_answer(sg_fr)) { // subgoal frame with answers
free_answer_trie_structure(sg_fr) // recover space
SgFr_state(sg_fr) = ready // reset the frame state

}
sg_fr = SgFr_next(sg_fr)

} while (no_space_available_for(STR_TYPE))
Inact_recover = sg_fr // update recover field

}
Fig. 5. Pseudo-code for recover space()

The recover space() procedure is called when the system fails to allocate
memory space for a specific data type, the STR TYPE argument. It starts from
the subgoal frame pointed by the Inact recover register and then uses the
SgFr next field to navigate in the list of inactive subgoals until at least a page
of memory is recovered. YapTab uses a page-based memory allocation scheme
where each page only stores data structures of the same type, and thus, to start



using a memory page to allocate a different data structure, we first need to
completely deallocate all the previous data structures from the page.

When recovering space, we only consider the subgoals that store at least one
answer (completed subgoals with a yes/no answer are kept unchanged) and for
these we only recover space from their answer trie structures. Through experi-
mentation we found that, for a large number of applications, the space required
by all the other table data structures is insignificant when compared with the
space required by the answer trie structures (usually more than 99% of the total
table space). Therefore, only sporadically, we are able to recover space from the
non-answer related data structures. We thus argue that the potential benefit of
recovering space from these structures does not compensate its cost.

During evaluation, an inactive subgoal can be made active again. This occurs
when we execute a repeated call to an inactive subgoal. For such cases, we thus
need to remove the corresponding subgoal frame from the list. On the other
hand, when a subgoal turns inactive, its subgoal frame is inserted in the list
as the most recently inactive frame. A subgoal turns inactive when it executes
completion, it is pruned or it fails from an interior node that was executing
compiled code from the answer trie structure.

This latter case can be complicated because we can have several interior nodes
executing compiled code from the same answer trie. Only when the computation
fails from the last (oldest) interior node should the corresponding subgoal be
made inactive. To correctly implement that we use the trail stack. The call
that first executes code for a completed subgoal changes the subgoal’s state
to complete-active and stores in the trail stack the reference to the subgoal
frame. Further calls to the same subgoal (cases where the subgoal’s state is now
complete-active) are handled as before. Figure 6 shows how we extended the
tabled subgoal call() instruction to support this.

tabled_subgoal_call(subgoal SG) {
sg_fr = search_table_space(SG) // sg_fr is the subgoal frame for SG
if (SgFr_state(sg_fr) == ready) {

remove_from_inactive_list(sg_fr) // new
...

} else if (SgFr_state(sg_fr) == evaluating) {
...

} else if (SgFr_state(sg_fr) == complete) {
remove_from_inactive_list(sg_fr) // new
SgFr_state(sg_fr) = complete-active // new
trail(sg_fr) // new
goto SgFr_answers(sg_fr) // execute compiled code from the trie

} else if (SgFr_state(sg_fr) == complete-active) { // new state
goto SgFr_answers(sg_fr) // execute compiled code from the trie

} else if (SgFr_state(sg_fr) == incomplete) {
remove_from_inactive_list(sg_fr) // new
...

}
}

Fig. 6. Extended pseudo-code for tabled subgoal call()

When later backtracking occurs, we use the reference in the trail stack to
correctly insert the subgoal in the list of inactive subgoals. This use of the trail



stack does not introduce any overhead because the YapTab engine already uses
the trail to store information beyond the normal variable trailing (to control
dynamic predicates, multi-assignment variables and frozen segments).

4.2 Discussion

With this dynamic recovery mechanism, the programmer can now rely on the
effectiveness of the memory management algorithm to completely avoid the prob-
lem of deciding what potentially useless tables should be deleted. Note, however,
that we can still increase the table memory space arbitrarily. This can happen
if the space required by the set of active subgoals exceeds the available mem-
ory space and we are not able to recover any space from the set of inactive
subgoals. A possible solution for this problem is to store data externally using,
for example, a database management system. We are already studying how this
can be done, that is, how we can partially move tables to database storage and
efficiently load them back to the tabling engine. This idea can also be applied to
inactive subgoals and, in particular, we can eventually use our memory manage-
ment algorithm, not to decide what tables to delete but, to decide what tables
to move to the database.

5 Experimental Results

To evaluate the impact of our proposals, we ran the April ILP system [15] with
YapTab. The environment for our experiments was a Pentium M 1600MHz pro-
cessor with 1 GByte of main memory and running the Linux kernel 2.6.11.

We first experimented our support to incomplete tabling and, for that, we
used a well-known ILP data-set, the Mutagenesis data-set, with two different
configurations that we named Mutagen1 and Mutagen2. The main difference
between the configurations is that the hypotheses space is searched differently.
Table 1 shows the running times, in seconds, for Mutagen1 and Mutagen2 using
four different approaches to evaluate the predicates in the background knowl-
edge: (i) without tabling; (ii) using local scheduling; (iii) using batched schedul-
ing; and (iv) using batched scheduling with support for incomplete tabling. The
running times include the time to run the whole ILP system. During evalua-
tion, Mutagen1 and Mutagen2 call respectively 1479 and 1461 different tabled
subgoals and, for batched scheduling, both end with 76 incomplete tables.

Our results show that, by combining batched scheduling with incomplete
tabling, we can further speed up the execution for these kind of problems.
Batched scheduling allows us to favor forward execution and incomplete tabling
allows us to avoid re-computation. However, for some subgoals, local scheduling
can be better than batched scheduling with incomplete tabling. We can bene-
fit from local scheduling when the cost of fully generating the complete set of
answers is less than the cost of evaluating the subgoal several times as a re-
sult of several pruning operations. Better results are thus still possible if we
use YapTab’s flexibility that allows to intermix batched with local scheduling



within the same evaluation. However, from the programmer point of view, it is
very difficult to define the subgoals to table using one or another strategy. We
thus argue that our combination of batched scheduling with incomplete tabling
is an excellent (and perhaps the best) compromise between simplicity and good
performance.

Tabling Mode Mutagen1 Mutagen2

Without tabling > 1 day > 1 day
Local scheduling 153.9 143.3
Batched scheduling 278.2 137.9
Batched scheduling with incomplete tabling 122.9 117.6

Table 1. Running times, in seconds, with and without support for incomplete tabling

We next show how we used another well-known ILP data-set, the Carcino-
genesis data-set, to experiment with our second proposal. From our previous
work on tabling conjunctions of subgoals, we selected one of the hypotheses that
allocates more memory when computing its coverage against the set of examples
in the Carcinogenesis data-set. That hypothesis is defined by a prefix that repre-
sents the conjunction of 5 tabled subgoals with a total of 20 arguments. Table 2
shows the running times in seconds (or m.o. for memory overflow) for computing
its coverage with four different table limit sizes: 576, 384, 192 and 128 MBytes
(the table limit size is defined statically when the system starts). In parentheses,
it shows the number of executions of the recover space() procedure.

Tabling Mode 576MB 384MB 192MB 128MB

Local scheduling 15.2 15.9(95) 16.9(902) m.o.(893)
Batched scheduling 11.4 12.6(62) 14.1(523) m.o.(557)
Batched scheduling with incomplete tabling 11.1 12.3(91) 13.9(833) m.o.(833)

Table 2. Running times, in seconds, with different table limit sizes

Through experimentation, we found that this computation requires a to-
tal table space of 576 MBytes if not recovering any space, and a minimum of
160 MBytes if using our recovery mechanism (for Pentium-based architectures,
YapTab allocates memory in segments of 32 MBytes). The results obtained with
this particular example show that batched scheduling with incomplete tabling is
again the best approach. The results also suggest that our recovery mechanism
is quite effective in performing its task (for a memory reduction of 66% in table
space it introduces an average overhead between 10% and 20% in the execution
time). The impact of our proposal in the execution time depends, in general,
on the size of the table space and on the specificity of the application being
evaluated, i.e., on the number of times it may call subgoals whose tables were
previously deleted by the recovery procedure.

6 Conclusions

In this paper, we have discussed some practical deficiencies of current tabling
systems when dealing with incomplete tabling and memory recovery. Incomplete



tabling became a problem when, as a result of a pruning operation, the compu-
tational state of a tabled subgoal is removed from the execution stacks before
being completed. On the other hand, memory recovery became a problem when
we use tabling for applications that build very many queries or that store a huge
number of answers, quickly running out of memory space.

To support incomplete tabling, we have proposed the ability to avoid re-
computation by keeping incomplete tables for pruned subgoals. The typical case
where we can profit from having incomplete tables is, thus, when the already
stored answers are enough to evaluate repeated calls. When this is not the case,
we cannot benefit from it but, on the other hand, we do not pay any cost either.
To recover memory, we have proposed a memory management strategy that
automatically recovers space from inactive tables when the system runs out of
memory. Both proposals have been implemented in the YapTab tabling system
with minor changes to the original design. To the best of our knowledge, YapTab
is the first tabling system that implements support to incomplete tabling and
memory recovery as discussed above. Preliminary results using the April ILP
system showed very substantial performance gains and a substantial increase of
the size of the problems that can be solved by combining ILP with tabling.

Acknowledgments

We are very thankful to Nuno Fonseca for his support with the April ILP System.
This work has been partially supported by Myddas (POSC/EIA/59154/2004)
and by funds granted to LIACC through the Programa de Financiamento Pluri-
anual, Fundação para a Ciência e Tecnologia and Programa POSC.

References

1. Tamaki, H., Sato, T.: OLDT Resolution with Tabulation. In: International Confer-
ence on Logic Programming. Number 225 in LNCS, Springer-Verlag (1986) 84–98

2. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43 (1996) 20–74

3. Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order
Stratified Logic Programs. ACM Transactions on Programming Languages and
Systems 20 (1998) 586–634

4. Rocha, R., Silva, F., Santos Costa, V.: YapTab: A Tabling Engine Designed to
Support Parallelism. In: Conference on Tabulation in Parsing and Deduction.
(2000) 77–87

5. Demoen, B., Sagonas, K.: CHAT: The Copy-Hybrid Approach to Tabling. Future
Generation Computer Systems 16 (2000) 809–830

6. Guo, H.F., Gupta, G.: A Simple Scheme for Implementing Tabled Logic Program-
ming Systems Based on Dynamic Reordering of Alternatives. In: International
Conference on Logic Programming. Number 2237 in LNCS, Springer-Verlag (2001)
181–196

7. Zhou, N.F., Shen, Y.D., Yuan, L.Y., You, J.H.: Implementation of a Linear Tabling
Mechanism. Journal of Functional and Logic Programming 2001 (2001)



8. Somogyi, Z., Sagonas, K.: Tabling in Mercury: Design and Implementation. In:
International Symposium on Practical Aspects of Declarative Languages. Number
3819 in LNCS, Springer-Verlag (2006) 150–167

9. Sagonas, K., Stuckey, P.: Just Enough Tabling. In: ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming, ACM (2004)
78–89

10. Saha, D., Ramakrishnan, C.R.: Incremental Evaluation of Tabled Logic Pro-
grams. In: International Conference on Logic Programming. Number 3668 in
LNCS, Springer-Verlag (2005) 235–249

11. Rocha, R., Silva, F., Santos Costa, V.: Dynamic Mixed-Strategy Evaluation of
Tabled Logic Programs. In: International Conference on Logic Programming. Num-
ber 3668 in LNCS, Springer-Verlag (2005) 250–264

12. Muggleton, S.: Inductive Logic Programming. In: Conference on Algorithmic
Learning Theory, Ohmsma (1990) 43–62

13. Rocha, R., Fonseca, N., Santos Costa, V.: On Applying Tabling to Inductive Logic
Programming. In: European Conference on Machine Learning. Number 3720 in
LNAI, Springer-Verlag (2005) 707–714

14. Rocha, R., Silva, F., Santos Costa, V.: On applying or-parallelism and tabling to
logic programs. Journal of Theory and Practice of Logic Programming 5 (2005)
161–205

15. Fonseca, N.A., Silva, F., Camacho, R.: April - An Inductive Logic Programming
System. In: European Conference on Logics in Artificial Intelligence. Number 4160
in LNAI, Springer-Verlag (2006) 481–484

16. Chen, W., Swift, T., Warren, D.S.: Efficient Top-Down Computation of Queries
under the Well-Founded Semantics. Journal of Logic Programming 24 (1995)
161–199

17. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38 (1999)
31–54

18. Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele,
H.: Improving the Efficiency of Inductive Logic Programming Through the Use of
Query Packs. Journal of Artificial Intelligence Research 16 (2002) 135–166


