
Register reversible languages
(work in progress)

Armando B. Matos
armandobcm@yahoo.com

April 5, 2014

Topics discussed in this work (selected from the table of contents): the languages ?SRL - syn-
tax, formal inversion and semantics - parametric composition - depth of a program - executing
a program - non implementable transformations - examples of implementable transformations -
partitions - program composition - simulation of recursive Boolean circuits - simulation by prim-
itive recursive functions - a RAM machine that runs ?SRL - equivalence and commutativity -
“in the language of group theory” - the order of a program - normal forms - execution time. Ap-
pendices (programs in Prolog): checking ?SRL programs - representation of some of programs
presented in this work - interpreter code - assembly language interpreter with inversion.

Contents

1 Introduction 1

1.1 Reversibility and register languages 3

1.2 Reversible register languages . 4

1.2.1 Representing a pair of integers by an integer 6

1.2.2 The number of registers does not change 7

2 Preliminaries and notation 8

3 The languages ?SRL 10

3.1 Syntax of the languages ?SRL . 11

3.2 The registers of a program . 12

3.2.1 On the names of the registers 12

3.2.2 Two kinds of registers . 12

3.2.3 A program as a tree . 13

3.3 The meaning of a program . 14

3.4 The inverse of a program . 15

3.5 Syntax, inversion and semantics: formal definition 16

1

3.5.1 Parametric composition 17

3.5.2 Depth of a program . 17

3.5.3 Executing a program P a negative number of times 18

4 Transformations 19

4.1 Non implementable transformations 19

4.1.1 Transformations that are not bijections 19

Non cloning theorem . 20

4.1.2 Sub-sequences that grow too fast 20

4.1.3 Uncomputable transformations 21

4.2 Examples of implementable transformations 22

5 Sub-classes of ?SRL programs 28

5.1 SRL programs with depth 0 . 28

5.2 Programs without loops . 29

5.3 Linear (depth 1) programs . 29

5.4 SRL programs with two variables 31

5.4.1 Solving non linear equations with two integer variables . . 31

An example . 31

A method for obtaining the solution of (3) 32

5.4.2 Two-variable programs: the general case 33

Every IP transformation can be implemented by a two-

variable SRL program 34

2

Every two-variable SRL program implements an IP trans-

formation . 35

Two-variable SRL programs implement exactly the IP trans-

formations . 36

5.5 Comments and further study . 37

5.5.1 Further study: integer transformations hierarchies 38

6 Partitions of Zn 39

6.1 General concept . 39

6.2 Application to example 9 . 40

7 Program composition 44

8 Simulation results 47

8.1 Simulation of recursive Boolean circuits 47

8.2 Simulation by primitive recursive functions 48

9 Equivalence and commutativity 50

9.1 The equivalence problem . 50

9.2 Commutativity . 52

9.3 Equivalence and commutativity are the same problem 53

10 Further formalization; normal forms 56

10.1 In the language of group theory 56

10.2 Order of a program . 58

10.3 Normal forms . 59

3

10.4 More equivalence transformations 64

10.4.1 Introductory examples . 64

10.4.2 Transformation [P ; for(. . .)]→ [for(. . .); P] 66

10.4.3 When is “forx(P)” equivalent to “for y(Q)? 67

11 Execution time 69

12 ?SRL with register initialization 72

12.1 y = ax+ b . 73

12.2 y = x mod 2 . 74

12.3 y = x mod m for fixed m ≥ 2 . 74

12.4 y = (ax+ b) mod m for fixed m ≥ 2 74

12.5 y = x2 + b . 74

12.6 Polynomials . 75

12.7 Sums and products of functions 75

12.8 y = fib(2x) . 75

13 A machine that runs ?SRL programs 77

13.1 Assembly language . 77

13.2 Assembly language: inverting the execution direction 79

A ?SRL implementations 82

A.1 Representation of some of programs presented in this work 83

A.1.1 Examples in Haskell . 83

A.1.2 Examples in Prolog . 84

4

A.1.3 Example 3, page 22 . 84

A.1.4 Example 4, page 23 . 84

A.1.5 Example 9, page 25 . 84

A.2 Intermediate language interpreter (Haskell) 86

A.3 Intermediate language interpreter (Prolog) 87

A.4 Assembly language interpreter and examples (Haskell) 90

A.4.1 Examples . 90

A.4.2 Haskell interpreter . 91

A.5 Assembly language interpreter (Prolog) 93

A.6 Interpreter with inversion (Prolog) 93

A.7 Program in “sage” that generated Figure 6 (page 43) 93

5

Abstract

We begin by quoting Abramsky [Abr01]: “R. Landauer [Lan61] has demonstrated

that it is only the logically irreversible operations in a physical computer that nec-

essarily dissipate energy by generating a corresponding amount of entropy for every

bit of information that gets irreversibly erased; the logically reversible operations can

in principle be performed dissipation-free. At the basic level, however, matter is

governed by classical mechanics and quantum mechanics, which are reversible.”

In a not too distant future the miniaturization of circuits will reach the “power

dissipation” physical barrier, which can (only?) be overcome by the usage of

reversible computers. Quantum computers are, of course, a particular case of

reversible computers.

Reversible programming languages are an important tool for the design and anal-

ysis of logically reversible computations. In this work we study register reversible

languages.

Motivation: Characterization of the primitive recursive functions by

a register language. A well known and very important sub-class of recursive

(total) functions is the class of “primitive recursive” functions. As shown by

A. R. Meyer and D. M. Ritchie, this class of functions can also be characterized

by a specific (non reversible) register language, called “Loop”. This means that

every program written in Loop (together with the specification of the input and

output registers) defines a primitive recursive function and, reciprocally, that

every primitive recursive is computed by some Loop program.

Reversible transformations and the language SRL. Inspired by the work

of Meyer and Ritchie [MR67a], we describe a simple and reversible register lan-

guage called SRL (Simple Reversible Language), that characterize a set of trans-

formations (bijections) of tuples of Zn into tuples of Zn, where n is the num-

ber of registers used by the program; these transformations may be seen as the

“primitive recursive functions in the reversible world”. More precisely, it can be

shown [Mat12] that the class of primitive recursive bijections is not enumerable,

so that it can not be considered a “model of computation”. The best that can

be done is to look for interesting enumerable sub-classes of primitive recursive

bijections.

The language SRL is inherently reversible and does not need extra “ad-hoc”

features (like, for instance, an extra memory tape) to insure reversibility. Pro-

grams written in SRL may be interpreted by an “instantly invertible” finite mem-

ory machine, in which the modification of a control bit by the operator causes

the instantaneous inversion of the time direction (if going backwards, the com-

putation finishes in the initial instruction). A slightly more powerful language

(ESRL, Extended Simple Reversible Language) is also studied; it includes also

the “swap(x, y)” instruction.

Reversible transformations: inductive definition. Similarly to what hap-

pens with the primitive recursive functions, it is also possible to define inductively

the class of SRL transformations, without mentioning any particular program-

ming language, as (roughly) the smallest set of transformations that includes the

following operations

1) increment a register by 1;

2) decrement a register by 1;

3) compose two SRL transformations;

4) parametric composition, in which the value of a variable x determines the
number of times that a given SRL transformation P is composed with itself,

say

v[x] P ’s︷ ︸︸ ︷
P ; P ; . . . P , where v[x] is the value contained in the register x. The

transformation P can not mention x. As v[x] may be a negative integer, we
give an appropriate definition for “execute v[x] times the transformation P”
when v[x] < 0.

It should be emphasized that the inductive definition and the language based

definition are in fact quite similar. And this is true for both concepts: primitive

recursive functions and SRL reversible transformations. For instance, computing

the value of a function f(x, y) using the definition of primitive recursion (see for

instance [Odi89, Dav85, Rob47]), is essentially identical to the execution of a

Loop program with input registers x and y.

Comparision with the reversible logical gates. Notice that, although the

programs in SRL and ESRL are somewhat similar to the Fredkin and Toffoli’s

2

reversible logical circuits, there are two important differences: in SRL or ESRL

registers may contain an arbitrary integer (and not just 0 or 1) and the compu-

tation model is uniform.

Decidability problems. We state an important problem, “program equiva-

lence”, whose decidability is still unknown. It is proved that it is decidability

class of the following problems is the same, in the sense that either all these

problems are decidable or all belong to Π0
1, the class of problems that are com-

plements of semi-decidable problems.

1. “Program equivalence” problem: given two programs P and Q, is P ≡ Q?”.

2. “Commutativity” problem: given two programs P and Q, is PQ ≡ QP?”.

3. “Kernel” problem: given a program P is P ≡ ε?” (similar to the word

problem of Group theory).

Another problem, “is n the order of the program P?”, is at least as difficult as

these three problems.

Two-variable SRL programs: class of transformations. Linear SRL pro-

grams have been studied previously by the author. Here, we characterize SRL

programs with at most two variables, showing that they implement exactly the

so called IP (invertible and polynomial) transformations.

Notes on the execution time. Due to the “swap(x, y)” instruction, the value

stored in a register can change abruptly in a single instruction step. In order

to measure how the values stored in the registers change as the computation

proceeds, even with the presence of the “swap(x, y)” instruction, we define an

appropriate global time function and study its properties.

Relation with Group Theory. Some relations and similarities with Group

Theory concepts are also established. We study for instance a particular com-

putable normal form for SRL programs. Unfortunately, two programs with differ-

ent normal forms may be equivalent. The existence of a “complete” computable

normal form (two programs having the same normal form are equivalent) would

of course imply the recursiveness of the problems 1–3.

3

Chapter 1

Introduction

Contrarily to what has previously believed, only non reversible computations

imply the dissipation of heat [Lan61]; see also [Ben73, Ben07]. This fact may have

important consequences in the future of computing: the development of physically

reversible computers may significantly reduce the energy that is currently spent

in computations.

In our opinion the theoretical study of the mathematics of reversible computa-

tions should be based on a reversible model of computation with the following

characteristics

– The model should be as simple as possible, but not trivial. In this work we

have chosen a register machine as computation model.

– Each program (or circuit) should be easily inverted.

– The inversion of the execution direction of a program should be possible

without extra auxiliary memory or other artifacts.

Register machines have been widely used as algorithmic models of computation,

see for instance [BB96, Mor98, Odi89]. Associated with a register machine there

are “register languages” in which the programs appropriate for that machine can

be written. The purpose of this work is to study the properties of very sim-

ple register languages that are both reversible (each program has an inverse)

and total (every computation halts). An example of a total, but not reversible,

1

register language is Loop [MR67a], whose programs (called “loop programs”

in [MR67a]) correspond exactly to the set of primitive recursive functions. Ex-

amples of Boolean reversible register circuits are described in [FT82].

When designing a reversible language it is important to guarantee

1) The reversibility of the data modifying instructions, “what were the previ-

ous values of the registers?”.

2) The reversibility of the program flow of control, “what instruction was

executed before this one?”.

These remarks also apply to reversible Turing machines.

Regarding point 2), it should not be possible, in principle, to reach a certain pro-

gram label L from two different labels because, without additional information,

it might be not possible to “go backwards” from L. See for instance [Ben07],

page 3. Two examples of computation models where this merge of control is im-

possible are the Loop language [MR67a] (which is not reversible) and Fredkin’s

billiard ball computer [FT82].

In this work we define two reversible register languages, SRL and ESRL, where

each register can contain an arbitrary, possibly negative, integer. Loops, but not

conditional jumps, are possible – just as in the language Loop [MR67a]; the

transformations implemented by these languages can be seen as the

reversible “primitive recursive” transformations

By ?SRL we mean “SRL and ESRL”. In the following table we briefly compare

the ?SRL languages with the Loop language (that characterizes the class of

primitive recursive functions). In the Loop language, after the execution of the

“for(?)” instruction, the loop variable is set to 0.

2

Language: Loop SRL ESRL

Total Yes Yes Yes

Reversible No Yes Yes

Register con-

tents

a non-negative

integer

a (possibly neg-

ative) integer

a (possibly neg-

ative) integer

Input
a tuple of regis-

ters

the tuple of all

registers

the tuple of all

registers

Output a register
the tuple of all

registers

the tuple of all

registers

Instructions inc, dec, for(?) inc, dec, for
inc, dec, for,

swap

1.1 Reversibility and register languages

In a register language, like Loop and ?SRL, each program uses only a pre-

determined number of registers, so that, using the uniform1 model, see for in-

stance [BB96, CLR01], we can say that, independently of the values of the inputs,

each program uses a fixed amount of memory. This does not happen, for instance,

with Turing machines, where the number of tape cells used in a computation de-

pends in general on the input; for non halting computations, that number may

be not bounded.

We study reversible languages or models of computation (see for instance, [Ben73,

FT82, Lec63]) in which there is an algorithm that inverts each program (or circuit

or automaton) P , producing the inverse program P−1 that satisfies

P ;P−1 ≡ P−1;P ≡ ε

1In complexity theory the word “uniform” has at least two meanings: a model (such as an
algorithm) which has a fixed description – it is not parametrized in the length of the input
(circuits are not uniform models), and (ii) a method for analyzing the execution time of a
computation, where it is assumed that the execution time of a machine instruction is the same,
independently of the of the magnitude of the values contained in the registers.

3

where “;” denotes the concatenation operation (program sequencing), “ε” denotes

the identity program, and “≡” denotes program equivalence, see Definition 3,

page 16. As the empty program “ε” is total, every program P must also be total.

The inverse of a program should be very easy to define and should use exactly

the same registers; no additional memory should be needed to run the program

in the reverse direction; this does not happen with some “reversibilizations” of

computation model, like, for instance in [Ben73, LTV98].

As far as we know, the ?SRL languages (described in [Mat03], and in Chapter 3)

are the simplest non trivial reversible and total register languages; we think they

are an interesting tool for

– The study of the fundamental properties of reversible computations.

– The specification of reversible computations.

Regarding to the last goal, any program written in ?SRL automatically cor-

responds to a reversible and often non trivial transformation; many reversible

transformations described in the literature, such as the pair

y := y + x, y := y− x

described in page 2 of [Ben07], are easily implemented by ?SRL programs.

1.2 Reversible register languages

The language Loop [MR67a] characterizes exactly the class of primitive recursive

functions. Each register contains a non-negative integer. This language is not

reversible, essentially for two reasons

(i) If some register x contains 0 after the execution of an instruction of the form

“dec x” (decrement the value stored in register x by 1), it is impossible to

know the previous value of x: it may either be 0 or 1.

(ii) The projection operation, which in this case consists in the selection of a

single register as output (ignoring all the others) is widely used.

4

In [Mat03], we modify Loop so as to obtain two reversible languages, namely

SRL (Simple Reversible Language) and ESRL (Extended SRL), that solve the

problems (i) and (ii) as follows

(i) Replace N by Z, so that a register can contain negative integers.

(ii) The output (and the input) of a program is always the tuple of all the

registers mentioned in the program.

In order to get some idea of the languages ?SRL, the reader may look at the first

examples of Section 4.2, page 22.

Consider the following dsirable characteristics of a register reversible language.

1. The set of registers is denumerable, say x1, x2,. . . Each register xi contains

an arbitrary, possibly negative, integer value, and these values can be used2

as “loop counters” in instructions like “for x {P}” (execute x times the

program P , which can not modify the value contained in x). Because of

this, it would make no sense to use real, instead of integer, register values.

2. Each instruction is elementary in the sense that it only modifies a finite

number of registers (specified in the instruction). As a consequence, the

number of registers mentioned in any program is finite.

3. Every program implements a bijection Zn → Zn in the registers it uses.

4. From every program P it is possible to effectively compute a program P−1,

called the inverse of P , such that

P ;P−1 = P−1;P = ε

where “ε” is the empty program (which is total).

5. Every program implements a total function; thus, every program halts.

6. There are no pre-fixed input registers nor garbage output registers.

2The meaning of this instruction for negative x is explained in Section 3.5, page 16.

5

The languages ?SRL satisfy all these properties. Assumptions 1 and 2 are quite

general and apply to (essentially) all register languages. The other assumptions

are not independent. For instance, assumptions 3 and 4 imply assumptions 5

and 6. For instance,

– If 4 holds, the assumption 5 also holds, because ε is a total program.

– Assume that 3 and 4 are satisfied. We prove that the assumption 6 must

also be satisfied. Consider the computation P−1;P that we represent as

follows

x
P−→ y

P−1

−−→ x

and suppose that the input of P has more elements than the output, |x| >
|y|. Some of the registers are thus discarded in the output of P ; denote them

by z. From y we can compute x (using P−1) and, thus, compute P (x), and,

as a result, we get both y and z from y. Thus, the function implemented

by P would not be surjective, and the assumption 3 would not be satisfied.

So we must have |x| = |y|.

– It is obvious that if the function implemented by P is not injective, it is

impossible to obtain x from y = P (x).

1.2.1 Representing a pair of integers by an integer

Although it is easy to define effective bijections b : Z × Z → Z, the inclusion

of instructions of this form in a reversible language would imply the existence of

“garbage” registers at the output stage, as the following example shows{
x′ = b(x, y)

y′ = f(x, y)

where f is some function. Note that x′ uniquely determines both x and y (be-

cause b is a bijection) and it follows that it also determines y′. Thus, this is not

surjective transformation.

6

1.2.2 The number of registers does not change

Through this work it is assumed that the number of registers used by a ?SRL

program does not change. We state this explicitly.

Assumption 1 (fixed number of registers) The number of registers used by

a ?SRL program is fixed. During the execution, no new registers can be created

or disposed.

For instance, without this assumption, the reasoning in Section 1.2.1 would not

be valid.

7

Chapter 2

Preliminaries and notation

Most of the notation used in this work is either standard or self explanatory.

LHS and RHS denote respectively the “left-hand side” and the “right-hand side”

of an equation or inequality. By “almost all” we mean “all except a finite num-

ber”. A set is “denumerable” if it is either finite or enumerable [RK66].

Consider a function f : A→ B.

– “f is injective” if x 6= y ⇒ f(x) 6= f(y).

– “f is surjective” if ∀z ∈ B, ∃x ∈ A, f(x) = z.

– “f is bijective” if it is both injective and surjective.

Let xi be a register of some program. The initial value of xi, also called the

input xi, is also denoted by xi, while the final value of xi is denoted by x′i. If the

program P uses registers x1, x2,. . . , xn, we write

P (x1, x2, . . . , xn) = (x′1, x
′
2, . . . , x

′
n)

As an example of this notation, see Example 1 in Section 4.2, page 22.

A tuple of registers (x1, . . . , xn) will be denoted by x. The initial value of the

tuple x is also denoted by x, while the final value is denoted by x′.

8

To select the ith element of the tuple (x1, . . . , xn) we use the projection opera-

tor “|i”, (x1, . . . , xn)|i = xi.

We will also use the notation “|” to specify initial values for the registers; for

instance, P |[x=0] denotes the output of the program P when the register x has

the initial value 0.

When there is no possibility of confusion, the set of tuples of the form (xi1, xi2, . . . xin),

where the set {i1, i2 . . . in} is fixed, will be denoted simply by Zn.

When convenient, programs will be parenthesized, so that we may for instance

write (P ;Q) instead of P ;Q.

9

Chapter 3

The languages ?SRL

In Sections 3.1, 3.3, and 3.4 the syntax, the semantics and the inversion algorithm

of the programs in ?SRL are described informally, while in Section 3.5 those

concepts are defined more rigourously.

The registers x1, x2,. . . , will also be denoted by arbitrary lowercase letters, a,

b,. . . . The language SRL described in Section 3.1 (page 11) has three instruc-

tions, while the language ESRL has the extra instruction “swap(x, y)” (“swap”

instruction). Most of our results apply to both languages.

The set of programs in ?SRL will be denoted by P and particular programs by P ,

Q. . . .

We distinguish two cases for the meaning of the sentence “the program P modifies

the variable x”: during the computation and at the end of the computation.

Definition 1 A program P never modifies a register x (meaning that x never

changes during the execution of P) if it does not contain the following instruc-

tions: “incx”, “decx”, “swap(x,−)”, and “swap(−, x)”. The logical negation

of “never modifies” is modifies (at some step).

Definition 2 A program P does not modify a register x if, after the computation,

the value of x never changes, ∀x (∀yP (x, y)|1 = x where y represents the tuple

of other registers and, for simplicity it is assumed that x is the first register

(index 1). The logical negation of “does not modify” is modifies.

10

For instance, the program “dec y; incx; inc y; for z(decx)”

– Never modifies z.

– Does not modify z.

– Modifies (at some step) y.

– Does not modify y.

– Modifies (at some step) x.

– Modifies x.

Clearly “modifes” implies “modifies (at some step)” and “never modifies” imply

“does not modify”.

3.1 Syntax of the languages ?SRL

We list the instructions of the languages SRL (“simple reversible language”) and

ESRL (“extended simple reversible language”), see [Mat03].

Language SRL:

– Instruction “incx”, called “increment instructions”. The value stored in

register x is incremented by 1.

– Instruction “decx”, called “decrement instructions”. The value stored in

register x is decremented by 1.

– Instruction “forx(P)”, called “loop instructions”. The symbol x denotes a

register and P denotes a SRL program that never modifies x (Definition 1

above); for instance, the instruction may be “forx(forx(inc y))” but not

“forx(incx; decx)”. The program P is executed x times; we will explain

in Section 3.5, page 16, how to interpret this when x contains a negative

value. An instruction “forx(P)” is called a “for” or “loop” instruction; x

and P are called the loop variable and the loop program respectively.

The language ESRL has also the extra instruction “swap(x, y)” that swaps the

values stored in registers x and y.

11

The reason for introducing the instruction “swap”

It can be shown, see [Mat03] and 5.3 (page 29) in Section 4.2, that it is possible

to implement in the language SRL a program equivalent to

swap(x, y); swap(w, z)

(it swaps two pairs of registers); however, it is not possible to implement in SRL

a swap of a single pair of registers,

swap(x, y)

More generally ([Mat03]), with linear (Definition 5, page 18) SRL programs it

is possible to implement all linear transformations with determinant is 1, while

with linear ESRL programs all the linear transformations with determinant ±1

are implementable.

3.2 The registers of a program

3.2.1 On the names of the registers

In general the names of the registers are not important. If, for instance, the pro-

gram P mentions the registers a, b, and c, these letters may in fact correspond

to arbitrary distinct registers, for instance a → x2, b → x5, and c → x9. How-

ever, one must be careful with name clashes; for instance, when composing two

programs P and Q in parallel (see Section 7, page 44), there can be no register

common to both programs.

3.2.2 Two kinds of registers

Given a program P , the set of registers mentioned in P is denoted by R(P).

It is possible that some of these registers remain (for every input) unchanged.

Associated to every program P there are two, in general non disjoint, sets of

registers

12

– The set L(P) of loop (or “for”) registers formed by the registers x, such

that P has some instruction of the form “forx(Q)”, where Q is a program.

– The set V(P) of registers that are modified (at some step) by P in the

sense of Definition 1 (page 10), that is, the set of registers x, such that P

contains some instruction of the form “incx”, “decx”, “swap(x, y)”, or

“swap(y, x)”, for some register y.

Registers not in V(P), namely the registers in L(P) \ V(P), are never modified

by P . Consider for instance the program (1), page 13; we have L(P) = {x, y, z}
and V(P) = {x, y}.
A program may use registers that are always left unchanged; as an example, see

the example 6 in Section 4.2, page 24.

3.2.3 A program as a tree

We can represented an arbitrary SRL program by an ordered tree, as follows

– A sequence of instructions I1; . . . ; In with n ≥ 2 is represented by a tree

consisting of a node having as sons the n ordered sub-trees corresponding

to the instructions I1,. . . , In.

– Instructions “incx” and “decx” are represented by an edge labelled x

whose lower vertex is a leaf labelled “+” or “−”, respectively.

– The instruction “forx(P)” is represented by an edge labelled x whose lower

vertex connects to the representation of P (which is not a leaf, unless P is

null).

As an example, consider the following program

forx(inc y); inc y; for z(inc y; for y(decx)) (1)

13

The corresponding tree is

◦
x

{{{{{{{{{
y z

PPPPPPPPPPPPPPP

◦
y

+ ◦
y

��������
y

<<<<<<<<<

+ + ◦
x

−

Notice that, in a path starting in the root and finishing in a leaf, a label (corre-

sponding to a register) can occur more than once. That happens for example in

the tree corresponding to the program “forx(forx(inc y))”.

3.3 The meaning of a program

Let Z∞ denote the set of infinite tuples of integer (possibly negative) values,

(x1, x2, . . .)

We consider permutations f : Z∞ → Z∞ where only finitely many register may

be modified, that is, for every f we have, for almost all i ∈ N,

∀x1, x2, . . . f(x1, x2, . . .)|i = xi

The set of permutations of Z∞ in Z∞ is denoted by G(Z∞→Z∞), while G(Z∞→Z∞)I

denotes the set of permutations in which only the registers indexed by the finite

set I may be modified. A particular permutation s ∈ G(Z∞→Z∞)I can be

represented by

s(x1, x2, . . . , xn) = (x′1, x
′
2, . . . , x

′
n)

where, in this case, I = {1, 2, . . . , n}. In general, the indices in I are, of course,

arbitrary.

The permutations mentioned above (if n ≥ 1 there are always infinitely many of

14

them) should not be confused with the wire permutations in which each input

value ri always occur at the output rπ(i) where π : N → N is some permutation

of the indices of the registers.

Each program P induces a permutation on G(Z∞→Z∞)R(P). This permutation

is called the meaning of P and is denoted by [[P]].

In particular, the meaning of the identity program ε is the identity permutation ι,

[[ε]] = ι. There are of course other programs P equivalent to ε, that is, such that

[[P]] = [[ε]] = ι; an example is P=“incx; decx”.

An open problem: are there permutations π ∈ G(Z∞→Z∞)I , such that any

program that implements π must use additional registers (besides xi for i ∈
I)? Of course, after every computation, the value contained in those additional

registers must be left unchanged: xi = x′i for every i 6∈ I. If yes, what is the

minimum cardinality of I?

3.4 The inverse of a program

The inverse P−1 of a program P is obtained by the following rules.

1. (incx)−1 = decx

2. (decx)−1 = incx

3. (swap(x, y))−1 = swap(x, y)

4. (forx(P))−1 = forx(P−1)

5. (P ; Q)−1 = Q−1; P−1

We present an example of a program and its inverse

Program: forx(inc y); inc y; for z(inc y; for y(decx))

Inverse: for z(for y(incx); dec y); dec y; forx(dec y)

It is easy to show that, for any program P , we have

(P ; P−1) ≡ (P−1; P) ≡ ε

15

where ε is the empty program and “≡” denotes equivalence, see Definition 3,

page 16.

3.5 Syntax, inversion and semantics: formal def-

inition

Previously we have defined the following characteristics of the languages ?SRL:

syntax, inversion of a program, and semantics. However, in a rigorous inductive

definition, those aspects must be defined simultaneously.

Let us begin by stating formal definitions related to the semantics of a program

Definition 3 Two programs P and Q are equivalent, and we write P ≡ Q if they

induce the same permutation f : Z∞ → Z∞, that is, if [[P]] = [[Q]]. The empty

program is denoted by ε, while the identity permutation Z∞ → Z∞ is denoted

by ι.

We now define simultaneously the syntax, the inverse, and the meaning of a

program.

Language SRL:

Instruction “incx”. The inverse is (incx)−1 = decx. The meaning is:

increment by 1 the value contained in x.

Instruction “decx”. The inverse is (decx)−1 = incx. The meaning is:

decrement by 1 the value contained in x.

Instruction “forx(P)” where P never modifies x (see Definition nmodi,

page 10). The value of x is not altered by the execution of this instruction.

The inverse is (forx(P))−1 = forx(P−1). The meaning is: execute x times

the program P ; if x is negative, this should be interpreted as “execute −x
times the program P−1”.

The language ESRL also contains the following instruction.

16

Instruction swap(x, y). The inverse is (swap(x, y))−1 = swap(x, y) (the

same instruction). The meaning is: exchange the values stored in the reg-

isters x and y.

Property 1 Let P be any program in ?SRL and let P−1 be its formal (or syn-

tactic) inverse, as defined above. Then

[[P ; P−1]] = [[P−1; P]] = ι

Proof. Use structural induction on P . �

However, it may happen that [[P ; Q]] = ι and Q is not the formal inverse of P .

For instance, P =“incx; inc y; decx” and Q =“dec y”.

3.5.1 Parametric composition

The loop instruction “forx(P)” is of particular interest. Its semantics can be

described as “parametric composition”, because it corresponds to the execution

of
x times︷ ︸︸ ︷

P ; P ; . . . ;P

As we said before, the contents of the register x can never be modified by P (in

the sense of Definition 1, page 10). Moreover, after the execution of “forx(P)”,

the value of x remains unchanged.

3.5.2 Depth of a program

Definition 4 The depth of a program is its maximum nesting of loop instruc-

tions; where a swap instruction is considered to have depth 1. Linear programs

are programs with depth 1.

A program has depth 0 if it only contains (possibly zero) increment and decre-

ment. The program “forx(inc y)swap(x, y)” is linear, while the program

“forx(swap(x, y))” has depth 2.

17

Definition 5 The class of programs which have depth at most n is denoted by Sn

for SRL programs, or En for ESRL programs. The programs in S1 and E1 (in

this class there can be no swap instructions inside loops) are called linear.

3.5.3 Executing a program P a negative number of times

When describing the semantics of ?SRL, we said that, when x is negative, exe-

cuting x times a program P is the same thing as executing −x times the pro-

gram P−1. This is a natural definition, and a number of simple program proper-

ties hold, such as

– If the register z contains x+y, we have “forx(P); for y(P)” ≡ “for z(P)”

for every program P that never modifies x, nor y, nor z (Definition 1,

page 10).

This interpretation of “forx(P)” when x is negative is related to the following

notation: if n is an integer constant, the concatenation of n identical programs P

will be denoted by P n. For n < 0, P n is defined as (P−1)−a. The following

property holds, even when n or m are negative.

P n; Pm ≡ P n+m

We have, for instance

P n; P−n; ≡ P 0 = ε

Note however that, assigning a meaning to “execute P a negative number of

times”, which is a generalization of the traditional loop-like instructions, only

seems to make sense for reversible languages.

During the execution of a program P , a part Q of P may sometimes be executed

in the forward direction and, other times, in the inverse direction – when Q occurs

in an instruction “forx(Q)”, and x is negative. As we shall see in Chapter 13,

there is a simple way to implement these “inverse computations” in a low level

machine.

18

Chapter 4

Transformations

4.1 Non implementable transformations

A transformation f : Z∞ → Z∞ is implementable in SRL if there is some SRL

program P that implements to it, [[P]] = f . We allow P to use additional registers

whose values, at the end of the execution, remain unchanged.

A transformation f can not be implemented in ?SRL if: f is not a bijection, a

sub-sequence of f (with arguments which are not “too large”) grows faster than

any primitive recursive functions, and f could be used as an algorithm for an

undecidable problem.

4.1.1 Transformations that are not bijections

Many transformations are not implementable, just because they are not bijec-

tions. It should be recalled that the principle 1 (page 7) of the conservation of

the number of registers is assumed through all this work.

We give some examples of non implementable transformations. By “. . . ” we

mean that “it doesn’t matter”.

a′ = 2a, b′ = . . . (not surjective, a′ is necessarily even).

19

a′ = f(a, b), b′ = . . . where f is bijection Z2 → Z (not surjective, a′

“fixes” b′).

a′ = a2 (neither injective nor surjective, a′ is the square of an integer).

a′ = ab, b′ = b (not surjective; for instance a′ = 1 and b′ = 2 is not possible).

Non cloning theorem

The following result, well known in quantum mechanical computations, also ap-

plies to ?SRL transformations.

Theorem 1 (Non-cloning theorem) Consider a ?SRL program with n regis-

ters x1,. . . , xn, denoted by x. It is impossible, either during the computation, or

at the end of it, that two distinct registers always (that is, independently of the

input values of x) have the same value. In particular, it is impossible to have at

the end of the computation y′ = z′ = x, where y and z are distinct registers.

The proof is trivial: a transformation x′i = x′j = . . . with 1 ≤ i < j ≤ n is not

surjective.

4.1.2 Sub-sequences that grow too fast

We define a bijection g : Z→ Z such that the sub-sequence g(2), g(4), g(6). . . grows

asymptotically faster than any primitive recursive function. In follows that it can

not be implemented by a ?SRL program.

Consider the following function defined for non-negative integers n.

f(n) = 22...2

where the number of 2’s equals n

The first values of f are

n : 1 2 3 4

f(n) : 2 4 16 65 536

20

The value of f(5) has 19 729 digits! It is well known (see for instance [Her69])

that f(n), which is related to the Ackermann function [MP11], grows faster than

any primitive recursive function, and it follows that it also grows faster (for

positive values of n) than any bijective transformation Z→ Z implemented by a

?SRL program (even if the program uses other registers initialized with any fixed

input values). Using the bijection f , define the function g : Z→ Z as follows

1. For n = 1, 2, . . . make g(2n) = f(n) (these values are underlined in the

example below).

2. Define g(2n+1) for n ∈ N with the remaining, that is, not in the co-domain

of f , positive integers 1, 3, 5, 6,. . . , 15, 17. . .

3. Define g(n) = n for n ≤ 0

Clearly g defines a bijection Z → Z which is not implementable, because a sub-

sequence of the co-domain grows too fast.

This construction is illustrated below

n : . . . −2 −1 0 1 2 3 4 5 6 7 8 . . .

g(n) : . . . −2 −1 0 1 2 3 4 5 16 6 65 536 . . .

4.1.3 Uncomputable transformations

A bijection g : Z→ Z that “solves” algorithmically an unsolvable decision prob-

lem, can not be implemented by any programming language.

Let i1, i2,. . . be the indices of the Turing machines that halt when the input is

its index, or in symbols, {ik}(ik) ↓, where {i} is the Turing machine with index i

and “↓” means “halt”. Define the function g as follows

1. g(ik)= next odd positive integer (underlined in the example below).

2. For n ∈ N+ \ {i1, i2, . . .}, g(n) is the next even positive integer for the

positive odd values of n (marked with “?” in the example below).

3. g(n) = n for n ≤ 0

21

Suppose for instance that the first Turing machines that “self-halt” have indices 2,

5, 7. Then, some values of g are

n : . . . −2 −1 0 1? 2 3? 4? 5 6? 7 8? . . .

g(n) : . . . −2 −1 0 2? 1 4? 6? 3 8? 5 10? . . .

The function g(n) is a bijection by construction. Moreover, g is not computable

because the statement “g(i) is odd” is equivalent to the statement “the Turing

machine with index i and input i halts”.

4.2 Examples of implementable transformations

We now give some examples of implementable transformations. The inverse pro-

grams and inverse transformations are sometimes shown. The notation S0, S1,. . . ,

E0, E1,. . . is explained in Definition 5, page 18.

1. The S0 program “inc a; inc a; dec b” implements the transformation{
a′ = a+ 2

b′ = b− 1

2. The S2 program “for a(for a(inc b))” implements the transformation{
a′ = a

b′ = b+ a2

The inverse program is “for a(for a(dec b))” and the inverse transformation

is {
a = a′

b = b′ − a′2

22

3. The S1 program

for a(inc c); for c(dec a); for b(inc d); for d(dec b);

for c(inc b); for d(inc a);

for a(inc c); for c(dec a); for b(inc d); for d(dec b);

for c(inc b); for d(inc a);

for a(dec c); for b(dec c); for a(dec d); for b(dec d)

implements the transformation swap(a, b); swap(c, d), that is,
a′ = b

b′ = a

c′ = d

d′ = c

This is an example of a wire permutation.

4. The S1 program

for a(inc c); for c(dec a); for b(inc a); for a(dec b);

for c(inc b); for b(dec c); for c(dec a); for c(inc b; inc b)

implements the transformation swap(a, b); , c′ = −c, that is,
a′ = b

b′ = a

c′ = −c

A graphic representation of this program can be seen in Figure 1; the trans-

formation (a, b, c) = (1, 2, 3) into (a, b, c) = (2, 1,−3) is also illustrated.

a

b

c

1

2

3 4

-3 -1

3 7

-3

2

1

2

-3

Figure 1: Diagram representing the SRL program of Example 4,
page 23.

23

This is an example of a linear and homogeneous transformation, see Sec-

tion 5.3 below and reference [Mat03]. As such, it can be described by a

square matrix, namely  0 1 0

1 0 0

0 0 −1


where the row and column order is: a, b, c.

5. Let P be the program of Example 4. Then, the program “for r(P)” imple-

ments the transformation{
if r is odd: a′ = b, b′ = a, c′ = −c
if r is even: a′ = a, b′ = b, c′ = c

It is called a “controlled swap and inversion”.

6. Consider the program 4 and denote it by ex-sig(a, b, c). We can change the

sign of the registers c and d, c′ = −c, d′ = −d with

ex-sig(a, b, c); ex-sig(a, b, d)

The registers a and b are used, but not modified at the end of the compu-

tation. This program corresponds to the matrix transformation
0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 −1

×


0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 1

 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


Notice that the first “instruction” to be executed, namely “ex-sig(a, b, c)”,

corresponds to the second matrix (immediately before the “=” sign).

7. The arithmetic signs of two registers can be changed without using addi-

tional registers (as in Example 6), as the following program shows.

Transformation: a′ = −a, b′ = −b:

for a(inc b); for b(dec a; dec a);

for a(inc b); for b(dec a; dec a)

24

a

b

c

d

ex-sig(a,b,c) ex-sig(a,b,d)

b

a

d

-c

a

b

-c

-d

Figure 2: Diagram representing the sequencing of two “ex-sig” pro-
grams.

The inverse program is

for b(inc a; inc a) for a(dec b);

for b(inc a; inc a); for a(dec b)

and the inverse transformation is a = −a′, b = −b′.

8. Consider again the program 4, ex-sig(a, b, c). We can swap the registers a

and b and also the registers c and d, “swap(a, b); swap(c, d)”, with the fol-

lowing program that does not modify (at the end of the computation) the

register e.

ex-sig(a, b, e); ex-sig(c, d, e)

See Figure 3. In this figure the “wires” c and d are “crossed” in order that

the arguments of the right “ex-sig” box are consecutive; otherwise, it would

be impossible to draw “ex-sig(c, d, e)” as a continuous “box”. This drawing

technique is also used in other figures, and it does not correspond to a wire

permutation.

9. Consider the S2 program

for r(for b(inc a); for a(inc b))

Let Fi(x, y), where i ∈ Z be the value of the ith term of a Fibonacci like

25

a

b

c

d

b

a

e

ex-sig(c,d,e)

ex-sig(a,b,e)

-e

b
a

d

c

e

Figure 3: Diagram representing a sequencing of two “ex-sig” pro-
grams that implements the swap of two pairs of registers. The
register e is used, but it is not modified (at the end of the compu-
tation) by the program.

sequence defined by
F0(x, y) = x

F1(x, y) = y

Fn(x, y) = Fn−1(x, y) + Fn−2(x, y)

For instance, Fn(0, 1), as a function of n is the usual Fibonacci sequence

n : . . . −3 −2 −1 1 0 1 2 3 4 5 6 7 8 . . .

Fn(0, 1) : . . . −3 2 −1 1 0 1 1 2 3 5 8 13 21 . . .

Note that, given x and y, Fn(x, y) is defined for every n ∈ Z. Then, the

transformation corresponding to the program above is
a′ = F2r(a, b)

b′ = F2r+1(a, b)

r′ = r

Diagrams that represent this program and its inverse can be seen in Figure 4

This example shows that with a simple program with only two levels of

“loop nesting” (thus in the class S2) we obtain a transformation with two

exponential output values (the values a′ and b′).

26

r

b

a

Figure 4: Left: diagram representing the SRL program P of Exam-
ple 9, page 25. Right: diagram representing the program P−1.

The inverse program is

for r(for a(dec b); for b(dec a))

27

Chapter 5

Sub-classes of ?SRL programs

We study some specific families of ?SRL programs, namely depth 0 programs

(Definition 4, page 17), programs without for instructions, depth 1 programs,

and programs with two registers.

5.1 SRL programs with depth 0

SRL programs with depth 0 contain only inc and dec instructions1. These in-

structions commute and it is easy to see that these programs implement exactly

the following family of transformations
x′1 = x1 + c1

x′2 = x2 + c2

.

x′n = xn + cn

where n ∈ N and c1,. . . , cn are integer (possibly negative) constants.

Example. Example 1, page 22. �

The equivalence problem for deph 0 programs is decidable.

1Note that every ESRL program has depth at least 1.

28

5.2 Programs without loops

These programs may include the instruction swap. By induction on the number

of instructions of the program it is easy to show that these programs (sequences

of inc, dec and swap instructions) implement exactly the following family of

transformations 
x′1 = xi1 + c1

x′2 = xi2 + c2

.

x′n = xin + cn

where

(
1 2 . . . n

i1 i2 . . . in

)
is an arbitrary permutation.

Example. The program “incx; incx; swap(x, y)” which implements the trans-

formation {
x′ = y

y′ = x+ 2

�

The equivalence problem for deph 0 programs is decidable.

5.3 Linear (depth 1) programs

If the domain is Z, a linear system of equations has an unique integer solution if

and only if the determinant associated with the system of equations is ±1, that is,

if the corresponding matrix is “integer positive modular”, see for instance [Hua82].

As an example consider the following two systems of equations.{
x′ = 7x+ 6y

y′ = 8x+ 7y + 1

{
x′ = 1x+ 0y + 4

y′ = 1x− 2y + 5
(2)

29

The matrix associated with the first system is

[
7 6

8 7

]
, its determinant is 1, and

the inverse is

[
7 −6

−8 7

]
. We get

{
x = 7x′ − 6y′ + 6

y = −8x′ + 7y′ − 7

The first system of equations has an unique integer solution. The matrix associ-

ated with the second system has determinant -2, so that it is not invertible.

Programs ?SRL can be run “backwards” in time. This implies that linear ?SRL

programs correspond to linear systems of equations with a unique solution, see [Mat03].

An ?SRL program P is called linear if loop instructions contains neither other loop

instruction nor swap instructions; “linear” is other name for the classes S1 or E1.

It is called homogeneous if the constant terms of the register transformations

are 0. In [Mat03] it is shown that

1. Homogeneous linear SRL programs implement exactly the linear transfor-

mations belonging to the group PMn of integer positive modular matrices

(integer matrices with determinant +1).

Two examples of linear homogeneous SRL programs: Example 4 (page 23)

and Example 3 (page 22).

2. Homogeneous linear ESRL programs (recall that swap instructions can not

occur inside loops) implement exactly the linear transformations belonging

to the group IMn of integer modular (or “unimodular”) matrices, that is,

GLn(Z), the general linear group over the integers, see for instance [Sch98]

(integer matrices with determinant ±1).

Both groups mentioned above are subgroups of the general linear group GLn(R),

and IMn(R) is a subgroup of the special linear group SLn(R) (see for instance [Art91]).

Thus, in particular,

PMn ≤ IMn = GLn(Z) ≤ GLn(R)

where “≤” means “is a subgroup of”.

30

5.4 SRL programs with two variables

In this section we characterize the transformations that can be implemented by

SRL programs that use at most two variables. First, a form of polynomial trans-

formations between two (integer) variables is defined, the invertible and polyno-

mial (IP) transformations (Definition 6, page 34). Then we prove that every such

transformation can be implemented by a SRL program (Lemma 1, page 35) and

that every SRL program implements an IP transformation, see Lemma 2 and

Theorem 2 (page 36). We conclude with some additional observations.

5.4.1 Solving non linear equations with two integer vari-

ables

An example

Consider the following non linear system of equation with two integer variables{
x′ = x+ y2 + 1

y′ = y − 2(x+ y2 + 1)2
(3)

Notice that all the coefficients are integers. Given values for x and y, we get

values for x′ and y′. For instance,

(1, 2)→ (6,−70)

where the transformation is (x, y)→ (x′, y′).

We ask if a given integer system of equations (with integer coeficients and integer

solutions) is soluble, and, if the answer is affirmative, whether the solution is

unique.

In the linear case, the solution of the last question is well known: The system

has an unique integer solution if and only if the determinant associated with the

system of equations is 1 (±1 for the ESRL language), that is, if the corresponding

matrix is “integer positive modular”, see for instance [Hua82].

31

A method for obtaining the solution of (3)

The programming language SRL will be used to prove that the system of equa-

tions (3), which is non linear, has an unique integer solution. The method we

will use consists in the following steps.

1. Prove that the transformation (x, y) → (x′, y′) corresponding to the sys-

tem (3) can be implemented by a SRL program P . This may be difficult,

and we do not know if there is an algorithm that implements this step.

2. Invert the program P .

3. Find the transformation (system of equations) (x′, y′) → (x, y) that corre-

sponds to P−1. This is the unique (integer) solution of (3).

We now use this method to solve the non linear system (3) (page 31).

Step 1

The transformation x′ = x+ y2 + 1 can be implemented by the program

P1 = for y(for y(incx)); incx

After executing P1, the transformation y′ = y− 2(x+ y2 + 1)2 = y− 2x′2, can be

implemented by the program

P2 = forx(forx(dec y; dec y))

(notice that when P2 starts, the program variable x contains the value x′). Thus,

the following program implements the transformation (3).

P = P1;P2

= for y(for y(incx)); incx; forx(forx(dec y; dec y))

32

Step 2

We get

P−1 = P2
−1; P1

−1

= forx(forx(inc y; inc y)); decx; for y(for y(decx))

Step 3

We have

P−1 =

defines y︷ ︸︸ ︷
forx(forx(inc y; inc y));

defines x︷ ︸︸ ︷
decx; for y(for y(decx))

The transformation implemented by this program is{
y = y′ + 2x′2

x = x′ − y2 − 1 = x′ − (y′ + 2x′2)2 − 1

that is, {
x = x′ − y′2 − 4x′2y′ − 4x′4 − 1

y = y′ + 2x′2

Let us check this with the values (x, y) = (1, 2). From the original example (3)

(page 31) we obtain

(1, 2)→ (6,−70)

and from (5.4.1) we get y = (−70)+72 = 2 and x = 6−(−70)2−4×62×(−70)−
4× 64 − 1 = 1.

5.4.2 Two-variable programs: the general case

We describe the transformations that can be implemented by SRL programs

with 2 variables. These are integer, invertible transformations, defining bijections

33

Z2 → Z2, and have the form {
x′ = f(x, y)

y′ = g(x, y)
(4)

where f and g are polynomials. However, not all transformations of this form

are implementable in SRL, see Theorem 2.

Every IP transformation can be implemented by a two-variable SRL

program

We begin by defining a form of two-variable transformation of the form (4).

Definition 6 A two-variable transformation (x, y) → (x′, y′) is IP (invertible

and polynomial) if there is an integer n ≥ 0 such that, for 1 ≤ i < n, we have

x(i+1) = x(i) +R(i)(y(i))

y(i+1) = y(i) + S(i)(x(i+1))

where x = x(1), y = y(1) x′ = x(n), y′ = y(n), and, for 1 ≤ i < n, R(i) and S(i) are

arbitrary polynomials.

In particular, the polynomials R(i) and S(i) may be equal to 1.

Note that the transformation 3 (page 31) has this form.

We now prove that every IP transformation can be implemented by a SRL pro-

gram. For that purpose, we define SRL programs P (1), P ′(1),. . .P (n−1), P ′(n−1),

such that
P (i) implements x(i+1) = x(i) +R(i)(y(i))

P ′(i) implements y(i+1) = y(i) + S(i)(x(i+1))

The SRL program that implements the given IP transformation is then

P (1); P ′
(1)

; . . . P (n−1); P ′
(n−1)

34

In order to complete the proof, we explain with an example how to implement in

SRL a transformation of the form

x′ = x+R(y)

The example is

x′ = x− y3 + 3y + 1

This transformation is implemented by the program

for y(for y(for y(decx))); for y(incx); incx

The generalization for an arbitrary polynomial R(y) is simple.

Lemma 1 Every IP transformation (Definition 6, page 34) can be implemented

by a SRL program.

Every two-variable SRL program implements an IP transformation

Definition 7 We say that a SRL program P with two variables x and y “only

modifies x” if P does not contain the instruction “inc y” nor the instruction

“dec y”; in other words, P never modifies y in the sense of Definition 1, page 10.

A two-variable SRL programs is a sequence of programs

P1; P2; . . . Pm

where the program P1 only modifies x (Definition 7), the program P2 only mod-

ify y, the program P3 only modifies x. . . In particular, the program P1 may be

null (so that the first transformed variable is y) and the program Pm may be null

(so that the last transformed variable is x).

We will now prove that a two-variable SRL program that only modifies x imple-

ments a transformation of the form x′ = x+Q(y), where Q is a polynomial.

First observe that a sequence of SRL programs implementing IP transformations

also implements an IP transformation. So we have only to prove the result for a

single instruction (that only modifies x).

35

An instruction that only modifies x (Definition 7, page 35) can have one of the

forms: “incx”, “decx”, “for y(P)” where P is a sequence of instructions that

only modifies x.

Consider a sequence of instructions that only modifies2 x. We will prove that the

sequence of instructions implement an IP transformation (Definition 6, page 34)

of the form x′ = x + Q(y) (where Q is a polynomial). Let n be the maximum

imbrication level of “for y(· · ·)” instructions. The proof is by induction on n.

1. If n = 0, P can contain only “incx” and “incx” instructions, so that the

transformation implemented by P is x′ = x+ c where c is a constant.

2. If n > 0, consider an instruction with imbrication level n, “for y(P)”. By

the induction hypothesis, the program P implements an IP transformation

of the form x′ = x+Q(y) (where Q is a polynomial), so that the instruction

“for y(P)” implements the IP transformation x′ = x + yQ(y), which is of

the same form.

A similar reasoning shows that a sequence of instructions that only modifies y cor-

responds to a transformation of the form y′ = y+Q(x), where Q is a polynomial.

We have just proved the following result

Lemma 2 Every two-variable SRL program implements an IP transformation

(Definition 6).

Two-variable SRL programs implement exactly the IP transformations

Recalling Lemmas 1 and 2, we get the following result.

Theorem 2 Two-variable SRL programs implement exactly the class of IP trans-

formation (Definition 6, page 34).

As a simple corollary, we conclude that an exponential transformation (for in-

stance, the transformation associated with Example 9, page 25) can not be im-

plemented with a program having only 2 variables.

2It is interesting to notice that all these instructions commute.

36

5.5 Comments and further study

Two variable transformations associated with the language

ESRL

In this chapter we have only considered the language SRL. In two-variable pro-

grams written in the language ESRL, an instruction swap(x, y) can only occur at

the outermost level, that is, not under the scope of any “for” instruction.

Examples

There are several SRL programs presented in Section 4.2 (page 22) that use

two variables, and as such, correspond to IP transformations. For instance, the

Example 7 (page 24) corresponds to the transformation x′ = −x, y′ = −y,

which is an IP transformation, so that it can be expressed in a sequence of

transformations as explained in Definition 6, page 34; using the corresponding

SRL program this is straightforward.

Three variable SRL programs

As we have seen, two-variable SRL programs correspond to certain forms of

polynomial transformations, more specifically to IP transformations. If three

variable are allowed, the transformations can be exponential, as the Example 9

shows.

A mathematical application

We think that the usage of the language SRL to characterize and generate non

linear integer bijective (uniquely invertible) transformations may be an interesting

tool in Mathematics.

37

5.5.1 Further study: integer transformations hierarchies

There are several classifications of primitive recursive functions into hierarchies,

such as the Grzegorczyk hierarchy (see for instance [Grz53]), and the Cleave

hierarchy ([Cle63]).

A primitive recursive hierarchy of classes is a sequence of classes of functions

F1, F2, . . . such that (i) Fi ⊂ Fi+1 for i = 1, 2 . . . (proper inclusion) and (ii) ∪iFi
is the class of primitive recursive functions. A discussion of these sub-recursive

hierarchies can be found for instance in [Mol73]. As the class of primitive recursive

functions can be defined as the class of functions that can be implemented in

the Loop language ([MR67a]), it is natural to try to relate primitive recursive

hierarchies to appropriate restrictions on LOOP programs; for instance, we may

limit the depth of nesting of for instructions. Some works in this direction

are [Mey65, MR67b, GN81, GN78].

Similarly, it would be interesting to relate restrictions on SRL programs, such as

the maximum nesting of “for” instructions or the number of variables used by

the program, to hierarchies of integer bijective transformations.

38

Chapter 6

Partitions of Zn

6.1 General concept

Every ?SRL program P induces a bijection [[P]] : Z∞ → Z∞.

In an ?SRL program P consider a partition of its n registers in two sets, x = (y, z);

let n = |x|, p = |y|, q = |z|, with n = p + q. Fixing the registers y we define the

set of output values

Zn(y) = {P (y, z) : z ∈ Zq} (5)

The family of sets Zn(y) forms a partition of Zn as follows. Each initial value

of the registers y corresponds to the set of the partition whose elements are the

output of the computations P (y, z), for all z ∈ Zq, see (5).

This may be described pictorially as follows

qqq(y , z)
P−→ (y′, z′)

where the box in “ y ” means that the registers y are fixed.

Notice that
⋃
y Zn(y) = Zn and that y1 6= y2 (that is, the tuples y1 and y2 differ

in at least one position) implies Zn(y1) ∩ Zn(y2) = ∅.

To this partition of Zn corresponds the equivalence relation “∼”: z ∼ z′ if and

only if for some y we have z, z′ ∈ Zn(y).

39

6.2 Application to example 9

Consider now the example 9 in page 25.

1. Fix the initial values (a, b).

2. For every r ∈ Z run P (r, a, b).

3. Select a′ and b′, the final values of a and b, respectively.

Given that this program does not modify the value of r, the partition in Z3

induces a partition of Z2 which can be described as

Z2(a, b) = {(a′, b′) : P (r, a, b) = (r, a′, b′) for some r ∈ Z}

Each pair (a, b) determines an equivalence class C(a, b). Two examples:

C(3, 5) = {. . . (−1, 1), (1, 0), (0, 1), (1, 1), (1, 2), (2, 3), (3, 5), . . .}
C(−1, 2) = {. . . (−4, 3), (3,−1), (−1, 2), (2, 1), (1, 3), (3, 4), (4, 7), . . .}

In Figure 5 some sets of the partition are represented. Each point (x, y) is rep-

resented by a colored square and all the points of the same set correspond to

squares with the same colour. For instance, the set containing the pair (−1, 2) is

represented in turquoise and corresponds to the sequence

. . . 18, −11, 7, −4, 3, −1, 2, 1, 3, 4, 7, 11, . . .

The corresponding set is

{. . . (−11, 7), (7,−4), (−4, 3), (3,−1), (−1, 2), (2, 1), (1, 3), (3, 4), (4, 7), . . .}

It should be emphasized that these sets form a partition of the plane, so that a

“completed” Figure 5 is completely coloured, with no overlap between different

colours; figure 6 (generated with “sage”) contains all the partitions that contain

a point (x, y) with 0 ≤ |x|, |y| ≤ 5.

40

Each set has as asymptotes three out of the following four possibilities
y = αx, x ≥ 0 (first quadrant)

y = −(α− 1)x, x ≤ 0 (second quadrant)

y = αx, x ≤ 0 (third quadrant)

y = −(α− 1)x, x ≥ 0 (fourth quadrant)

where α = (1 +
√

5)/2 = 1.618 . . . is the golden ratio.

41

(0,0) black
(0,1) light red
(0,-1) char4
(0,2) blue5
(-1,2) turq2
(0,3) chart3

Figure 5: Some sets of the partition of Z2 induced by the program
of Example 9. The points of each set are represented by colored
squares. For instance, the sequence with the representative (0, 1) is
. . . − 3, 2, −1, 1, 0, 1, 1, 2, 3, 5 . . ., and the corresponding set of the
partition of Z2 is formed by the points represented as red squares,
{. . . (−3, 2), (2,−1), (−1, 1), (1, 0), (0, 1), (1, 1), (1, 2), (2, 3), (3, 5) . . .}. The
asymptotes are the magenta lines.

42

Figure 6: See Figure 5. Every set of the partition that contains a point (x, y)
with 0 ≤ |x|, |y| ≤ 5 (except (0, 0)) is represented as the set of the squares
with the same color.

43

Chapter 7

Program composition

We describe some forms of combining two or more programs in a single program.

Due to the reversibility, some common forms of program composition are not

allowed; these include, for instance, the compositions that involve the “connec-

tion” of one output register of some program (or part of a circuit) to two or more

inputs registers of other programs (or other parts of a circuit); this kind of con-

nection would in general result in a program (or circuit) that does not implement

a bijective transformation.

It is possible, and eventually it may be advantageous, to describe various forms

of program composition (or of circuit composition) in terms of Category Theory,

see for instance [GA06, YY09] and the citations therein.

Series and parallel composition

Let A and B be two programs that use respectively the register sets Ra ∪ Rc

and Rb ∪ Rc, where Ra ∩ Rb = ∅. Figure 7 illustrates a form of composing A

with B that includes both parallel and series composition.

{
Rc = ∅ parallel composition

Ra = Rb = ∅ series composition

44

A

B

Ra

b

c

Figure 7: A form of composing two programs or circuits; the hor-
izontal lines represent registers or “wires”, respectively. It is as-
sumed that Ra ∩ Rb = ∅. It includes the parallel (when Rc = ∅)
and the series (when Ra = Rb = ∅) forms of composition.

Extension and projection

The set of registers used by a program may be extended, as exemplified in Figure 8.

The extension operation includes the projection which consists in removing some

registers from the program; clearly, it is only possible to “remove a register from

a program” when the program does not mention it.

A
A'

Figure 8: The program (or circuit) on the right was obtained from
the program (or circuit) on the left by the “extend” transforma-
tion. The extension can be a projection, which happens when the
program does not mention some registers and they are “removed”;
for instance, A is a projection of A′.

45

Replacement of a part of a program by another program

Recall the definition of “registers modified” (at some step of a computation) by

a program P , Definition 1, page 10.

We mention another form of composing the programs A and B which consists in

replacing some sequence A′ of instructions of A by B. This replacement is only

possible when the following sets are disjoint

– The set of loop registers whose scope includes the replaced sequence of

instructions A′.

– The set of registers modified (at some step of a computation) by B.

For instance, in “A = for a(inc b; dec c)” we can not replace the instruction

“A′ = dec c” by “B = for b(inc a)”.

Register renaming

Given a set of programs arbitrarily composed as described above, we can rename

the registers. This renaming must be done globally, that is, it should affect all

the composed programs.

46

Chapter 8

Simulation results

8.1 Simulation of recursive Boolean circuits

In the 1980’s, Fredkin, Toffoli, and others have studied reversible Boolean circuits,

see for instance [FT82]. As a consequence of the fact that the number of possible

inputs is finite, many of the decision problems associated with these circuits, such

as “are two given circuits equivalent?”, are trivially recursive. Also, by counting

arguments, it follows that the length (number of bits or “wires) of the input must

equal the length of the output.

With the languages ?SRL it is possible to simulate Boolean circuits, as explained

below. Can we simulate any Boolean circuit? This is the question of universality.

We will see that the answer to this question is affirmative, if we use the following

modification of ?SRL programs: only some registers are considered in the trans-

formation implemented by the program; the other registers have fixed values at

the input stage and are discarded (as “garbage”) after the computation; see also

Chapter 12.

First, we have to decide how to represent a Boolean value by an integer. There

are of course many possibilities, but we select the following mapping function τ .

τ(x) =

{
False if x is even

True if x is odd

47

Now we present some programs for which the map τ is a homomorphism. Ac-

cording to our interpretation of integers as Boolean values, a condition like “if c”

means “if c is odd”.

?SRL program Boolean transformation

incx ¬x
decx ¬x
x′ = −x identity

swap(x, y) exchange the logical values of x and y

swap(x, y); z′ = −z exchange the logical values of x and y

for c(swap(x, y)) if c then exchange the logical values of x

and y. This is the Fredkin gate, see [FT82]

for c(incx) CNOT(c,x): if c, then change the truth value

of x

for c(for d(incx)) CNOT(c,d,x): if c and d, then change the

truth value of x. Notice that the product cd

is odd exactly when both c and d are odd

It is well known that some gates or sets of gates are universal under the ordinary

(non reversible) Boolean circuit compositional rules. One such universal gate is

the two input NAND gate. In the theory of conservative logic, the Fredkin gate

is universal ([FT82]), and we have just seen above that it can be simulated in the

ESRL language. However, it should be noticed that, contrarily to what happens

in the ?SRL languages, the usual formalization of reversible logical circuits allows

gates that have pre-determined fixed values, and output gates that are not used

(“garbage”).

8.2 Simulation by primitive recursive functions

Each ?SRL program P can be simulated by a Loop program (whose registers are

non-negative integers), representing each integer x ∈ Z by a pair of non-negative

integers: the pair (x, 0) if x ≥ 0, or the pair (0,−x) if x < 0. The simulation

of loop instructions requires some care, because of the meaning of “forx(P)”

when the value stored in x is negative; in this case, the inverse of the program P

48

is executed −x times, so that the execution must somehow “compute” program

inverses. The implementation of ?SRL in a low level machine, see Chapter 13

illustrates how this can be done.

The simulation shows that, in a sense, the transformations that can be imple-

mented in ?SRL can also be implemented in Loop. However, the simulation

itself not particularly interesting because the language in which the simulation

is executed, the Loop language, is not reversible; only the simulated language is

reversible.

49

Chapter 9

Equivalence and commutativity

9.1 The equivalence problem

To every program P corresponds a bijection f : Z∞ → Z∞ such that only a finite

number of registers can be modified. We say that the program P implements the

bijection f and write [[P]] = f .

The programs P and Q are equivalent and we write P ≡ Q, if [[P]] = [[Q]]; in

detail:

1. the contents of registers in R(P) \ R(Q) are not modified by P at the end

of the computation,

2. the contents of the registers in R(Q) \ R(P) are not modified by Q at the

end of the computation, and

3. P (r) = Q(r) for every tuple r ∈ R(P) ∩R(Q).

In particular, the empty program P = ε corresponds to the identity bijection ι,

[[ε]] = ι.

Definition 8 The (program) equivalence problem is: “Given two programs P

and Q, is P ≡ Q?”. It is assumed that R(P) = R(Q), which can be obtained by

extending the registers of P and/or Q.

50

Definition 9 The kernel problem is: “Given a program P , is P ≡ ε?”.

For total reversible languages we have “P ≡ ε” if and only if “P ;Q ≡ ε;Q ≡
Q”; and “P ≡ Q” if and only if “P ;Q−1 ≡ ε”. Thus, for these languages, we

have the following result.

Lemma 3 The equivalence problem and the kernel problem are either both de-

cidable or both undecidable. They both belong to Π0
1, the class of problems that

are complements of semi-decidable problems.

However, it is unknown if these problems are decidable.

The kernel problem is similar to the group word problem [LS77, MKS76] which

is the following: given a group defined by its generators and relators, and a

product x of generators and its formal inverses, is x equal to the group identity?

This problem was posed by Dehn [Deh12] in 1912, and it was shown in the 50’s

by Boone [Boo57] and Novikov [Nov55] that, in general, there is no algorithm

that solves the word problem.

The kernel problem can be formulated as follows: given a ?SRL program (se-

quence of instructions) I1,. . . , In is the corresponding product of bijections [[In]] ·
[[In−1]] · . . . · [[I1]] (defined in the group Gimpl, see page 56) equal to the identity bi-

jection? The kernel problem is different from the word problem because: (i) ?SRL

programs have a tree-like structure, being more complex than simple sequences

of generators and its inverses; (ii) the “relators” associated with the languages

?SRL are fixed.

Equivalence of primitive recursive functions

For the class of primitive recursive programs, PR, the equivalence program is

undecidable. A proof can be based on the following facts: (i) it is undecidable

if two context free languages specified by its parsers, are equal, see for instance

the Chapters 4 and 5 of [Sip97]; (ii) a parser for a context free language may be

implemented as a primitive recursive functions (with 0/1 output). Thus we have

Theorem 3 Consider two primitive recursive functions f(x) and g(y), specified

51

by Loop programs. It is undecidable if f and g are the same function. The

problem is also undecidable if the functions are specified by standard primitive

recursive definitions, see for instance [Her69, Odi89].

The equivalence problem for primitive recursive functions defined by Loop pro-

grams has been analyzed in greater detail in [Tsi70]. For each non-negative

integer i let Li be the set of Loop programs such the the nesting of “for” is at

most i. In [Tsi70] it is proved that the equivalence problem is decidable for L1,

but undecidable for Li for every i ≥ 2. The same result applies for some other

decidability problems studied in that paper.

As we said above, it is not known if the equivalence program is undecidable for

the SRL language.

9.2 Commutativity

The order of the instructions in a program is of course important; in general,

instructions do not commute. For instance, the programs “inc y; for y(decx)”

and “for y(decx); inc y” are not equivalent. Similarly, the programs

“incx; swap(x, y)” and “swap(x, y); incx” are not equivalent.

We say that the programs P and Q commute if P ;Q ≡ Q;P .

Definition 10 The commutativity problem is: “Given two programs P and Q,

is P ;Q ≡ Q;P?”. Equivalently (for total reversible languages),

“is P ≡ Q;P ;Q−1?”.

In the following result we present a sufficient (but not necessary) condition for

commutativity.

Theorem 4 Let P and Q be two SRL programs. If the following two conditions

hold

V(P) ∩ L(Q) = ∅, V(Q) ∩ L(P) = ∅

then P and Q commute. In words: no loop register of Q can be modified by P

and no loop register of P can be modified by Q.

52

The condition stated in the previous result is not necessary, as the following

program shows
P︷ ︸︸ ︷

dec y; inc y;

Q︷ ︸︸ ︷
for y(inc z)

In this example, we could replace P =“dec y; inc y” by any, possibly very com-

plex, program which is equivalent to ε. Note that equivalence to ε may be, to

our knowledge, an undecidable problem.

As examples of commuting programs, we have

1. P and Q, where neither P nor Q contain loop instructions.

2. “incx”, and “for y(incw); for z(incx; decw)”.

9.3 Equivalence and commutativity are the same

problem

We now study the relationship between the equivalence problem and the com-

mutativity problem.

We present an algorithm that decides the equivalence problem, given an algorithm

for the commutativity problem. This implies that the equivalence problem and

the commutativity problem are equivalent, that is, if one of them is recursive,

the other is also recursive.

It is obvious that the existence of an algorithm for deciding the equivalence

problem would imply that the commutativity problem is also recursive. The

other direction is proved in the following result.

Theorem 5 The commutativity problem is recursively solvable (decidable) if and

only if the equivalence problem is recursively solvable.

Proof. It is obvious that an algorithm for deciding the equivalence problem can

be used to decide the commutativity problem.

53

Assuming that there is an algorithm that decides the commutativity problem, we

define an algorithm that decides if a given program P is equivalent to the empty

program ε. By Lemma 3, page 51, the existence of such algorithm, implies that

there is also an algorithm for the equivalence problem.

Input: a program P .

Oracle: decision of the commutativity problem.

Output: yes if P ≡ ε, no otherwise.

Let x1, x2,. . . , xn be the registers mentioned by P , and let y1, y2,. . . , yn be

new registers.

Let Q = forx1(inc y1); forx2(inc y2); . . . forxn(inc yn).

If P commutes with Q, then answer yes (P is equivalent to ε), otherwise

answer no.

To justify the last statement, notice that

1. If P 6≡ ε, then P (x) 6= x for some input tuple x; then, for (at least) some

particular input x, P changes at least one register, say xj; consider the

corresponding input value, also denoted by xj, and let x′j be the value of

the register xj, after the execution of P ; thus xj 6= x′j. We write

P (x1, . . . , xj, . . . , xn) = (x′1, . . . , x
′
j, . . . , x

′
n)

where xj 6= x′j. Denote by y′j and y′′j the final values of yj after the execution

of (P ;Q) and (Q;P), respectively.{
(P ;Q): y′j = yj + x′j
(Q;P): y′′j = yj + xj

Those two final values are different, y′j 6= y′′j ; P and Q do not commute.

2. If P ≡ ε, then, for any register yj and any initial value of yj, we have{
(P ;Q): y′j = yj + xj

(Q;P): y′′j = yj + xj

54

Those two final values are equal, y′j = y′′j ; obviously, the registers xj are

also not modified, so that we have

∀x, ∀y, (P ;Q)(x, y) = (Q;P)(x, y)

that is, P and Q commute.

In other words, P ≡ ε if and only if P and Q commute. �

Theorem 5 can be generalized to any reversible, total, register language. Note

that its proof is constructive: it includes an algorithm for program equivalence,

given an oracle for commutativity.

55

Chapter 10

Further formalization; normal

forms

10.1 In the language of group theory

It is possible to use Group Theory to formalize some of the concepts and problems

mentioned in this work. There are several groups related to the languages ?SRL

and to its semantics.

– The group G?SRL of ?SRL programs, where the inverse of a program is its

formal inverse, see Section 3.4.

– The group Gnf of the normal forms of ?SRL programs, see Section 10.3.

Again, the inverse of a normal form is its formal inverse (which is a normal

form).

– The group Gimpl of bijections Z∞ → Z∞ that can be implemented in ?SRL.

– The group Gfin of bijections Z∞ → Z∞ such that in every bijection

(x1, x2, . . .)→ (x′1, x
′
2, . . .)

we have x′i = xi, except for a finite number of integers i.

– The group GZ∞→Z∞ of bijections Z∞ → Z∞.

56

Clearly, Gnf ≤ G?SRL, Gimpl ≤ Gfin ≤ GZ∞→Z∞ , and there are homomorphisms

G?SRL → Gimpl and Gnf → Gimpl. Here, “≤” and “G → G′” denote respectively

“is a sub-group of” and “there is an homomorphism from G to G′.

The set of programs P in the languages ?SRL forms the group G?SRL, where the

group operation is program concatenation “;”:

– The composition of P with Q is denoted by “P ;Q” (Q after P).

– The identity program is ε, the empty (or unit) program.

– The inverse of P is P−1 as defined in Section 3.4, page 15. It should

be emphasised that P−1, the inverse of P , must be exactly the program

defined by those rules. It is called the “formal inverse of P”. For instance,

forx(dec y) is not the (formal) inverse of forx(incx; decx; inc y).

The properties defining a group are easy to verify. The group Gnf is the group

of the reduced (normal form) programs. To obtain the reduced program cor-

responding to P , successively delete every sequence of the form “Q;Q−1” that

occurs in the program (a tree-like structure), until no further deletion is possible;

see Section 10.3, where it is shown that, using by any order the rules (6), (7),

(8), and (9), the same “normal form” (reduced program) is always obtained.

The set of bijections f : Z∞ → Z∞ where only a finite number of registers can be

modified is the group Gfin. The identity of this group is ι, the identity bijection.

The meaning of the programs, as described above, corresponds to an homomor-

phism h : G(SRL) → G(Z∞→Z∞); we thus have [[P]] = h(P). If two programs

have the same normal form, their meaning is the same.

We can also say that each program acts on Z, in the sense that each program P ∈
G(SRL) “acts” as an element of the permutation group in Z∞, see for instance

the Chapter 4 of [Ros94].

There are analogies between the mapping G(SRL)→ G(Z∞→Z∞) and the map-

ping between a monoid and a group that is classically used to characterize group

presentations, see for instance the Chapter 1 of [MKS76]. However, SRL pro-

grams have a structure that is more complex than the words of a monoid, and it

is not clear how to extend the presentation theory to our mapping.

57

The equivalence problem can now be rephrased as: given the programs P and Q,

is P ;Q−1 ∈ ker(h)?

10.2 Order of a program

In the groups G?SRL or Gnf the order of a program1 P , is the smallest integer n

such that P n ≡ ε (or, equivalently [[P n]] = ι), or ∞ if there is no such n. This

definition was inspired by the concept of order of a group element; however, the

order of P is not a property of P as a member of G?SRL or Gnf , but is defined in

terms of the semantics of P .

It is not difficult to see that for every positive integer n there are ?SRL programs

with order n, and that there are programs of infinite order. To show this, consider

the ESRL program that swaps the values of two registers; obviously, its order is 2.

It is well known that with this program we can implement any permutation of

the registers2, so that for every positive integer n, it is possible to implement the

circular register permutation xi → x[(i+1) mod n]. If follows that for every n ∈ N
there are ESRL programs (and SRL programs; use the program of Example 4,

page 23) with order n. Moreover, the program “incx” has infinite order.

As far as we know, finding the order of a program may be an unsoluble problem,

because in terms of decidability it is a problem related to the kernel problem

(Definition 9, page 51). More precisely consider the problem

OPr, order of a program

Input〈P, n〉 where P is a ?SRL program whose order is known to be

finite, and n is a positive integer.

Question is n the order of P?

1This concept is similar to the order of an element of a group, not to be confused with the
order of the group (its cardinality).

2Which, in the circuit terminology is sometimes called a “wire” permutation; it should not
to be confused with a bijection Z∞ → Z∞.

58

This question can be expressed as

A︷ ︸︸ ︷
P 6≡ ε, P 2 6≡ ε, . . . , P n−1 6≡ ε ∧

B︷ ︸︸ ︷
P n ≡ ε ?

In terms of the arithmetical hierarchy (see for instance [Odi89]), the sub-problemA

belongs to the class Σ0
1, while the sub-problem B belongs to the class Π0

1. It fol-

lows that the problem OPr belongs to the class ∆0
2.

However, it may be not decidable if an input 〈P, n〉 to the problem OPr is ap-

propriate, more specifically, it may be undecidable if “a given ?SRL program has

finite order”. So we consider the “order 1” problem instead, “is the order of a

given ?SRL program equal to 1?”.

Theorem 6 If the order 1 problem is recursively solvable, the kernel and the

equivalence problems are recursively solvable.

Proof. (trivial) The question associated with the order problem is “P ≡ ε?”,

which is the kernel problem. �

10.3 Normal forms

Inspired by the concept of reduced words of free groups, we define reduction from

one program to another and normal form of a program. However, the normal

form of a program does not fully characterize its semantics, in the sense that

two programs with different normal forms may have the same semantics, that is,

induce the same bijection of Z∞ in Z∞.

Consider a program P . A “sub-sequence” of P is an arbitrary sequence of contigu-

ous instructions of P , possibly under the scope of one or more loop instructions.

For instance, “inc z; decx; decw” is a sub-sequence of

incx; for y(incx; inc z; decx; decw)

59

A reduction step of P consists of one of the following transformations3

incx; decx → ε (6)

decx; incx → ε (7)

forx(ε) → ε (8)

forx(P); forx(P−1) → ε (9)

where the left sides are sub-sequences of P . In (9), P−1 denotes the formal inverse

of P . A program P is normal or irreducible (freely reduced in the Group Theory)

if no reduction step can be applied to P .

If, by a sequence of reductions, the program P reduces to Q, and Q is irreducible

(that is, Q is a normal form of P), we write

P 7→ Q or Q = ρ(P)

where the unicity of the normal form (proved in Theorem 7) justifies the usage

of the function“ρ”.

A reduction step strictly decreases the length of P ; it follows that every program

has at least one normal form.

Two examples of reductions follow.

incx; decx; forx(inc y; dec y; inc z)
(6)−→ incx; decx; forx(inc z)

forx(inc y); forx(dec y); forx(inc y)
(9)−→ forx(inc y)

where the adjacent instructions that were chosen for the reduction are underlined

and the rule used in the reduction is indicated over the arrow.

The reflexive, symmetric, and transitive closure of the “reduction step” relation

(steps (6), (7), (8), or (9)) is denoted by “≈”. Thus P ≈ Q if Q can be obtained

from P by insertions or deletions of elements of the set

{“incx; decx”, “decx; incx”, “forx(ε)”, “forx(R); forx(R−1)”} (10)

3For the language ESRL, we also need: “swap(x, y); swap(x, y)→ ε” and
“swap(x, y); swap(y, x)→ ε”.

60

where R is any appropriate ?SRL program. If P ≡ Q, we say that program P is

related to program Q; in the Group Theory analogy, they are called freely equal.

Two equivalent programs (Definition 3, page 16) are necessarily related, but the

converse is not true.

Theorem 7 shows that a normal form of a program P is unique. It should be

emphasized that two programs which do not have the same normal form may be

(semantically) equivalent. For instance,

incx; dec y; decx ≡ dec y

ρ(incx; dec y; decx) = incx; dec y; decx 6= ρ(dec y) = dec y

However, it is obvious that, two programs with the same normal form are equiv-

alent.

The following theorem shows that, independently of the reduction steps chosen,

the normal form obtained is always the same, that is,

(P 7→ Q, P 7→ R) ⇒ Q = R

Theorem 7 (Normal form theorem) (i) Every ?SRL program P has a unique

normal form that will be denoted by ρ(P). (ii) If Q is the (formal) inverse

of P , the normal form of Q is the (formal) inverse of the normal form of P ,

Q = P−1 ⇒ ρ(Q) = ρ(P)−1.

Proof. We consider only the SRL language. The inclusion of “swap” instructions

causes no special difficulty.

Let P = I1; I2; . . . ; In. The proof is by induction on the depth (Definition 4,

page 17) of the program.

Base case. If there are no loop instructions, we are essentially dealing with the

problem of proving that the reduced words of a free group are unique, see the

proof for instance in [Mil96] or [LS77]. The property (ii) is simple to prove in

this case. It is a consequence of the following facts: the normal forms of P and of

the formal inverse P−1 are unique; every possible reduction in P has a “mirror”

reduction in P−1, and vice-versa.

61

General case. Given a program P , the following algorithm results in a particular

normal form, which will be called ρ(P). Later we show that it is unique.

Input: program P = I1; I2; . . . ; In.

Output: ρ(P), a normal form of P .

1. For every Ii of the form “forx(Q)”, reduce Q to the normal form ρ(Q).

2. Compute ρ(P), by reading the instructions I1, I2,. . . , In from the left to

the right, and using the following pattern matching between Ii and the last

instruction of the program already “processed”.

ρ(P) Ii ⇒ ρ(P ; Ii)

(1) Q; incx decx Q

(2) Q; decx incx Q

(3) Q forx(ε) Q

(4) Q; forx(P) forx(P−1) Q

(5) Q Ii Q; Ii

Rule (5) is applied only when none of the previous rules match the pair

(ρ(P), Ii). In the end, ρ(P) is obtained.

Regarding rule (4) and using the induction hypothesis, we have that

– If, in the sequence “forx(R); forx(S)”, we apply some reduction rules

to R and S such that we get “forx(T); forx(T−1)”,

– then we can also get a sequence of the form “forx(U); forx(U−1)”, by

starting by reducing R and S to the normal form.

In other words, if R and S can be reduced to programs that are inverses of each

other, then ρ(R) = ρ(S)−1.

Thus, if we begin by reducing the programs R and S to their normal forms (step 1

of the algorithm!), no opportunities of applying Rule (4) are missed.

From now on, the proof may proceed along the same lines as the proof of The-

orem 1.2 of [MKS76]. The main difference is that more equivalence steps are

62

allowed (insertion or deletion of elements of the set (10)). First, the following

results are proved by induction, where ρ(P) is the result of the previous algorithm.

(a) If P is irreducible, ρ(P) = P . The proof is by induction on |P |.

(b) For any programs P and Q and for any instruction sequence ω with one of

the forms

“incx; decx”, “decx; incx”, “forx(ε)”, “forx(P); forx(P−1)”

(see page 60), ρ(PωQ) = ρ(PQ). The proof is by induction on |Q|.

If two programs are related, P ≈ Q, they have the same normal form ρ(P) =

ρ(Q). In fact, if P can be obtained from Q by insertions or deletions of sequences

of the form ω, we have by property (b), that the algorithm described above,

applied to P or Q, gives the same result.

We have still to prove that, if by some other method, we get a normal form of P ,

say σ(P), then σ(P) = ρ(P). By definition of normal form applied to σ, the

programs P and σ(P) are necessarily related, and σ(P) is irreducible. Then, by

property (a), ρ(P) = ρ(σ(P)) = σ(P); it follows that the algorithm described

above has the following properties

– The normal form ρ(P) obtained by the algorithm is “well defined”: P ≈
Q ⇒ ρ(P) = ρ(Q).

– The normal form ρ(P) is unique: P ≈ V and V is irreducible (that is, V is

a normal form of P) implies that ρ(P) = V .

�

Thus, in order to obtain the normal form, the reductions may be done in any

order; in particular, it is possible to start by reducing all those programs to the

normal form. Thus, we have directly

forx(incn; decn; inc p); forx(dec p; incn; decn)→ ε

63

or
forx(incn; decn; inc p); forx(dec p; incn; decn)→
forx(inc p); forx(dec p; incn; decn)→
forx(inc p); forx(dec p)→ ε

10.4 More equivalence transformations

When trying to prove that P ≡ Q, we may begin by computing the normal

forms ρ(P) and ρ(Q). If they are equal, then P ≡ Q, but, as we said above, the

converse does not hold. We describe some other program transformations that,

in some cases, are sufficient to prove the equivalence of two programs.

After presenting some introductory examples in 10.4.1, we consider a more general

transformation in (10.4.2).

In this section it is convenient to use a generalization of the concept “never

modifies” (Definition 1, page 10).

Definition 11 If the program P never modifies x, then, for any program Q

(which can modify x), we will also say that Q; P ; Q−1 never modifies x. No-

tice that the variable x is not modified by the execution of Q; P ; Q−1.

Example. The instruction “forx(incx; inc y; decx)” is now allowed. �

Comment. Definition 1 can of course be applied repeatedly so that, if P never

modifies x, then, for any programs Q and R (which can modify x), we will also

say that R; Q; P ; Q−1; R−1 never modifies x. �

10.4.1 Introductory examples

Commutativity. Assuming that the conditions of Theorem 4 are verified, we

can use the transformation “P ; Q→ Q; P”.

Change the order of “inc” and “for”. Suppose that P is a program that

does not mention the variable x. By this we mean that the variable x does not

64

occur in P . This is a stronger condition than “P never modifies x” (Definition 1,

page 10). Then,

incx; forx(P) ≡ forx(P); P ; incx (11)

Equivalence (11) is illustrated in Figure 9.

 P

x

y
_

Figure 9: An equivalence between two programs: “incx; forx(P (y))” (left)
and “forx(P (y)); P (y); incx” (right).

This transformation is not valid if only the condition “P never modifies x” is

assumed, as the following example shows:

incx; forx(forx(Q)) where Q does not mention x (12)

is not equivalent to

forx(forx(Q)); forx(Q); incx (13)

In (12) the program Q is executed (x + 1)2 times, while in (13) it is executed

x(x+ 1) times, where x also denotes the initial value of x.

Changing the order of two loops. Suppose that the program P does not

mention neither x nor y. Then,

forx(inc y); for y(P) ≡ for y(P); forx(P); forx(inc y) (14)

Note. In (11) the instructions “incx” and “P” commute; similarly, in (14) the

instructions “forx(P)” and “forx(incn)” commute.

65

10.4.2 Transformation [P ; for(. . .)]→ [for(. . .); P]

Let P and Q be arbitrary ?SRL programs. We have4 the equivalence

P ; forx(Q) ≡ forx(P ; Q; P−1); P (15)

In fact,

forx(P ; Q; P−1); P

≡ P ; Q; P−1 P ; Q; P−1 . . . P ; Q; P−1 P

≡ P ;

x︷ ︸︸ ︷
Q;Q; . . . Q

≡ P ; forx(Q)

The expressions in the second and third lines above are not programs; they are

used to prove the (semantic) equivalence between two programs.

Example. In transformation (15) consider the case P = inc y, Q = for y(inc z).

We get

inc y; forx(for y(inc z)) ≡ forx(inc y; for y(inc z); dec y); inc y

The reader can verify that the tuple transformations associated to the LHS and

to the RHS programs are the same, namely
x′ = x

y′ = y + 1

z′ = z + x(y + 1)

A transformation similar to (15) is

A; B ≡ (A; B; A−1); A (16)

This trivial transformation holds unconditionally.

4TO DO: check if there are limitations for the application of equivalence (15). If the “proofs”
below are right, they are unconditionally valid.

66

Analysis of a particular case

In (15) replace P by “forx(P)” and rename x→ y; we get

forx(P); for y(Q) ≡ for y(forx(P); Q; forx(P−1)); forx(P) (17)

Notice that P may modify y. This equivalence holds even if x = y,

forx(P); forx(Q) ≡ forx(forx(P); Q; forx(P−1)); forx(P) (18)

Comment. In general, it is not true that

forx(P); forx(Q) ≡ forx(P ; Q)

However, if P and Q commute, the equivalence holds.

10.4.3 When is “forx(P)” equivalent to “for y(Q)?

Suppose that

forx(P) ≡ for y(Q) (19)

– If x = y, the equivalence holds iff P ≡ Q. To show this it is enough to

consider the case in which x = y = 1. Suppose now that x 6= y, and assume

that the equivalence (19) holds.

– The LHS of (19) when x = 0 is equivalent to the identity program ε. The

same must happen for the RHS of (19). Considering also the symmetrical

reasoning, we have

forx(P)|[x=0] ≡ forx(P)|[y=0] ≡ for y(Q)|[y=0] ≡ for y(Q)|[y=0] ≡ ε (20)

– Also “forx(P)|[y=0] ≡ ε” iff “P |[x=1, y=0] ≡ ε”, and “for y(Q)|[x=0] ≡ ε” iff

“Q|[x=0, y=1] ≡ ε”. Thus, a condition equivalent to (20) is

P |[x=1, y=0] ≡ ε, Q|[x=0, y=1] ≡ ε (21)

67

– On the other hand, if, for some values of the registers, P modifies y, the

equivalence (19) does not hold. To see this, consider x = 1 and notice

that Q never modifies y. Similarly, if, for some values of the registers, Q

modifies x, the equivalence (19) does not hold.

Study sequences of inc’s, dec’s, and swap’s. If swap’s. are not in-

cluded, this is very simple, due to the commutativity of the inc’s,

dec’s.

Final comment. Using the equivalences (15), (17), and (18) in a systematic

way, it is possible it is possible to transform an arbitrary program in a sequence

of instructions such that, at the top level,

– All “inc−”, “dec−”, and “swap(−,−)” instructions occur at the end, by
lexicographic order.

– For each loop variable there is only one loop.

– The sequence of loops is lexicographically ordered (by the loop variable).

None of the transformations described in this section (together with the normal

form reduction) is sufficient to prove in general the equivalence of two arbitrary

programs.

Moreover, even if if it is possible to characterize a finite set of transformations

that is sufficient to prove the equivalence of two programs, that only constitutes

an algorithm when the order of their application is specified.

68

Chapter 11

Execution time

The execution time of a computation can be defined as the number of individ-

ual (elementary) instructions executed. Similarly to what is done in [MR67a],

we ignore the overhead associated with loop instructions, and count 1 for each

execution of an “increment”, “decrement”, or “swap” instruction.

Let an execution step, or simply a “step” be the execution of an increment,

decrement, or swap instruction. The language SRL does not contain swap in-

structions, so that in an execution step the value stored in any register changes

by at most by one. However, the execution of the swap instruction “swap(x, y)”

causes arbitrarily large changes in the values stored in the registers x and y.

An upper bound for the execution time

Given a program, we can define an upper bound of the change of the values stored

in the registers. Let P be a ?SRL program that uses the registers x1,. . . , xn.

Let the largest and smallest value stored in a register, as a funtion of time, be

respectively

max{x} def
= max

i
{xi : i = 1, 2, . . . , n}

min{x} def
= min

i
{xi : i = 1, 2, . . . , n}

69

and define f(t)
def
= max{x}−min{x}. An execution step (possibly a swap instruc-

tion), causes f(t) to change by at most 1, so that

∆(P, x)
def
= |[max

i
(x′i)−min

i
(x′i)]− [max

i
(xi)−min

i
(xi)]| ≤ T (P (x)) (22)

where T is the execution time of the computation, and the xi and x′i are re-

spectively the initial and final values of the registers. When dealing with ?SRL

languages, all the registers used by a program must be considered when measur-

ing the “change” caused by its execution. An appropriate measure of the growth

of the values stored in the registers is ∆(P, x) as defined in (22).

Nesting of loops and the size of the registers

It is easy to show that for linear programs (programs in the class S1) the execution

time is linear in terms of ∆(P, x). However, for programs in S2, the execution

time may be not quadratic, it may not even be bounded by any polynomial (in

terms of ∆(P, x)). This is shown by the program of Example 9 (page 25), whose

execution time is exponential.

This phenomenon – the appearance of exponential sized values (accompanied

by an exponential execution time) with a nesting of loop instructions of only 2

has been studied before in the realm of primitive recursive functions; see for

instance [Rob65], which, in particular, presents a sufficient condition for avoiding

this behaviour. In the Example 9 the exponential size is due to repetition of

two linked loops: “for b(inc a)” which increments a (assuming that b > 0) and

“for a(inc b)” which increments b (assuming that a > 0). By “linked loops” we

mean that the loop variable of each loop is changed by the execution of the other.

Normal forms and execution time

The transformation of a program P into its normal form ρ(P) is based on the

reduction steps (6), (7), (8), and (9); it follows that the normal form of a program

is at least as fast as the program itself,

∀x : T (ρ(P (x))) ≤ T (P (x))

70

However, the normal form of a program is not necessarily the fastest equivalent

program, as shown by the simple program “incx; dec y; decx”.

Clearly, the problem of finding the optimal program which is equivalent to a given

program P is at least as difficult as the kernel problem (Definition 9, page 51),

which, to our knowledge, may be undecidable; in fact the fastest program equiv-

alent to P has execution time 0 if and only if the shortest program equivalent

to P is ε.

71

Chapter 12

?SRL with register initialization

All the registers used in a ?SRL program must be included in the transformation

that characterizes the semantics of the program. In this Chapter we relax this

rule and study the transformations that can be implemented when some of the

input registers are preset (before the program execution) and some registers are

discarded when the execution finishes.

This technique of presetting some input registers (or wires) and discarding some

output registers (or wires) has been widely used in some other models of compu-

tation, such as the reversible logical gates, see for instance [FT82].

The main question that we try to answer is: what is the class of unary functions

that can be implemented using this technique in ?SRL? There is probably no

easy, “closed form” answer, but in order to have at least a feel for that class of

functions, we present some examples.

We will only study unary functions, that is, we consider only the case in which

all registers except one are preset in the beginning of the computation.

Moreover only the language SRL will be used, because the “swap(x, y)” instruc-

tion can be implemented in SRL (if fixing/discarding registers is allowed) using

an new additional register u and the transformation mentioned in Example 4,

page 23; the register u is inverted, that is, u → −u and discarded. Whenever

it occurs, the instruction “swap(x, y)” is assumed to be converted in this way to

SRL.

72

Notice also that presetting the registers with 0 is sufficient.

Notation.

1. If a is an integer constant, the concatenation of a identical programs P will

be denoted by P a. For a < 0, P a is defined as (P−1)−a.

2. If a is an integer, we use “fora x(P)” to denote the loop

for x(. . . (for x(P)) . . .)

with imbrication level a; for instance, “for2 x(P)”, “for0 x(P)” and

“for−1 x(P)” denote “forx(forx(P))”, “ε” and “forx(P−1)”, respec-

tively. Notice the difference between “fora x(P)” and “(forx(P))n”.

3. The input registers, the output registers and the register presets are speci-

fied as follows

[input regs] [initializations] [PROGRAM CODE] [output regs]

At the end of the computation, the non output registers are discarded.

4. If it is known that f(x) can be implemented, we may use in a SRL program

the notation “{f(x) → u}” to represent the computation of f(x) in the

register u.

12.1 y = ax+ b

For any a, b ∈ Z, the function y = ax+ b can be implemented with the program

[x] [y = 0] (forx(inc y))a; (inc y)b [y]

Obviously this class of functions includes the constant functions.

73

12.2 y = x mod 2

The function y = x mod 2 can be implemented in the following way: (i) initialize

the registers y and z with 0 and 1 respectively; (ii) exchange x times the values

of y and z

[x] [y = 0, z = 1] forx(swap(y, z)) [y]

12.3 y = x mod m for fixed m ≥ 2

Suppose that y, z, and w have initial values 0, 0, and 1, respectively. Consider

the program P = “swap(z, w); swap(y, z)” with output y+2z; running it x times,

we get successively

x y z w y + 2z
0 0 0 1 0
1 1 0 0 1
2 0 1 0 2
3 0 0 1 0
4 1 0 0 1
5 0 1 0 2
6 0 0 1 0
· · · · · · · · · · · · · · ·

We see that the program “forx(P)” implements the function y = x mod 3. This

is easily generated for any m ≥ 2.

12.4 y = (ax+ b) mod m for fixed m ≥ 2

Composition of 12.1 with 12.3.

12.5 y = x2 + b

Use the program: [x] [y = b] forx(forx(inc y)) [y].

74

12.6 Polynomials

We present an example. To implement the polynomial y = 2x3 − 3x + 4 the

following program can be used

[x] [y = 4] (for3 x(inc y))2; (forx(dec y))3; [y]

It should now be easy to see how to implement an arbitrary polynomial.

12.7 Sums and products of functions

If f(x) and g(x) are implementable, then f(x) + g(x) and f(x) × g(x) are also

implementable. In fact,

[x] [y = 0]; {f(x)→ w}; {g(x)→ z}; forw(inc y); for z(inc y) [y]

implements f(x) + g(x), while

[x] [y = 0] {f(x)→ w}; {g(x)→ z}; forw(for z(inc y)) [y]

implements f(x)× g(x).

12.8 y = fib(2x)

As explained in Example 9, page 25, the Fibonacci sequence fib(n) can be nat-

urally extended for negative values of n, in the sense that there is an unique,

doubly infinite sequence fib(x) that satisfies for every x ∈ Z the three condi-

tions: fib(0) = 0, fib(1) = 1, fib(x+ 2) = fib(x) +fib(x+ 1). See Example 9.

The following program implements the function y = f(x) = fib(2x)

[x] [y = 0, z = 1] forx(for z(inc y); for y(inc z)) [y]

For instance: f(−2) = −3, f(4) = 21. Note that y is an exponential function

of x; in fact we have y ≥ 2x for x ≥ 3.

75

Comment. It goes without saying that

– Many other functions can be obtained by composing the ones we have

defined. For instance, if g and h are implementable, the following functions

are also implementable

f(x) = 6((fib((2x)5 + 9)) mod 10)3 + 2x

u(x) = if x is even then g(x) else h(x)

– Many functions are not implementable (even using the fix/discard tech-

nique).

– There are many functions for which it is not yet known if they are imple-

mentable.

76

Chapter 13

A machine that runs ?SRL

programs

13.1 Assembly language

Programs written in the languages ?SRL can be translated into a simple assembly

language. The purpose of translating a ?SRL program into a very low level

machine is twofold

– To prove that a finite memory device is enough to implement ?SRL. The

amount of memory depends only on the program, and not on its execution;

in particular, there are no stacks.

– To show that there is no need to “evaluate” the inverse of parts of a program,

as it would seem from the semantics of the instruction “forx(P)” when

the value stored in x is negative, see Section 3.5.3, page 18. Furthermore,

during the execution of a program, an invert switch can be actuated at any

time by an external operator, causing the program to change its execution

“direction” (from “forward” to “backward”).

At each instant of the execution of the assembly code, the value δ is either 1

(forward execution) or -1 (backward execution), and this value changes at the

beginning of the execution of the loop instruction “forx(P)” when x < 0. More-

77

over if, at any time during the execution, the value of δ is externally changed

“by the user” (from 1 to -1, or from -1 to 1), the program changes the execution

direction. If the execution was proceeding forward and δ is changed to -1, all the

instructions done so far are undoed and the program finally halts at the begin of

the code, with the initial values stored in the registers. We call this behaviour

“instant reversibility”, a strong and simple form of reversibility.

We illustrate the translation to assembly language with the program of Exam-

ple 9, namely

for r(for b(inc a); for a(inc b))

See Figure 10.

?SRL label assembly language

for r { A : FOR r, c, A, B, C

B : BOL r, c, A, B, C

for b { D : FOR b, c′, D, E, F

E : BOL b, c′, D, E, F

inc a INC a

} F : EOL b, c′, D, E, F

for a { G : FOR a, c′′, G, H, I

H : BOL a, c′′, G, H, I

inc b INC b

} I : EOL a, c′′, G, H, I

} C : EOL r, c, A, B, C

HLT

Figure 10: Translation of the program
for r(for b(inc a); for a(inc b)) in ASRL.

There are two variables associated with the execution of a program: pc, the

program counter, and δ which was explained above.

The assembly language is called ASRL (assembly for ?SRL) and the operation

mnemonics are INC, DEC, SWAP, FOR, BOL (begin of loop), EOL (end of loop), and

HLT. As exemplified above, each “forx(P)” is translated into the sequence

78

A FOR x, c, A, B, C

B BOL x, c, A, B, C

. . . translation of P . . .

C EOL x, c, A, B, C
The variable c is a loop counter.

We describe in Figure 11 how each ASRL instruction is executed by the corre-

sponding low level machine. In the Appendices A.1, A.2 and A.3 this execution

is detailed.

13.2 Assembly language: inverting the execu-

tion direction

A fixed amount of memory is sufficient to implement the inversion of the execu-

tion direction. Appendices A.2 and A.2 shows implementations of this inversion

mechanism in the languages Haskell and Prolog respectively.

If the inversion of direction occurs, the program runs backwards undoing all the

instructions executed so far, and finally halting at the beginning of the code (at

the first “halt” instruction mentioned below), with every register containing the

corresponding initial value.

Modified assembly language

In our implementation of the inversion mechanism, the user specifies

– The program to be executed.

– The input data.

– The number of elementary steps after which there is an inversion.

It is convenient to change slightly the form of the Assembly program, as follows.

79

1. δ = 1 // go forward

2. pc = 1 // first instruction

3. Execute the instruction I corresponding to the label pc.

(a) I = HLT: stop the execution.

(b) I = INCx: x← x+ δ;
pc← pc + δ; goto instruction with label pc.

(c) I = DECx: x← x− δ;
pc← pc + δ; goto instruction with label pc.

(d) I = SWAP(x, y): (x, y)← (y, x);
pc← pc + δ; goto instruction with label pc.

(e) I = FOR x, c, A, B, C:
c← −1;
if x < 0 then δ = −δ; // change direction

pc ← B; goto instruction with label pc.

(f) I=BOL x, c, A, B, C
c← c+ 1;
if c ≥ |x| then { // the loop instruction ended

if x < 0 then δ = −δ;
// set δ to its previous value

if δ = 1 then pc← C + 1;
// ↓, go to the end of loop+1

else pc ← A − 1; // ↑, go to the begin of

loop-1

goto instruction with label pc
}
else { // continue the loop

if δ = 1 then goto instruction with label B + 1;
else goto instruction with label C − 1

}
(g) I=EOL x, c, A, B, C:

if δ = 1 then goto B
// ↓, end of a loop, δ = 1, back to BOL

else goto A
// ↑, go to FOR inst. (entering from below)

Figure 11: Execution of ASRL instructions.

80

– There is an extra “halt” instruction at the beginning. This allows the

halting of programs running backwards.

– Associated with every loop instruction there is an extra bit to indicate if the

inversion “processing” has already occurred. That processing is essentially

associated with the manipulation of the loop counter: step and finishing

values.

Some examples of these transformed assembly programs can be seen in Ap-

pendix A.4.

Inversion bits

The names of the inversion bits must satisfy the following rule: nested loop

instructions must have different names. This is because, in a program like

forx(P ; for y(Q ? R); S); for z(T)

where the inversion takes place at the point marked “?”, it is necessary to

(i) “Invert” the for y(·) loop

(ii) Then, and after running P backwards once, “invert” the forx(·) loop.

On the other hand, the name of the inversion bits can be the same for loop

instructions in sequence, possibly intermixed with other (“inc”, “dec”, or “swap”)

instructions.

In the example above, the names of the inversion bits could be as indicated.

for [x/i1](P ; for [y/i2](Q ? R); S); for [z/i1](T)

where [x/i1 means that the name i1 is associated with the loop with counter x.

Note. In this example, where the inversion occurs after the execution of Q, the

program S is never executed; however, if the initial value of y is negative, the

program S is executed.

81

Appendix A

?SRL implementations

This appendix is divided in the following sections

– Section A.1: the programming languages Haskell and Prolog are used to

represent and test some of the ?SRL programs used in this work.

– Section A.2: listing of a Haskell program that interprets ?SRL programs

translated to Prolog terms, “intermediate language”.

– Section A.3: listing of a Prolog program that interprets ?SRL programs

translated to Prolog terms, “intermediate language”.

– Section A.4: listing of a Prolog program that interprets the assembly lan-

guage (available from the author).

– Section A.6: listing of a Prolog program that interprets a slightly modified

assembly language in which it is possible, at any instant, to invert the

direction of the program (available from the author).

– Section A.7: listing of the “sage” program that generated Figure 6 (page 43)

(available from the author).

We first list the representation of three of the programs presented in this work,

Then, we present the interpreter code.

82

A.1 Representation of some of programs pre-

sented in this work

A.1.1 Examples in Haskell

Included below are the programs sign2 and fibo that correspond to the exam-

ples 7 (page 24) and 9 (page 25) respectively. The program syntax is defined

in A.2.

-- Execute srl programs
sign2 = [FOR 0 [INC 1],

FOR 1 [DEC 0, DEC 0],
FOR 0 [INC 1],
FOR 1 [DEC 0, DEC 0]

]

test_sign2 = exec pt [2,5]

fibo = [FOR 2 [FOR 0 [INC 1], FOR 1 [INC 0]]]
test_1 = exec p8 [0,1,10]
test_2 = [exec p8 [0,1,n] | n <- [-5..5]]
test_3 = map (!!0) [exec p8 [0,1,n] | n <- [-10..10]]

83

A.1.2 Examples in Prolog

The program syntax is defined in A.3.

A.1.3 Example 3, page 22

% (Swap two pairs of registers)
prog(e4,[

for(a,[i(c)]), for(c,[d(a)]), for(b,[i(d)]),
for(d,[d(b)]), for(c,[i(b)]), for(d,[i(a)]), % state M1

%
for(a,[i(c)]), for(c,[d(a)]), for(b,[i(d)]),
for(d,[d(b)]), for(c,[i(b)]), for(d,[i(a)]), % state M2

%
for(a,[d(c)]), for(b,[d(c)]),
for(a,[d(d)]), for(b,[d(d)])]). % "corrections"

% Example:
mem(e4, [(a,-11),(b,-27),(c,-3),(d,44)]).
% -> [(a,-27),(b,-11),(c,44),(d,-3)]

A.1.4 Example 4, page 23

% (Swap two registers and change the sign of anoher)
prog(e5,[

for(a,[i(c)]), for(c,[d(a)]), for(b,[i(a)]),
for(a,[d(b)]), for(c,[i(b)]), for(b,[d(c)]),
for(c,[d(a)]), for(c,[i(b),i(b)])]).

% Example:
mem(e5,[(a,30),(b,17),(c,12)]).
% -> [(a,17),(b,30),(c,-12)]

A.1.5 Example 9, page 25

% (The Fibonacci example)
prog(e6,[for(n,[
for(a,[i(b)]),
for(b,[i(a)]),

]
)

]

84

).
% Example:
mem(e6,[(a,0), (b,1), (n,10)]).
% -> [(a,6765),(b,4181),(n,10)]

85

A.2 Intermediate language interpreter (Haskell)

-- define programs and instructions
data Inst = INC Int | DEC Int | SWAP Int Int | FOR Int Prog

deriving (Show)
type Prog = [Inst]

-- invert a program
inv :: Prog -> Prog
inv [] = []
inv (inst:insts) = inv insts ++ [inv_i inst]

inv_i :: Inst -> Inst
inv_i (INC r) = (DEC r)
inv_i (DEC r) = (INC r)
inv_i (SWAP r s) = (SWAP r s)
inv_i (FOR r p) = FOR r (inv p)

-- execute: exec program registers
exec [] rs = rs
exec (i:p) rs = exec p (execi i rs)

-- execute one instruction
execi (INC r) rs = take r rs ++ [(rs!!r) + 1] ++ drop (r+1) rs
execi (DEC r) rs = take r rs ++ [(rs!!r) - 1] ++ drop (r+1) rs
execi (SWAP r s) rs = set s (val r rs) (set r (val s rs) rs)
execi (FOR r p) rs =

execfor (val r rs) p rs

execfor vr p rs
| vr==0 = rs
| vr>0 = exec p (execfor (vr-1) p rs)
| vr<0 = execfor (-vr) (inv p) rs

val r rs = rs!!r
set r v rs = take r rs ++ [v] ++ drop (r+1) rs

86

A.3 Intermediate language interpreter (Prolog)

%---
% STRUCTURE: examples
% program
% an example:
% prog(1,[i(a),i(a),d(b)]). 1: name of the example
% mem(1,[(a,1),(b,10)]). initial var values, a=1, b=10
% this example: a’=3, b’=9
%--

test(N) :-
prog(N,P),
mem(N,M),
execute(P,M,Mf),
write(’Example ’), write(N), write(’: ’), nl,
write(’ Input: ’), write(M), nl,
write(’ Output: ’), write(Mf), nl.

rtest(N) :-
prog(N,P),
invert(P,Pr),
write(Pr).

%---
% execute(P,M,M1)
% The execution of program "P" with initial "memory M",
% results in memory M1
%---
execute([],M,M).
execute([I|P],M,Mf) :-

exec1(I,M,Mi),
execute(P,Mi,Mf).

%---
% increment i(R)
exec1(i(R),M,M1) :-

!,
value(R,M,V),
V1 is V+1,
set(R,V1,M,M1).

% decrement i(R)
exec1(d(R),M,M1) :-

!,
value(R,M,V),
V1 is V-1,
set(R,V1,M,M1).

% change sign inv(R)
exec1(inv(R),M,M1) :-

value(R,M,V),

87

V1 is -V,
set(R,V1,M,M1).

% "swap" instruction s(R,S) instruction only legal on the ESRL language
exec1(s(R,S),M,M1) :-

!,
value(R,M,U),
value(S,M,V),
set(R,V,M, Mi),
set(S,U,Mi,M1).

% "for" instruction: execute "R" times the program "P"
exec1(for(R,P),M,M1) :-

value(R,M,V),
execfor(V,P,M,M1).

% Display or not (according to "trace") "L"
exec1(disp(_),M,M) :-

not(trace(on)),
!.

exec1(disp(L),M,M) :-
!,
values(L,M,Lv),
write(Lv),
nl.

% "for" instruction
% If V<0, invert P
execfor(V,P,M,M1) :-

V>=0,
!,
execloop(V,P,M,M1).

execfor(V,P,M,M1) :-
!,
Vn is -V,
invert(P,Pr),
execloop(Vn,Pr,M,M1).

execloop(0,_,M,M) :-
!.

execloop(C,P,M,Mf) :-
execute(P,M,M1),
C1 is C-1,
execloop(C1,P,M1,Mf).

%--
% Invert a program, invert an instruction
%--
invert([],[]).
invert([I|P],Pr) :-

invert_one(I,Ir),
invert(P,P1),
append(P1,[Ir],Pr).

88

invert_one(i(R),d(R)) :-
!.

invert_one(d(R),i(R)) :-
!.

invert_one(inv(R),inv(R)) :-
!.

invert_one(s(R,S),s(R,S)) :-
!.

invert_one(for(R,P),for(R,Pr)) :-
invert(P,Pr).

%--
% Memory access
%--
% value(R,V): V is the value of R
value(R,[(R,V)|_],V) :-

!.
value(R,[_|M],V) :-

value(R,M,V).

set(R,V,[(R,_)|M],[(R,V)|M]) :-
!.

set(R,V,[A|M],[A|M1]) :-
set(R,V,M,M1).

values([],_,[]) :-
!.

values([A|L],M,[V|Lv]) :-
!,
value(A,M,V),
values(L,M,Lv).

values(A-B,M,Va-Vb) :-
!,
values(A,M,Va),
values(B,M,Vb).

values(A,M,V) :-
atomic(A),
!,
value(A,M,V).

%--
append([],L,L).
append([A|L],L1,[A|L2]) :-

append(L,L1,L2).

len([],0).
len([_|A],L) :-

len(A,L1),
L is L1+1.

89

A.4 Assembly language interpreter and exam-

ples (Haskell)

A.4.1 Examples

We present three assembly language programs written in Haskell, see also A.4.2.

p0 = [HLT 0, -- x <-> 0 y <-> 1
INC 1 1, -- 1 INC y
DEC 2 0, -- 1 DEC x
SWAP 3 0 1, -- 1 SWAP x y
HLT 4

]
t0 = exec p0 [10, 20]

p2 = [HLT 7, -- x <-> 0 y <-> 1

FOR 3 0 2 3 4 5, -- 3 FOR x
BOL 4 0 2 3 4 5, -- 4 BOL
INC 6 1, -- 6 INC y
EOL 5 0 2 3 4 5, -- 5 EOL
HLT 9 -- 9 HLT

]
t2 = exec p2 [-5, 1]

p8 = [HLT 0 , -- 0 r=15, x=16, y=17

FOR 1 15 21 1 2 11, -- 1 c1=21, c2=22, c3=23
BOL 2 15 21 1 2 11, -- 2

--
FOR 3 16 22 3 4 6 , -- 3
BOL 4 16 22 3 4 6 , -- 4
INC 5 17 , -- 5
EOL 6 16 22 3 4 6 , -- 6

--
FOR 7 17 23 7 8 10, -- 7
BOL 8 17 23 7 8 10, -- 8
INC 9 16 , -- 9
EOL 10 17 23 7 8 10, -- 10

--
EOL 11 15 21 1 2 11, -- 11
HLT 12 -- 12

]

-- index: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
t8 = exec p8 [0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0, -4,0,1, 0,0,0, 0,0,0]

90

A.4.2 Haskell interpreter

Listing of the assembly interpreter, written in Haskell.

-- define programs and instructions
type Label = Int
data Dir = FORW | BACK

-- Lab Reg Cnt Lab Lab Lab
data Inst = HLT Label |

INC Label Int |
DEC Label Int |
SWAP Label Int Int |
FOR Label Int Int Int Int Int |
BOL Label Int Int Int Int Int |
EOL Label Int Int Int Int Int

deriving (Show)
type Prog = [Inst]

-- execute: exec program registers
exec p m = execute FORW (first_ins p) p m

execute _ (HLT _) p m = m
execute FORW (INC l r) p m

= execute FORW (next_ins p l) p (increment m r)
execute FORW (DEC l r) p m

= execute FORW (next_ins p l) p (decrement m r)
execute FORW (SWAP l r r’) p m

= execute FORW (next_ins p l) p (replace m r r’)
execute FORW (FOR l r i a b c) p m

| val m r >= 0 = execute FORW (inst_lab p b) p (set m i 0)
| otherwise = execute BACK (inst_lab p b) p (set m i 0)

execute FORW (BOL l r i a b c) p m
| val m i < abs(val m r) = execute FORW (next_ins p b) p mi
| otherwise = outFOR FORW r a b c p m
where mi = increment m i

execute FORW (EOL l r _ _ b _) p m =
execute FORW (inst_lab p b) p m

--
execute BACK (INC l r) p m

= execute BACK (prev_ins p l) p (decrement m r)
execute BACK (DEC l r) p m

= execute BACK (prev_ins p l) p (increment m r)
execute BACK (SWAP l r r’) p m

= execute BACK (prev_ins p l) p (replace m r r’)
execute BACK (FOR l r i a b c) p m

| val m r >= 0 = execute BACK (inst_lab p b) p (set m i 0)
| otherwise = execute FORW (inst_lab p b) p (set m i 0)

execute BACK (BOL l r i a b c) p m
| val m i < abs(val m r) = execute BACK (prev_ins p c) p mi
| otherwise = outFOR BACK r a b c p m

91

where mi = increment m i
execute BACK (EOL _ _ _ a _ _) p m = -- EOL reached from below

execute BACK (inst_lab p a) p m

-- when a FOR loop finishes...
outFOR FORW r a b c p m

| val m r >= 0 = execute FORW (next_ins p c) p m
| otherwise = execute BACK (prev_ins p a) p m

outFOR BACK r a b c p m
| val m r >= 0 = execute BACK (prev_ins p a) p m
| otherwise = execute FORW (next_ins p c) p m

--
inst_lab (i:p) l

| label i == l = i
| otherwise = inst_lab p l

next_ins (i:p) l
| label i == l = head p
| otherwise = next_ins p l

prev_ins (ia:i:p) l
| label i == l = ia
| otherwise = prev_ins (i:p) l

first_ins p = p!!1 -- first HALT ignored
--
label (HLT l) = l
label (INC l _) = l
label (DEC l _) = l
label (SWAP l _ _) = l
label (FOR l _ _ _ _ _) = l
label (BOL l _ _ _ _ _) = l
label (EOL l _ _ _ _ _) = l

--
increment m r =

take r m ++ [(m!!r) + 1] ++ drop (r+1) m

decrement m r =
take r m ++ [(m!!r) - 1] ++ drop (r+1) m

replace m r r’ = set (set m r (val m r’)) r’ (val m r)

val m r = m!!r
set m r v = take r m ++ [v] ++ drop (r+1) m

92

A.5 Assembly language interpreter (Prolog)

Program available from the author (email address armandobcm@yahoo.com).

A.6 Interpreter with inversion (Prolog)

Program available from the author (email address armandobcm@yahoo.com).

A.7 Program in “sage” that generated Figure 6

(page 43)

Program available from the author (email address armandobcm@yahoo.com).

93

Bibliography

[Abr01] Samson Abramsky. A structural approach to reversible computation.

Technical Report PRG-RR-01-09, Oxford University Computing Lab-

oratory, Wolfson Building, Parks Road, Oxford OX1 3QD, February

2001.

[Art91] Michael Artin. Algebra. Prentice-Hall, 1991.

[BB96] Gilles Brassard and Paul Bratley. Fundamentals of Algorithmics. Pren-

tice Hall, 1996.

[Ben73] Charles H. Bennett. Logical reversibility of computation. IBM Journal

of Research and Development, 6:525–532, 1973.

[Ben07] Charles H. Bennett. Notes on Landauer’s principle, reversible computa-

tion, and Maxwell’s demon. IBM Research Division, Yorktown Heights,

NY 10598, USA, 2007.

[Boo57] William W. Boone. Certain simple unsolvable problems in Group The-

ory. Nederl. Akad. Wetensch Proc. Ser. A., 57 pp 231–236 (1954), 57

pp 231–236, 492–497 (1954), 58 pp 252–256, 571–577 (1955), 60 pp 22–

26, 227–232 (1957), 1954-1957.

[Cle63] J. P. Cleave. A hierarchy of primitive recursive functions. Zeitschrift

für mathematische Logik und Grundlagen der Mathematik, 9:331–345,

1963.

[CLR01] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-

troduction to Algorithms. Second edition. MIT Press and McGraw-Hill,

2001.

[Dav85] Martin Davis. Computability and Unsolvability. Dover, 1985.

94

[Deh12] Max Dehn. Über unendliche diskontinuierliche gruppen. Math. Ann.,

71:116–144, 1912. Translated by J. Stilwell, On infinite discontinuous

groups, in Papers on Group Theory and Topology, Springer Verlag.

[FT82] Edward Fredkin and Tommaso Toffoli. Conservative logic. Interna-

tional Journal of Theoretical Physics, 21:219–253, 1982.

[GA06] Alexander Green and Thorsten Altenkirch. From reversible to irre-

versible computations. QPL06, Workshop on Quantum Physics and

Logic, 2006.

[GN78] Bernhard Goetze and Werner Nehrlich. Loop programs and classes of

primitive recursive functions. In MFCS, pages 232–238, 1978.

[GN81] Bernhard Goetze and Werner Nehrlich. The number of loops necessary

and sufficient for computing simple functions. Elektronische Informa-

tionsverarbeitung und Kybernetik, 17(7):363–376, 1981.

[Grz53] A. Grzegorczyk. Some classes of recursive functions. Rozprawy Matem-

atyczne, 4:1–45, 1953. Introduction. In this paper an increasing sequence

E0, E1,. . . of classes of recursive functions is examined. Each class En is

closed under the operations of substitution and under the operation of lim-

ited recursion. The initial functions are primitive recursive ones. Therefore

En ⊂ R, where R is the class of primitive recursive functions. Strictly

speaking R = ∪nEn. Hence in the definition of the class R the operation

of recursion cannot be eliminated or exchanged into the operation of lim-

ited recursion. The classes E0 and E3 will be examined in particular. For

each function f ∈ E0 there exists a number k0 such that f(n) < n + k0.

However, each recursive enumerable set is enumerable by some function of

the class E0. We start with the investigation of the class E3. It is the class

of elementary computable functions of Kalmar.

[Her69] Hans Hermes. Enumerability, Decidability, Computability. Springer-

Verlag, 1969.

[Hua82] Loo Keng Hua. Introduction to Number Theory. Springer-Verlag, 1982.

[Lan61] Ralf Landauer. Dissipation and heat generation in the computing pro-

cess. IBM Journal of Research and Development, 5:183–191, 1961.

95

[Lec63] Yves Lecerf. Machines de Turing réversibles. Récursive insolubilité

en n ∈ N de l’équation u = θn ou θ est un isomorphisme de codes.

Comptes Rendus, 257:2597–2600, 1963.

[LS77] Roger Lyndon and Paul Schupp. Combinatorial Group Theory.

Springer, 1977.

[LTV98] Ming Li, John Tromp, and Paul Vitányi. Reversible simulation of irre-

versible computation. Physica D, 120:168–176, 1998.

[Mat03] Armando B. Matos. Analysis of a simple reversible language. Theoret-

ical Computer Science, 290(3):2063–2074, 2003.

[Mat12] Armando B. Matos. The efficiency of primitive recursive functions – a

programmer’s view, 2012. Not yet available.

[Mey65] A. R. Meyer. Depth of nesting and the Grzegorczyk hierarchy. No-

tices of the American Mathematical Society, 12:342, 1965. Abstract.

Loop programs have the property that an upper bound on the running time

of a program is determined by its structure. Each program consists only

of assignment and iteration (loop) statements, but all the arithmetic func-

tions commonly encountered in digital computation can be computed by

Loop programs. A simple procedure for bounding the running time is shown

to be best possible; some programs actually achieve this bound, and it is

effectively undecidable whether a program runs faster than the bound. The

complexity of functions can be measured by the loop structure of the pro-

grams which compute them. The functions computable by Loop programs

are precisely the primitive recursive functions.

[Mil96] J. S. Milne. Group theory, 1996. Notes written for a first-year graduate

algebra course.

[MKS76] Wilhelm Magnus, Abraham Karrass, and Donald Solitar. Combinato-

rial Group Theory, Presentations of Groups in Terms of Generators

and Relations. Dover, 1976. Second revised edition.

[Mol73] Robert Moll. Complexity classes of recursive functions. PhD in Mathe-

matics, Massachusetts Institute of technology, 1973. Contents of Chap-

ter 1, “A survey of work on subrecursive hierarchies and subrecursive de-

grees”: (i) ω-hierarchies of primitive recursive functions. (ii) ω-hierarchies

96

of elementary functions. (iii) Transfinite hierarchies. (iv) Subrecursive de-

grees.

[Mor98] Bernard Moret. The Theory of Computation. Addison-Wesley, 1998.

[MP11] Armando B. Matos and António Porto. Ackermann and the superpow-

ers (revised in 2011). ACM SIGACT, 12(Fall 1980), 1980/1991/2011.

url: http://www.dcc.fc.up.pt/~acm/ack.pdf.

[MR67a] A. R. Meyer and D. M. Ritchie. The complexity of loop programs.

Proceedings of 22nd National Conference of the ACM, pages 465–469,

1967. (From the Intruduction) Although Loop [a language described in this

paper]programs cannot compute all the computable functions, they can

compute all the primitive recursive functions. The functions computable by

Loop programs are, in fact, precisely the primitive recursive functions. Sev-

eral of our results can be regarded as an attempt to make precise the notion

that the complexity of a primitive recursive function is apparent from its

definition or program. This property is one of the reasons that the prim-

itive recursive functions are used throughout the theory of computability,

for [. . .] knowing that a function is computable is not very useful unless one

can tell how difficult the function is to compute. A bound on the running

time of a Loop program provides a rough estimate of the degree of difficulty

of the computation defined by the program. Loop programs are so powerful

that our bounds on running time cannot be of practical value-for functions

computable by Loop programs are almost wholly beyond the computational

capacity of any real device. Nevertheless they provide a good illustration of

the theoretical issues involved in estimating the running time of programs,

and we believe that readers with a practical orientation may find some of

the results provocative.

[MR67b] A. R. Meyer and D. M. Ritchie. Computational complexity and pro-

gram structure. IBM Research Report RC 1817, 1967.

[Nov55] P. S. Novikov. On the algorithmic unsolvability of the word problem

in group theory. Proceedings of the Steklov Institute of Mathematics,

44:1–143, 1955.

[Odi89] Piergiorgio Odifreddi. The Theory of Functions and Sets of Natural

97

Numbers. Studies in Logic and the Foundations of Mathematics. Else-

vier North Holland, 1989.

[RK66] B. Rotman and G. T. Kneebone. The Theory of Sets and Transfinite

Numbers. Elsevier, 1966.

[Rob47] Raphael Robinson. Primitive recursive functions. Bull. Amer. Math.

Soc., 53(10):925–942, 1947.

[Rob65] Joel Robbin. Subrecursive Hierarchies. PhD in Mathematics, Prince-

ton University, 1965. Abstract. The classification problem for recursive

functions is the problem of assigning ordinals to recursive functions as a

measure of their complexity. In this paper we consider three approaches

to this problem: the ordinal recursion hierarchy, the extended Grzegorczyk

hierarchy, and the Kleene subrecursive hierarchy. We obtain characteriza-

tions of the nested n-fold recursive functions in terms of each of these

hierarchies. In the last section of the paper we show some of the problems

that arise when we try to generalize these hierarchies. A characterization of

the nested n-fold recursive functions in terms of computational complexity

on a Turing machine is also given in the paper.

[Ros94] John S. Rose. A Course on Group Theory. Dover, 1994.

[Sch98] Alexander Schrijver. Theory of Linear and Integer Programming. John

Wiley & Sons, 1998.

[Sip97] Michael Sipser. Introduction to the Theory of Computation. PWS, 1997.

[Tsi70] D. Tsichritzis. The equivalence problem of simple programs. Journal

of the ACM, 17(4):729–738, 1970. Abstract. Many problems, some

of them quite meaningful, have been proved to be recursively unsolvable

for programs in general. The paper is directed towards a class of programs

where many decision problems are solvable. The equivalence problem has

been proved to be unsolvable for the class L2 of Loop programs defining the

class of elementary functions. A solution is given for the class L1 defining

the class of simple functions. Further, a set of other decision problems

not directly connected with the equivalence problem is investigated. These

problems are found again to be unsolvable for the class L2; but, as before,

98

a solution is given for the class L1. It is concluded, therefore, that there is

a barrier of unsolvability between the classes L1 and L2.

[YY09] Tomoo Yokoyama and Tetsuo Yokoyama. Functoriality in reversible

circuits (work in progress). ENTCS. Elsevier, 2009.

99

	Introduction
	Reversibility and register languages
	Reversible register languages
	Representing a pair of integers by an integer
	The number of registers does not change

	Preliminaries and notation
	The languages SRL
	Syntax of the languages SRL
	The registers of a program
	On the names of the registers
	Two kinds of registers
	A program as a tree

	The meaning of a program
	The inverse of a program
	Syntax, inversion and semantics: formal definition
	Parametric composition
	Depth of a program
	Executing a program P a negative number of times

	Transformations
	Non implementable transformations
	Transformations that are not bijections
	Non cloning theorem

	Sub-sequences that grow too fast
	Uncomputable transformations

	Examples of implementable transformations

	Sub-classes of SRL programs
	SRL programs with depth 0
	Programs without loops
	Linear (depth 1) programs
	SRL programs with two variables
	 Solving non linear equations with two integer variables
	An example
	A method for obtaining the solution of (3)

	Two-variable programs: the general case
	Every IP transformation can be implemented by a two-variable SRL program
	Every two-variable SRL program implements an IP transformation
	Two-variable SRL programs implement exactly the IP transformations

	Comments and further study
	Further study: integer transformations hierarchies

	Partitions of Zn
	General concept
	Application to example 9

	Program composition
	Simulation results
	Simulation of recursive Boolean circuits
	Simulation by primitive recursive functions

	Equivalence and commutativity
	The equivalence problem
	Commutativity
	Equivalence and commutativity are the same problem

	Further formalization; normal forms
	In the language of group theory
	Order of a program
	Normal forms
	More equivalence transformations
	Introductory examples
	Transformation [P;for(…)] [for(…);P]
	When is ``forx(P)" equivalent to ``fory(Q)?

	Execution time
	SRL with register initialization
	y=ax+b
	y=x -5mumod5mu-2
	y=x-5mumod5mu-m for fixed m2
	y=(ax+b)-5mumod5mu-m for fixed m2
	y=x2+b
	Polynomials
	Sums and products of functions
	y=fib(2x)

	A machine that runs SRL programs
	Assembly language
	Assembly language: inverting the execution direction

	SRL implementations
	Representation of some of programs presented in this work
	Examples in Haskell
	Examples in Prolog
	Example 3, page 22
	Example 4, page 23
	Example 9, page 25

	Intermediate language interpreter (Haskell)
	Intermediate language interpreter (Prolog)
	Assembly language interpreter and examples (Haskell)
	Examples
	Haskell interpreter

	Assembly language interpreter (Prolog)
	Interpreter with inversion (Prolog)
	Program in ``sage'' that generated Figure 6 (page 43)

