

Creating a "Learning Health System" in Breast Imaging

Elizabeth Burnside, MD, MPH, MS

Departments: Radiology Population Health Biostatistics and Medical Informatics Industrial and Systems Engineering

Learning Health System?

- General Overview
 Motivation
- Methodological Considerations

 Algorithms & metrics to measure performance
- Projects
 - Improving mammographic predictions
 - Improving image-guided core biopsy

Motivation

- Information overload
 - Medical articles in pubmed-online
 - EHR information
 - Genetic risk factors
- Human decision making involves heuristics that may not scale up alone

Motivation

Information overload - Medical articles in pubmed-online - EHR information Genetic risk factors Human decision making involves heuristics that may not scale up alone We are not using this valuable resource

Motivation

Information overload

- Medical articles in pubmed-online
- EHR information
- Genetic risk factors

 Human decision making involves heuristics that may not scale up alone
 We are not using this valuable resource

The Gail Model

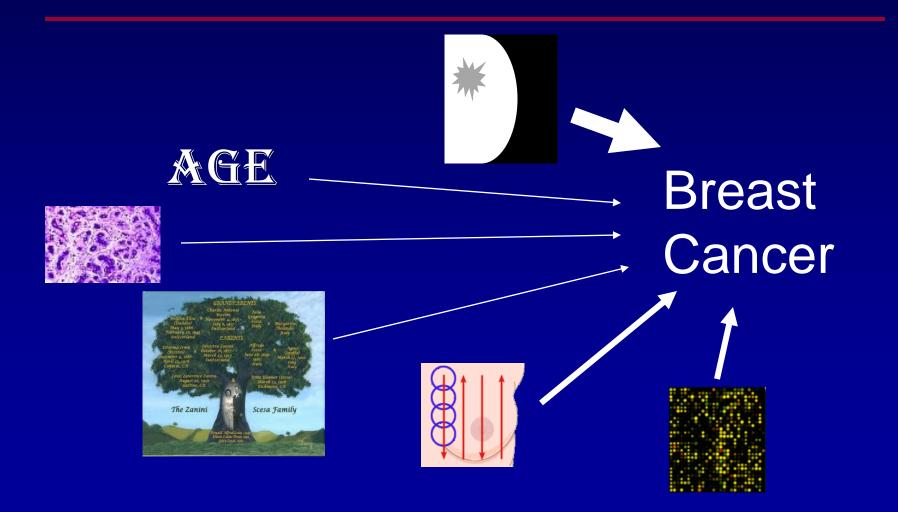
Risk Calculator	
(Click a question number for a brief explanation, or read all explanations.)	
 Does the woman have a medical history of any breast cancer or of <u>ductal carcinoma in situ</u> (DCIS) or <u>lobular carcinoma in</u> <u>situ</u> (LCIS)? 	No
 What is the woman's age? This tool only calculates risk for women 35 years of age or older. 	44 💌
 What was the woman's age at the time of her first <u>menstrual</u> <u>period</u>? 	12 to 13 💌
4. What was the woman's age at the time of her first live birth of a child?	> =30 💌
 How many of the woman's first-degree relatives - mother, sisters, daughters - have had breast cancer? 	1
<u>6</u> . Has the woman ever had a breast <u>biopsy</u> ?	No
<u>6a</u> . How many breast biopsies (positive or negative) has the woman had?	Select -
6b. Has the woman had at least one breast biopsy with atypical hyperplasia?	Select -
Z. What is the woman's race/ethnicity? White	•
·	Calculate Risk >

http://www.cancer.gov/bcrisktool/Default.aspx

- Uses data (BCDDP)
- Predicts Breast CA
 - Five year/lifetime risk

Low signal predictors

Predictive Information



Human Computer Interaction COMMUNICATION

Structured or Free Text Report

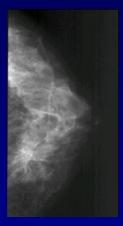
Risk Score/ Probability

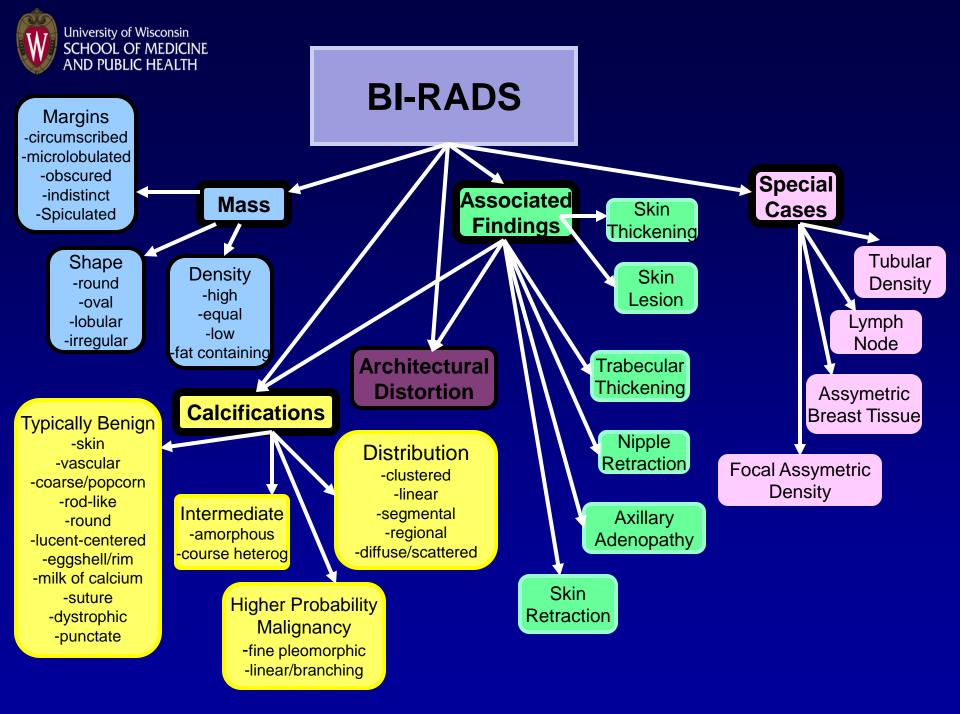
The Mammography Risk Prediction Project

Elizabeth Burnside, MD, MPH, MS C. David Page, PhD Jude Shavlik, PhD Charles Kahn, MD (MCW)

Background-Opportunity

- 200,000 breast cancer diagnosed in US
- 20 million mammograms per year
 - False positives
 - Millions of diagnostic mammograms/US
 - Hundreds of thousands biopsies
 - False negative
 - 10-30% of breast cancers not detected on mammography
- Variability of practice impacts many women
- Evidence-based decision support has the potential to drive substantial improvement



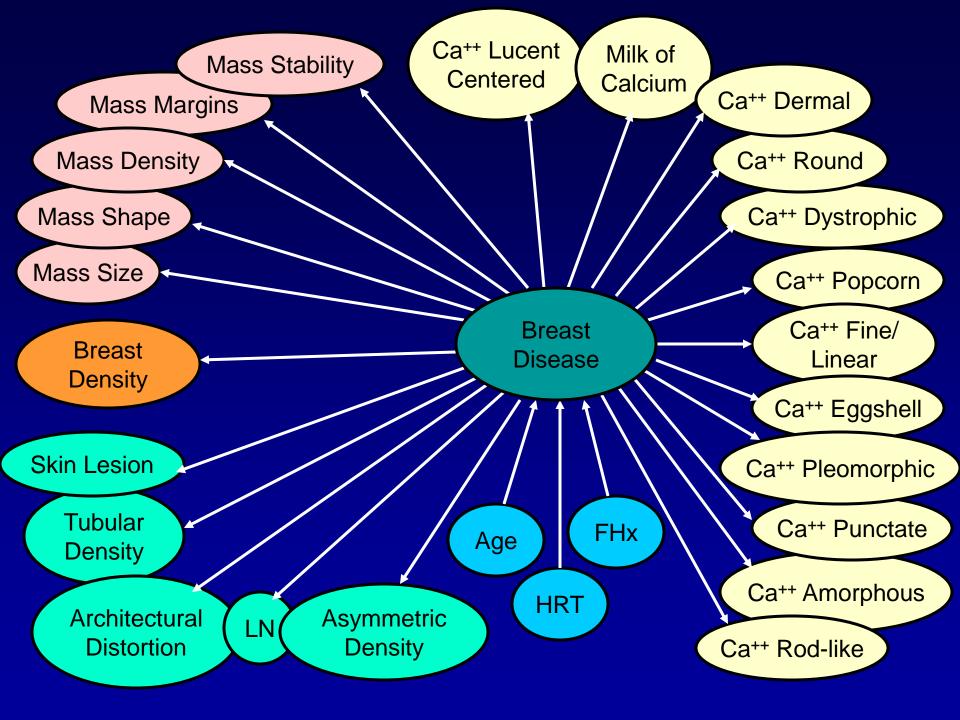


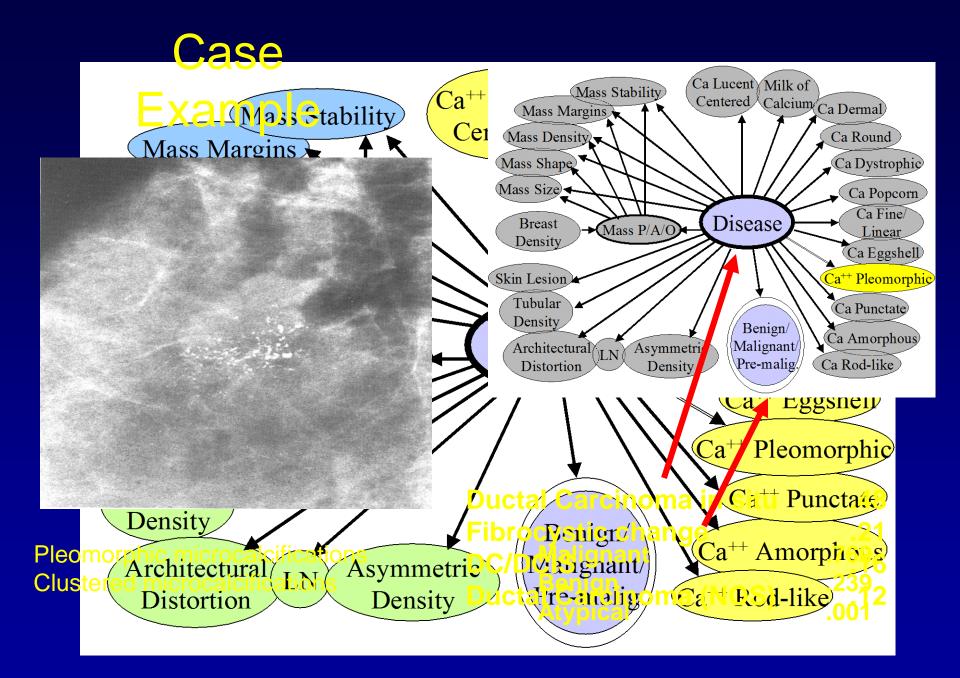
Breast Cancer Probability Based on BI-RADS Category

- **BI-RADS 0:**
- **Needs Additional Imaging**
- BI-RADS 1: Negative
- BI-RADS 2: Benign
- BI-RADS 3:
- BI-RADS 4:

BI-RADS 5:

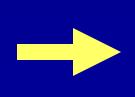
- Probably Benign
- Suspicious for malignancy
- Highly suggestive of malignancy



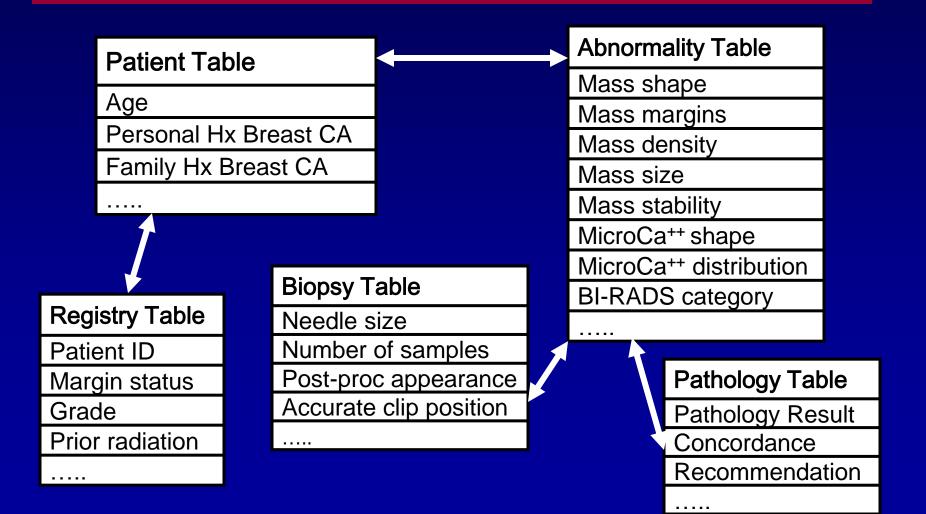


Training on Data

- Motivation
 - Accurate probabilities are critical
 - Some are not available in literature
 - Modeling the relevant patient population is possible with training



Idea: Data Driven Decisions



Our dataset contains

-350 malignancies
-65,630 benign abnormalities

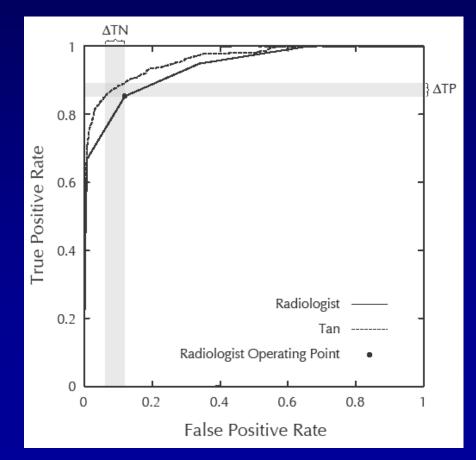
Linked to cancer registry data

Outcomes (benign/malignant)

Training the BN

- Standard Machine learning
 - Use known cases to train
 - Use the tuning set for optimal training
 - Performance based on hold out test set

Performance



AUC 0.960 vs. 0.939
 P < 0.002

```
    Sensitivity

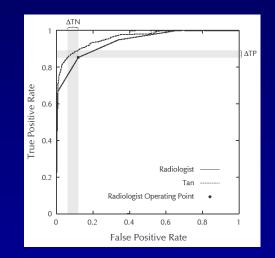
            90.0% vs. 85.3%
            P < 0.001</li>
```

Specificity

 93.9% vs. 88.1%
 P < 0.001

What does that mean?

- At a specificity of 90%
 38 conversions FN →TP
- At a sensitivity of 85%
 4226 conversions FP → TN

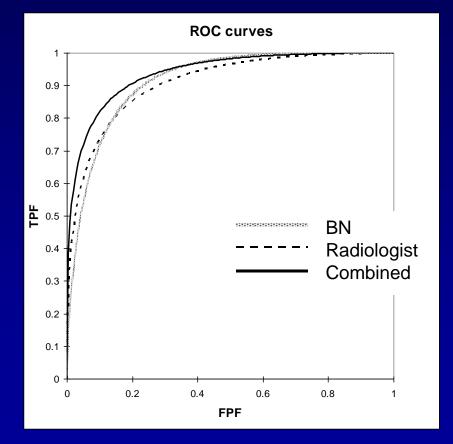


Ultimately Decision Support Aids the Physician

Output of the system is

- Advisory
- Utilized in the clinical context
- System performance alone is not the point
- Performance/Physician performance is the key to improvement of care

Collaborative Experiment

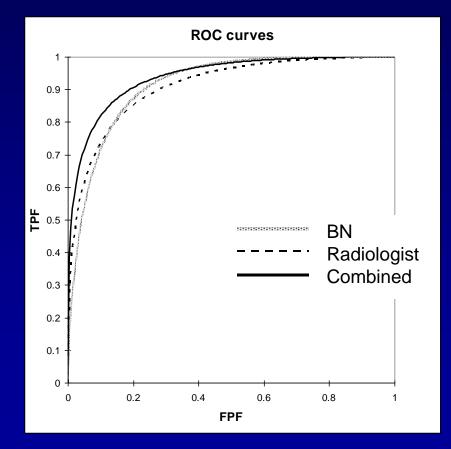


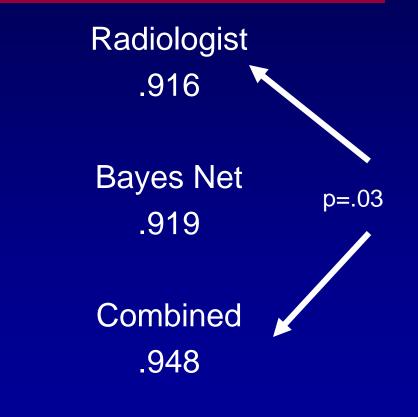
Radiologist .916

Bayes Net .919

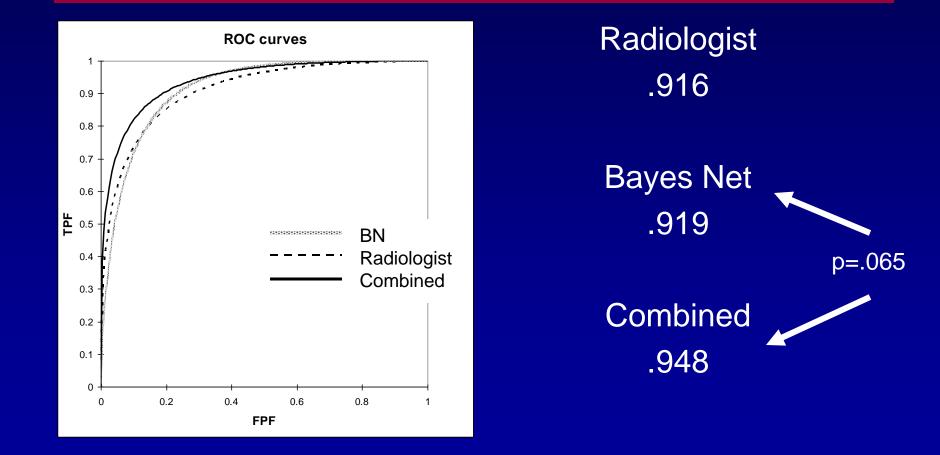
Combined .948

Results

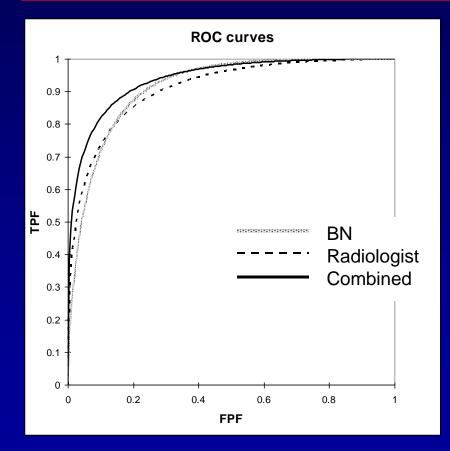


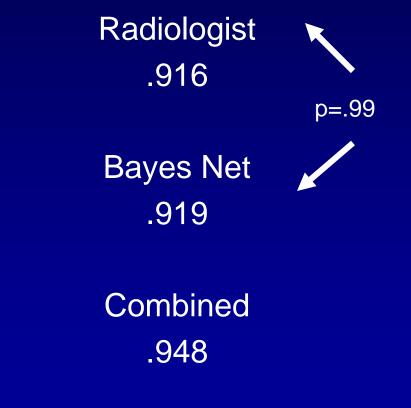


Results

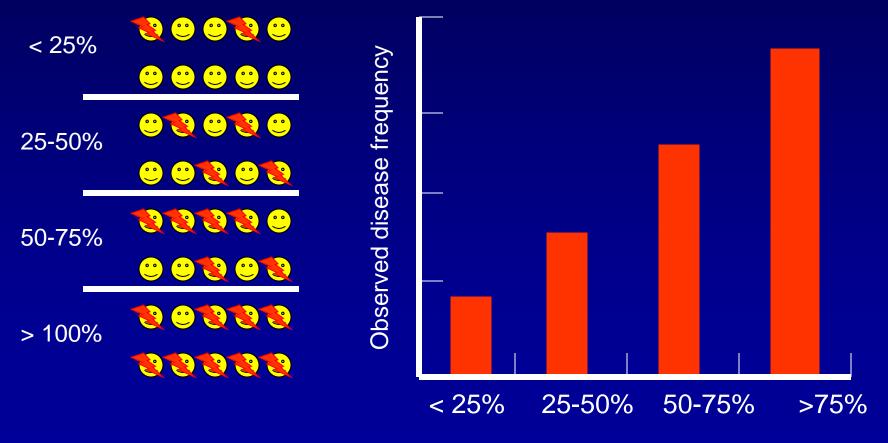


Results



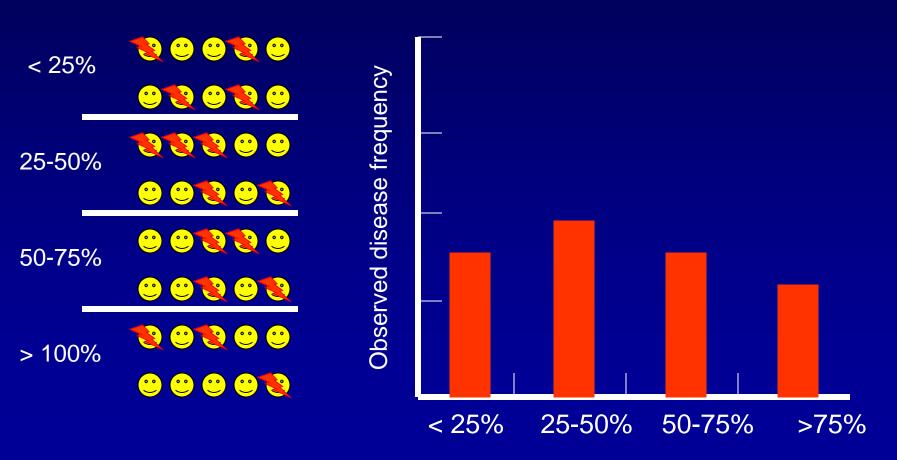


Calibration Curves



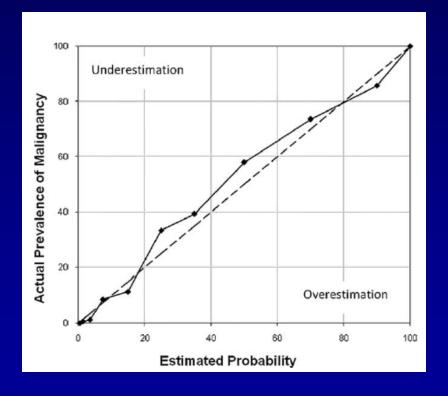
Predicted Risk

Calibration Curves



Predicted Risk

Calibration



 Hosemer-Lemishow goodness of fit

Ayer, T., et al., *Breast cancer risk estimation with artificial neural networks revisited: discrimination and calibration.* Cancer, 2010. **116**(14): p. 3310-21.

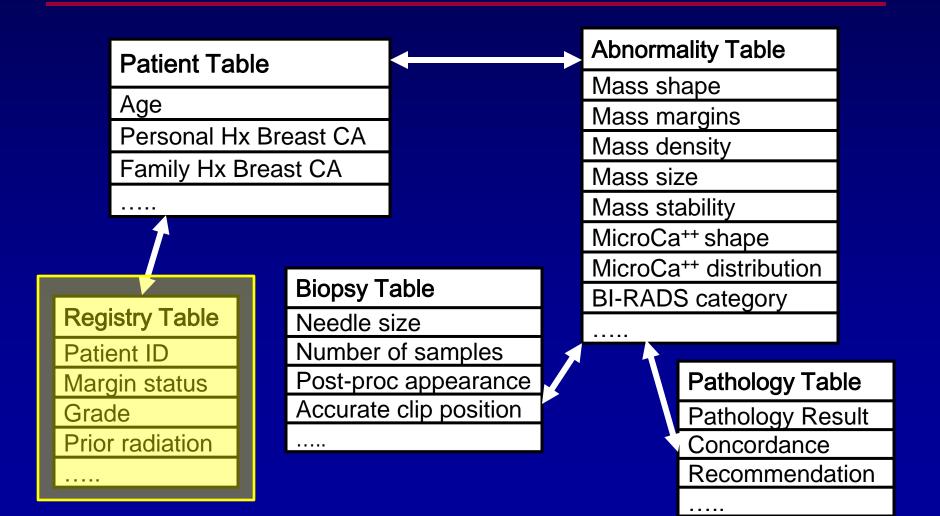
Creating a Learning Health System

- Capturing directly from the EHR
- Using it to inform future practice
- Can it be done?

UW Dataset

Date range: from Oct 1, 2005 to Mar 30, 2012 Number of patients: 30,024 Number of mammograms: 89,610 Number of screening mammograms: 69,484 Number of diagnostic mammograms: 20,126 Number of MRIs: ~ 3000 Number of US: ~10,000

What is the Key?



The Breast Biopsy Project

Elizabeth Burnside, MD, MPH, MS Heather Neuman, MD, MS Ines Dutra, PhD C. David Page, PhD Jude Shavlik, PhD

Abnormality A in Mammogram M for Biopsy B in Patient P

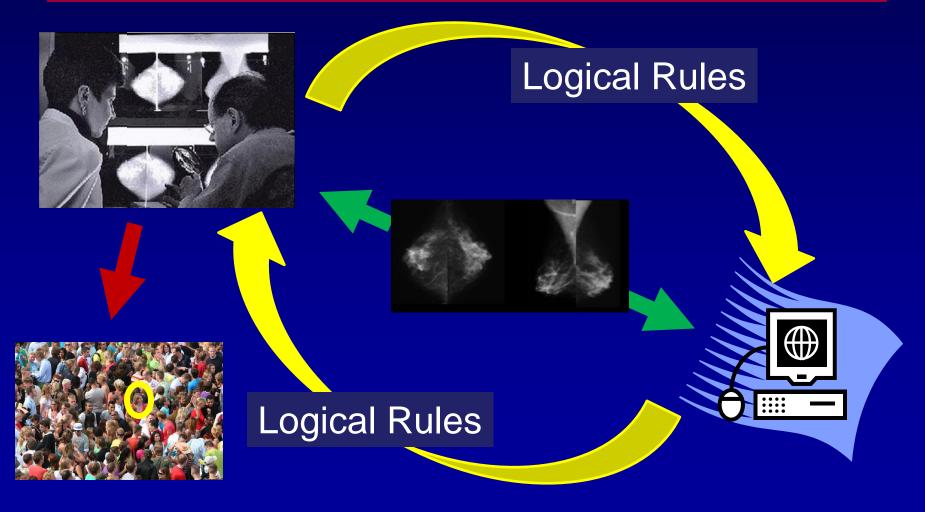
Is malignant if:

Malignant (A) IF A has mass present A has stability increasing P has family history of breast cancer B has atypia

How does it work?

- Learn if-then rules that will become features in a predictive model
 - Inductive logic programming (ILP) to learn the rules
 - Integrated search strategy for constructing and selecting rules for classification algorithm

Human Computer Interaction COMMUNICATION

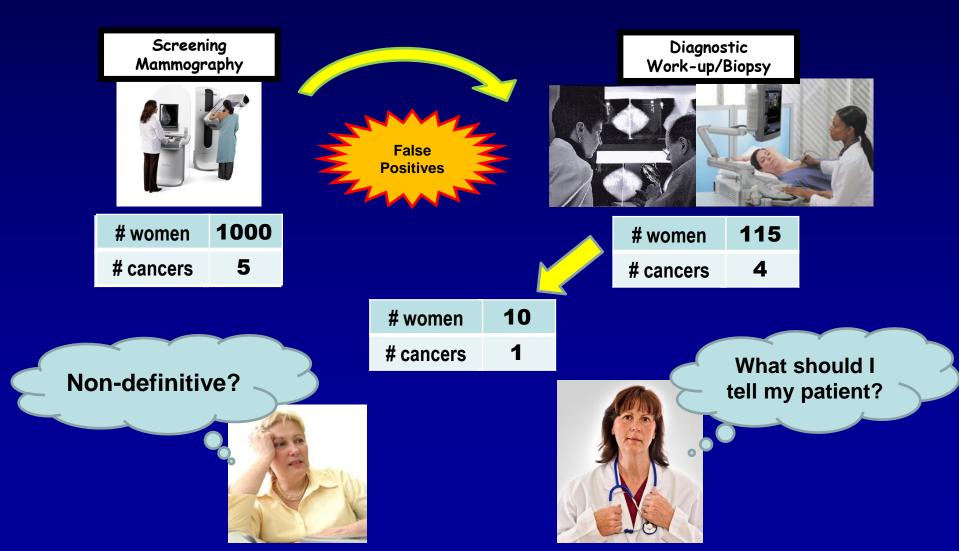


Breast Biopsy

 Biopsy: single most costly component of a breast cancer screening program

 Annual breast biopsy utilization in 2010 62.6/10,000 women ≻700,000 women ~35,000-105,000 non-definitive

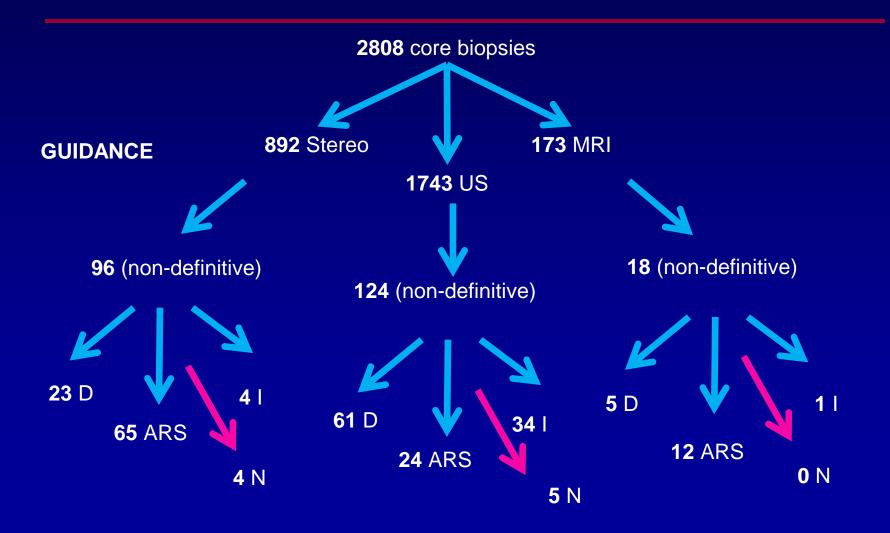
Non-Definitive Breast Biopsy



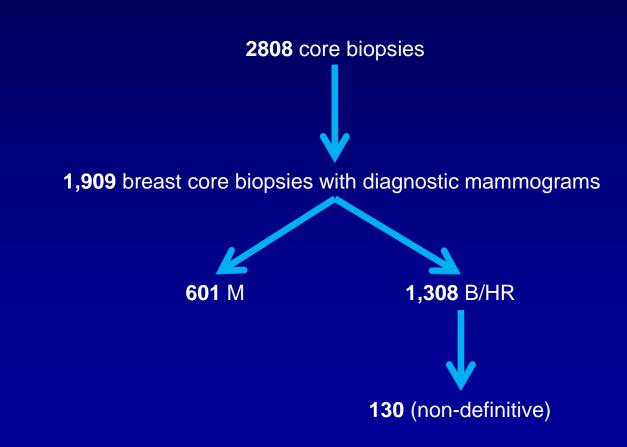
Breast Biopsy at UW

- 6 year experience at UW
 - 2808 consecutive image-guided core biopsies
 - 30% Malignant; 70% Benign
 - 238 were deemed non-definitive Excision
- Hypothesis: ILP rules from the data and from physicians could improve the accuracy of upgrade prediction

All biopsies (2006-2011)



Biopsies in Practice (2006-11)



Evaluate

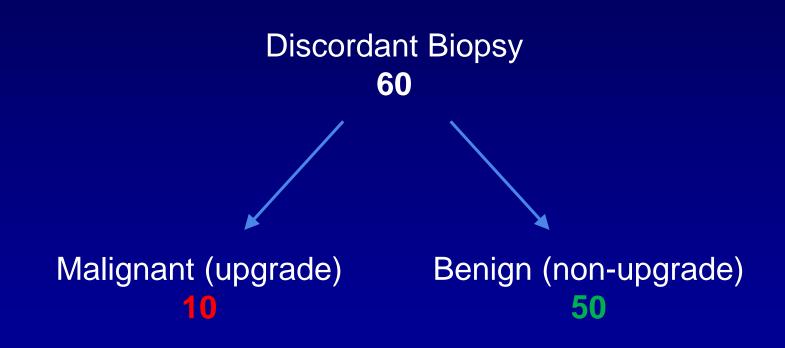


Evaluate Incorporate

Biopsy data

- Example rule:
- Upgrade (A) IF concordance (A, d), biopsyProcedure (A, US_core) and pathDx (A, benign_breast_tissue)
- Incorporate physician and machine rules into a Bayesian Network

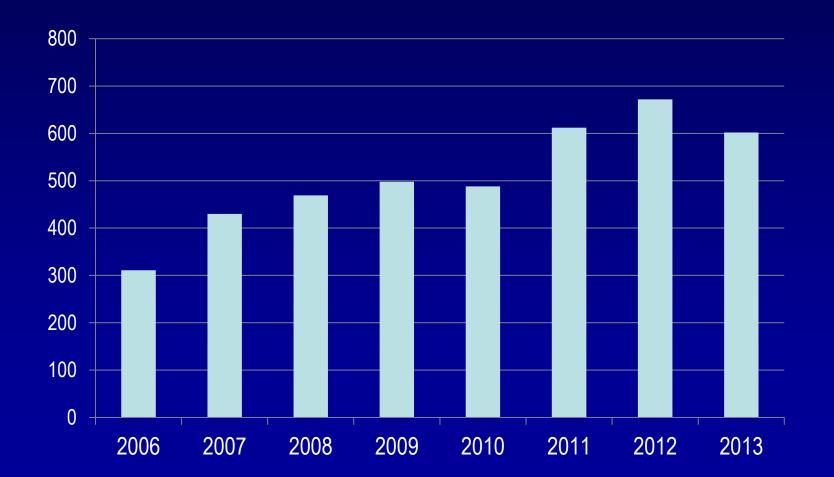
Discordant Biopsies (2006-11)



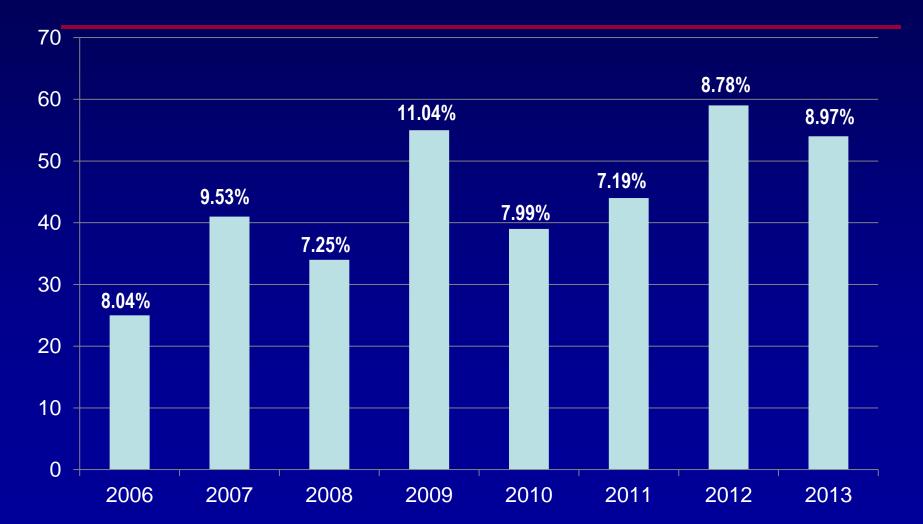
Results

	Data	Rules	Data + Rules
Malignant Excisions Missed (%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Benign Excisions Avoided (%)	5 (10.0%)	5 (10.0%)	12 (24.0%)

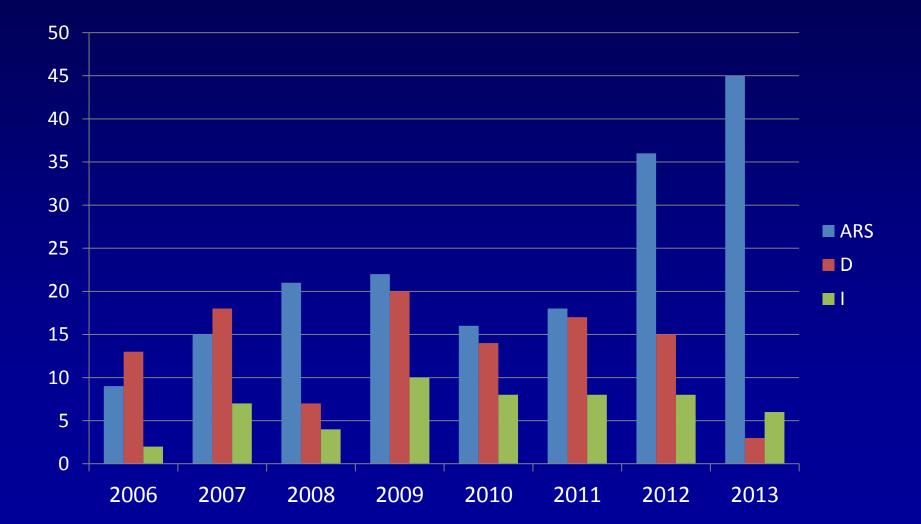
Total core biopsies



Total Non-Definitive



Subtype Trends



Why?

Discordant decreased

Relied more heavily on BI-RADS descriptors
Improved our practice

ARS increased

Digital mammography

ARS in Modern Mammography

- 142 consecutive cases (2004-2010)
 –ARS
 - Film
 - 52 (36.6%)
 - RATE = 0.37/1000
 - Digital
 - 90 (63.4%)
 - RATE = 1.24/1000

AJR Am J Roentgenol 2013;201(5):1148-54

Creating a Learning Health System

Non-definitive biopsy

 Discordant (maybe)
 ARS (not yet)

Creating a Learning Health System

Non-definitive biopsy

 Discordant (maybe)
 ARS (not yet)

History

Tools first conceived in: Leeds Abdominal Pain System went operational in 1971

System = 91.8% Physician = 79.6 %

Creating a Learning Health System

- Discordant can be tackled
 - In our practice we look to be successful
 - Remains to be generalized
- ARS emerges as more important

 Next goal to improve practice through decision support

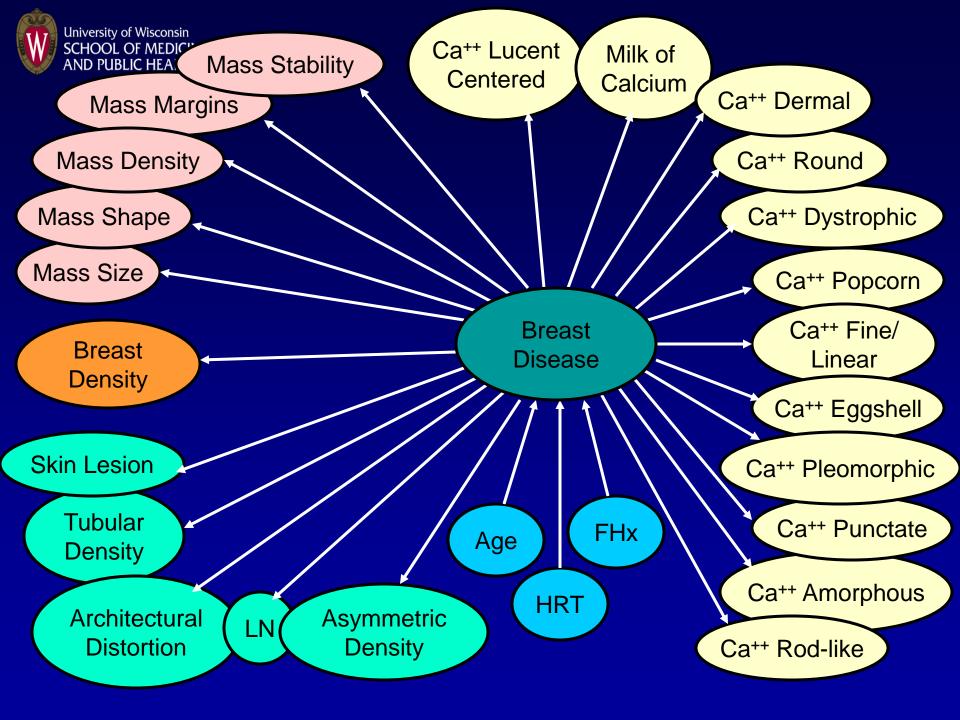
Learning Microsystem!

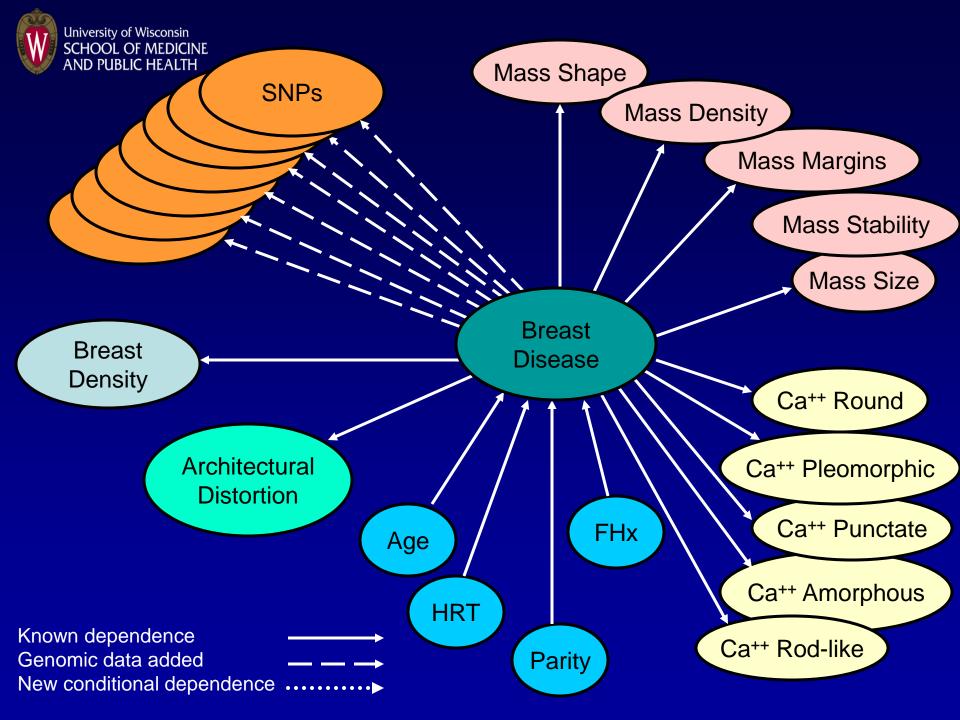
New goal...

Questions?

The Marshfield Project: Epidemiology/Breast Imaging/Genetics eBIG

Elizabeth Burnside, MD, MPH, MS C. David Page, PhD Cathy McCarty, PhD, MPH., RD Adedayo Onitilo, MD, MSCR Peggy Peissig, MBA





Specific Aim 1

- Establish a multi-relational dataset to improve the risk prediction accuracy of our Bayesian model
 - patient specific genomics data
 - mammography findings
 - clinical/demographic risk factors

Data Elements

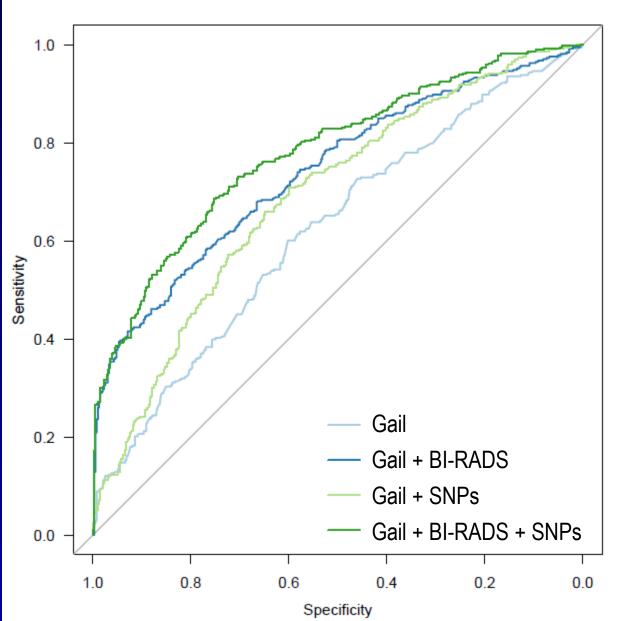
Epidemiologic data	Clinical Variables	Targeted SNPs
Gender	Mammography descriptors (current)	rs11249433
Age	Mammography BI-RADS categories (current)	rs4666451
Race/Ethnicity	Mammography descriptors (prior)	rs13387042
Family History	Mammography BI-RADS categories (prior)	rs4973768
Number of full-term pregnancies	Personal History of Breast Cancer/InSitu	rs10941679
Breast Feeding History	Pathologic diagnosis	rs981782
Menses <12 yrs	Stage	rs30099
Menopause >55 yrs	Grade	Rs889312
Exogenous hormone ever	Receptor status- (ER/PR-her2)	rs2180341
Smoking history ever > 1 year	Known Genetic Risk- BRCA1 / BRCA2	rs2046210
Alcohol use > 1 drink/day ever	Prior Chest Irradiation / DES exposure	rs13281615
Physical activity >3 hrs/week	Oral Contraceptive	rs2981582
	Prior Biopsy	rs3817198
	Body Mass index (BMI)	rs2107425
		rs999737
		rs3803662
		rs8051542
		rs6504950
		rs6476643
		rs2182317
		rs12443621
		rs1045485
		rs1982073

Study Design

- Retrospective case control design
- Cases
 - women mammo <12 months/biopsy/breast cancer
 422
- Controls
 - women mammo <12 months/biopsy/no breast cancer
 422
- Create an age match to the cases—5 year interval bins
- Calculate % or mammograms that are abnormal
- Collect
 - Demographic risk factors
 - Mammography features
 - SNPs from serum samples

Study Design-Training

- Model training
 - Build baseline prediction model
 - Develop rules for inclusion in model
 - 10-fold cross validation
- Post-test probabilities used for performance
 - Area under the ROC curve
 - Calibration



Specific Aim 2: Data Mining

Analyze conditional dependence relationships To discover novel hypotheses

- Study design
 - Identify conditional dependence relationships from structure of trained BN

