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Learning Health System? 

• General Overview 

– Motivation 

• Methodological Considerations 

– Algorithms & metrics to measure performance 

• Projects 

– Improving mammographic predictions 

– Improving image-guided core biopsy 



Motivation 

• Information overload 

– Medical articles in pubmed-online 

– EHR information 

– Genetic risk factors 

• Human decision making involves 

heuristics that may not scale up alone 
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The Gail Model 

• Uses data (BCDDP) 

• Predicts Breast CA 

– Five year/lifetime risk 

 

  Low signal 

predictors 
 

http://www.cancer.gov/bcrisktool/Default.aspx 



Predictive Information 

Breast 

Cancer 

Age 

http://tgmouse.compmed.ucdavis.edu/cmpath/jensen/slide25.jpg


Human Computer Interaction 

COMMUNICATION 

Structured or Free Text 

 Report 
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The Mammography Risk 

Prediction Project 
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Background-Opportunity 

• 200,000 breast cancer diagnosed in US 

• 20 million mammograms per year 
– False positives 

• Millions of diagnostic mammograms/US 

• Hundreds of thousands biopsies 

– False negative 
• 10-30% of breast cancers not detected on mammography 

• Variability of practice impacts many women 

• Evidence-based decision support has the 
potential to drive substantial improvement 
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Breast Cancer Probability Based  

on BI-RADS Category 

BI-RADS 0:     Needs Additional Imaging 

BI-RADS 1:     Negative 

BI-RADS 2:     Benign 

BI-RADS 3:     Probably Benign 

BI-RADS 4:     Suspicious for malignancy 

BI-RADS 5:     Highly suggestive of malignancy 
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Pleomorphic microcalcifications 

Clustered microcalcifications 

Case 

Example 

Ductal Carcinoma in situ     .48 

Fibrocystic change                .21 

DC/DCIS                                .16 

Ductal Carcinoma (NOS)          .12 

Malignant              .760 

Benign                    .239 

Atypical         .001 



Training on Data 

• Motivation 
– Accurate probabilities are critical 

– Some are not available in literature 

– Modeling the relevant patient population is 

possible with training 

Expert &  

Rule Based 

Machine 

Learning 



Abnormality Table 

Mass shape 

Mass margins 

Mass density 

Mass size 
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MicroCa++ distribution 
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….. 

Patient Table 

Age 

Personal Hx Breast CA 
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….. 

Pathology Table 

Pathology Result 
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….. 

Biopsy Table 

Needle size 

Number of samples  

Post-proc appearance 

Accurate clip position 

….. 

Registry Table 

Patient ID 

Margin status 

Grade 

Prior radiation 

….. 

Idea: Data Driven Decisions 



Data 

• Our dataset contains 

–350 malignancies 

–65,630 benign abnormalities 

• Linked to cancer registry data 

–Outcomes (benign/malignant) 



Training the BN 

• Standard Machine learning 

– Use known cases to train 

– Use the tuning set for optimal training 

– Performance based on hold out test set 
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• AUC 0.960 vs. 0.939 
– P < 0.002 

 

• Sensitivity  
– 90.0% vs. 85.3% 

– P < 0.001 

 

• Specificity  
– 93.9% vs. 88.1% 

– P < 0.001 

Performance 



What does that mean? 

• At a specificity of 90% 

38 conversions FN    TP 

• At a sensitivity of 85%  

4226 conversions FP    TN 



Ultimately Decision Support 

Aids the Physician 

• Output of the system is  

– Advisory 

– Utilized in the clinical context 

– System performance alone is not the point 

– Performance/Physician performance is the 

key to improvement of care 



Collaborative Experiment 
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Calibration Curves 
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Calibration 

Ayer, T., et al., Breast cancer risk estimation with artificial neural networks 

revisited: discrimination and calibration. Cancer, 2010. 116(14): p. 3310-21.  

• Hosemer-Lemishow 

goodness of fit 



Creating a Learning Health  

System 

• Capturing directly from the EHR 

• Using it to inform future practice 

• Can it be done? 



UW Dataset 

Date range: from Oct 1, 2005 to Mar 30, 2012 

Number of patients: 30,024 

Number of mammograms: 89,610  

  Number of screening mammograms: 69,484 

  Number of diagnostic mammograms: 20,126 

Number of MRIs: ~ 3000 

Number of US: ~10,000 

 

 

 



Abnormality Table 

Mass shape 
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What is the Key? 



The Breast Biopsy Project 

Elizabeth Burnside, MD, MPH, MS 
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ILP 

Abnormality A in 

Mammogram M for    Is malignant if: 

Biopsy B in 

Patient P 

 

Malignant (A) IF 

  A has mass present 

  A has stability increasing 

  P has family history of breast cancer 

  B has atypia 

 



How does it work? 

• Learn if-then rules that will become 

features in a predictive model 

– Inductive logic programming (ILP)  

to learn the rules 

– Integrated search strategy for constructing 

and selecting rules for classifcation algorithm 



Human Computer Interaction 

COMMUNICATION 

Logical Rules 

Logical Rules 



Breast Biopsy 

• Biopsy: single most costly component of a 

breast cancer screening program 

 

• Annual breast biopsy utilization in 2010 

62.6/10,000 women 

700,000 women 

~35,000-105,000 non-definitive 



Non-Definitive Breast Biopsy 

 

 

What should I 

tell my patient? Non-definitive? 

Screening 
Mammography 

Diagnostic 
Work-up/Biopsy 
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5 

# women 

# cancers 

1000 
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False 
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Breast Biopsy at UW 

• 6 year experience at UW 

– 2808 consecutive image-guided core biopsies 

• 30% Malignant; 70% Benign 

• 238 were deemed non-definitive 

 

• Hypothesis: ILP rules from the data and 

from physicians could improve the 

accuracy of upgrade prediction 

Excision 



All biopsies (2006-2011) 

2808 core biopsies 

892 Stereo 

1743 US 

173 MRI GUIDANCE 

96 (non-definitive) 
124 (non-definitive) 

18 (non-definitive) 

23 D 

65 ARS 

4 I 
61 D 

24 ARS 

34 I 
5 D 

12 ARS 

1 I 

4 N 
5 N 

0 N 



Biopsies in Practice (2006-11) 

1,909 breast core biopsies with diagnostic mammograms 

601 M 1,308 B/HR 

130 (non-definitive) 

2808 core biopsies 



Physician rules 

Machine rules 

Evaluate 

Incorporate 

Evaluate 

Incorporate 

 



Biopsy data 

• Example rule: 
 

Upgrade (A) IF 

  concordance (A, d), 

  biopsyProcedure (A, US_core) and 

  pathDx (A, benign_breast_tissue) 
 

• Incorporate physician and machine rules 

into a Bayesian Network 



Discordant Biopsies (2006-11) 

Discordant Biopsy 

60 

Malignant (upgrade) 

10 

Benign (non-upgrade) 

50 



Results 

Data Rules Data + Rules 

Malignant Excisions 
Missed (%) 

0 (0.0%) 0 (0.0%) 0 (0.0%) 

Benign Excisions 
Avoided (%) 

5 (10.0%) 5 (10.0%) 12 (24.0%) 



Total core biopsies 

0

100

200

300

400

500

600

700

800

2006 2007 2008 2009 2010 2011 2012 2013



Total Non-Definitive 
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Subtype Trends 
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Why? 

• Discordant decreased 

– Relied more heavily on BI-RADS descriptors 

– Improved our practice 

• ARS increased 

– Digital mammography 



ARS in Modern Mammography 

• 142 consecutive cases (2004-2010) 

– ARS 
• Film 

– 52 (36.6%)  

– RATE = 0.37/1000 

• Digital 

– 90 (63.4%)  

– RATE = 1.24/1000  

AJR Am J Roentgenol 2013;201(5):1148-54 
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History 

• Tools first conceived in: 

– Leeds Abdominal Pain System went 

operational in 1971  
System = 91.8%  

Physician = 79.6 % 



Creating a Learning Health  

System 

• Discordant can be tackled 

– In our practice we look to be successful 

– Remains to be generalized 

• ARS emerges as more important 

– Next goal to improve practice through 

decision support 



Learning Microsystem! 

New goal… 



Questions? 



The Marshfield Project: 
Epidemiology/Breast Imaging/Genetics 

eBIG 

Elizabeth Burnside, MD, MPH, MS 

C. David Page, PhD 

Cathy McCarty, PhD, MPH., RD  

Adedayo Onitilo, MD, MSCR 

Peggy Peissig, MBA  
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Specific Aim 1 

• Establish a multi-relational dataset to 

improve the risk prediction accuracy of 

our Bayesian model 

– patient specific genomics data 

– mammography findings 

– clinical/demographic risk factors 



Data Elements 

Epidemiologic data Clinical Variables Targeted SNPs  

Gender Mammography descriptors (current) rs11249433 

Age Mammography BI-RADS categories (current) rs4666451 

Race/Ethnicity Mammography descriptors (prior) rs13387042 

Family History Mammography BI-RADS categories (prior) rs4973768 

Number of full-term pregnancies Personal History of Breast Cancer/InSitu rs10941679 

Breast Feeding History Pathologic diagnosis rs981782 

Menses <12 yrs Stage rs30099 

Menopause >55 yrs Grade Rs889312 

Exogenous hormone ever  Receptor status- (ER/PR-her2)  rs2180341 

Smoking history ever > 1 year Known Genetic Risk- BRCA1 / BRCA2 rs2046210 

Alcohol use > 1 drink/day ever Prior Chest Irradiation / DES exposure  rs13281615 

Physical activity >3 hrs/week Oral Contraceptive rs2981582 

Prior Biopsy rs3817198 

Body Mass index (BMI) rs2107425 

rs999737 

rs3803662 

rs8051542 

rs6504950 

rs6476643 

rs2182317 

rs12443621 

rs1045485 

rs1982073 



Study Design 

•  Retrospective case control design  

• Cases 

– women mammo <12 months/biopsy/breast cancer  422 

• Controls 

– women mammo <12 months/biopsy/no breast cancer 422 

• Create an age match to the cases—5 year interval bins 

• Calculate % or mammograms that are abnormal  

• Collect  

• Demographic risk factors 

• Mammography features 

• SNPs from serum samples 

 



Study Design-Training 

•  Model training  

– Build baseline prediction model 

– Develop rules for inclusion in model 

– 10-fold cross validation 

• Post-test probabilities used for performance  

– Area under the ROC curve 

– Calibration  

 

 



Results 

Gail 

Gail + BI-RADS 

Gail + SNPs 

Gail + BI-RADS + SNPs 



Specific Aim 2: Data Mining 

Analyze conditional dependence relationships 

To discover novel hypotheses 

 

• Study design 

– Identify conditional dependence 

relationships from structure of trained BN 
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