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Breast Research Group

Screening and Diagnosis

Surgery Planning 
(before surgery)

Surgery evaluation 
(after surgery)
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PICTURE Project

Patient Information Combined for the Assessment of Specific Surgical 

Outcomes in Breast Cancer
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Surgery Planning (before surgery)

The Clinical Need

• When a woman faces a breast cancer 
diagnosis, and surgery is proposed, there are 
several options available.

• The cosmetic outcome of surgery is a function 
of many factors including tumour size and 
location, the volume of the breast, its density, 
and the dose and distribution of radiotherapy. 
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Surgery Planning
3-D simulation of breast surgery facilitates 
presurgical planning

• Facilitates informed patient-physician 
discussion of strategies so together they can:

– Carefully consider the surgery

– Plan to use the most appropriate pain relief 
techniques

– Etc.
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Surgery Planning
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Surgery Planning
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• The Challenge: data integration



Surgery Planning
• 3D Reconstruction from Kinect RGB-D images
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Surgery Planning
• 3D Reconstruction from Kinect RGB-D images

Kinect Data 3D Scanner Data
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Surgery Planning
• 3D Reconstruction from Kinect RGB-D images

Colour inconsistency correction

Colour correction using 2D 
HD imageRGB – Kinect

RGB – 2D HD

PC before correction

PC after correction
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Surgery Planning

Parametric Breast Model Fitting
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Surgery Planning
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Breast Research Group

Screening and Diagnosis

Surgery Planning 
(before surgery)

Surgery evaluation 
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Surgery evaluation (after surgery)

The Clinical Need

In breast-conserving surgery, there is evidence that 
approximately 30% of women receive a suboptimal or poor 
aesthetic outcome; however there is currently no 
standardised method of identifying these women.
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Prediction

Training 
Labels

Training 

Images

Model 
Design

Training

Image 
Features

Image 
Features

Testing

Test Image

Learned 
model

Learned 
model

Surgery evaluation (after surgery)
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Assessment of Contributing Factors to the cosmetic outcome

Using a Delphi methodology, a 
consensus overall evaluation was 
made by the clinical partners. This 
provided a set of patients with a 
reference to reproduce through 
objective features.
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Image 
Features
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Images
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Objective criteria in 2D and 3D images

– Define quantities (‘features’ or ‘attributes’) in the image ‘correlated’ with the 
factors identified by the panel of experts

• 2D and 3D features

– Automate the measurement

• Automatic detection of fiducial points
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2D Features

• 14 asymmetry features
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2D Features

• 8 colour features
Measure the dissimilarity
between the colour of the
two breasts

– Compute the histogram of
colours for each breast

– Compare histograms
• EMD (earth movers distance)

• Chi-square
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2D Features

• 8 scar features
Scar visibility as a 

local (colour) change

Breast divided in 

sectors

– Corresponding sectors 

are compared
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BCCT.core Software
• Software
• http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_BCCT.core
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From 2D to 3D
Automate the measurement

– Automatic detection of fiducial points
• Extension of techniques previously developed for 2D to 3D data 

• Automatic detection of the 
– Breast contour 

– Nipples

– Incisura Jugularis
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From 2D to 3D

Automate the measurement

– Automatic detection of fiducial points
• Extension of techniques previously developed for 2D to 3D data 

• Automatic detection of the 
– Breast contour 

– Nipples

– Incisura Jugularis
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From 2D to 3D

– Define quantities (‘features’ or ‘attributes’) in the image ‘correlated’ with the 
factors identified by the panel of experts (2D and 3D features)

– Volume Computation
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Training 

Images

Image 
Features

Training 
Labels

Learned 
model

Automatic Assessment of Aesthetic Criteria in 2D and 3D

– Research Machine Learning methods specifically adapted to the 
problem of predicting ordinal classes. 
• Excellent, good, fair, poor

– Research Machine Learning methods with high interpretability
• Facilitate understanding the connection between the causes and the 

effects

Model 
Design

26



Asymmetry

C
o

lo
r 

d
if

fe
re

n
c
e

Automatic Assessment of Aesthetic Criteria in 2D and 3D

– Scorecards

– Adaboost
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◦ Scorecards

Automatic Assessment of Aesthetic Criteria in 2D and 3D

28



◦ Scorecards

Automatic Assessment of Aesthetic Criteria in 2D and 3D

Scar Visibility Index Nipple Retraction Shape Consistency Color Asymmetry Index

B Range Points  B Range Points B Value Points  B Range Points   

1 [0; 1[ 1 1 ]0,0.5] 5 1 [0,1] 20 1 [0,0.05] 1  

2 [1; 2.5[ 3 2 ]0.5,0.75] 6 2 ]1,3] 8 2 ]0.05,0.1] 5  

3 [2.5; 5.5[ 5 3 ]0.75,1] 8 3 ]3,4] 5 3 ]0.1,0.2] 10  

4 > 5.5 7 4 ]1,1.5] 10 4 > 4 1 4 ]0.2,0.3] 15  

5 ]1.5,2] 15 5 ]0.3,0.5] 20  

6 > 2 35 6 ]0.5,0.8] 40  

7 ]0.8,1] 100  
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◦ Scorecards
• Several alternatives exist to compute both the discretization 

scheme and the weighting factors which can or cannot include 
expert domain knowledge. 

• Generalization from Binary to Ordinal Data Settings

Automatic Assessment of Aesthetic Criteria in 2D and 3D

Scar Visibility Index Nipple Retraction Shape Consistency Color Asymmetry Index

B Range Points  B Range Points B Value Points  B Range Points   

1 [0; 1[ 1 1 ]0,0.5] 5 1 [0,1] 20 1 [0,0.05] 1  

2 [1; 2.5[ 3 2 ]0.5,0.75] 6 2 ]1,3] 8 2 ]0.05,0.1] 5  

3 [2.5; 5.5[ 5 3 ]0.75,1] 8 3 ]3,4] 5 3 ]0.1,0.2] 10  

4 > 5.5 7 4 ]1,1.5] 10 4 > 4 1 4 ]0.2,0.3] 15  

5 ]1.5,2] 15 5 ]0.3,0.5] 20  

6 > 2 35 6 ]0.5,0.8] 40  

7 ]0.8,1] 100  
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◦ Scorecards::Weighting Strategies

• Weight of Evidence coding; 1-out-of-K coding; Differential-coding

◦ Scorecards::Ordinal Data

• Integrated a ordinal data classifier (based on a single binary classifier 
reduction technique)

Automatic Assessment of Aesthetic 
Criteria in 2D and 3D

Scorecard oLDA Conventional

AdaBoostDatasets oRLS oSVM 

BALANCE 0.06 0.00 0.05 0.23  

ERA 1.26 1.30 1.28 1.48  

ESL 0.34 0.35 0.33 0.62  

LEV 0.40 0.42 0.44 0.60  

SWD 0.46 0.44 0.47 0.53  

BCCT 0.55 0.53 0.64 0.38  

Scorecards vs. oLDA and AdaBoost: Mean 

Absolute Error

Differential Scorecards for Binary and 

Ordinal data (Pedro F. B. Silva, Jaime S. 

Cardoso), 

In Intelligent Data Analysis, 2015 (to 

appear)
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Automatic Assessment of Aesthetic Criteria in 2D and 3D

oAdaboost - AdaBoost variant for Ordinal Data 
Classification

• Adaboost
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Automatic Assessment of Aesthetic Criteria in 2D and 3D

oAdaboost - AdaBoost variant for Ordinal Data 
Classification

• Extension of the (binary) Adaboost for Ordinal 
Data Classification

– Grows several Adaboosts simultaneously to solve 
the multiclass (ordinal) data problem;

– Order is imposed during the boosting process, 
allowing us to attain a better ensemble. 
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Automatic Assessment of Aesthetic Criteria in 2D and 3D

oAdaboost

oAdaBoost: An AdaBoost variant for Ordinal 
Classification 
(Joao Costa, Jaime S. Cardoso), 
In Proceedings of the International 
Conference on Pattern Recognition 
Applications and Methods (ICPRAM), 2015
Best Student Paper Award

(a) Percentage of incorrect classifications: mean (standard deviation)

Dataset oADABOOST ADABOOST.M1 ADABOOST.M1W ADABOOST.OR  

Circle 6.87(2.61) 39.58(3.07) • 55.03(1.28) • 16.16(3.79) •

Non-mon. 66.30(3.14) 69.99(2.38) • 60.97(4.97) ∘ 76.26(1.79) •

ERA 75.09(3.87) 78.19(2.32) 77.94(3.50) 78.10(2.31)

ESL 33.02(6.08) 56.97(2.89) • 46.77(6.05) • 44.86(5.48) •

LEV 37.63(4.44) 57.60(2.85) • 42.14(4.72) • 50.34(4.19) •

SWD 43.09(5.01) 48.20(3.90) • 48.26(5.13) • 48.20(3.90) •

Balance 2.57(2.14) 28.23(4.24) • 8.29(2.40) • 16.78(7.99) •

BCCT 12.80(2.76) 37.01(2.81) • 37.82(5.04) • 31.94(3.01) •

(b) Mean Absolute Error: mean (standard deviation)

Dataset oADABOOST ADABOOST.M1 ADABOOST.M1W ADABOOST.OR  

Circle 0.07(0.03) 0.44(0.03) • 0.55(0.01) • 0.16(0.04) •

Non-Mon. 0.99(0.07) 1.30(0.08) • 1.19(0.14) • 1.03(0.04)

ERA 1.24(0.10) 1.43(0.07) • 1.44(0.12) • 1.43(0.07) •

ESL 0.35(0.07) 0.73(0.06) • 0.56(0.08) • 0.51(0.07) •

LEV 0.41(0.05) 0.71(0.03) • 0.46(0.06) • 0.57(0.05) •

SWD 0.45(0.05) 0.50(0.04) • 0.54(0.06) • 0.50(0.04) •

Balance 0.03(0.02) 0.49(0.09) • 0.08(0.02) • 0.18(0.09) •

BCCT 0.13(0.03) 0.38(0.03) • 0.40(0.07) • 0.33(0.03) •

∘,• statistically significant improvement or degradation. 
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• Thank you!
• Questions?

Contact: Jaime S. Cardoso 
jaime.cardoso@inesctec.pt
http://www.inescporto.pt/~jsc/

INESC TEC
Campus da FEUP, Rua Dr. Roberto Frias
4200-465 Porto, Portugal

http://medicalresearch.inescporto.pt/

http://vcmi.inescporto.pt/

Breast Research Group

35

mailto:jaime.cardoso@inesctec.pt
http://www.inescporto.pt/~jsc/
http://medicalresearch.inescporto.pt/
http://vcmi.inescporto.pt/

