Probabilistic Inductive Logic Programming

Joana Côrte-Real jcr@dcc.fc.up.pt

CRACS & INESC TEC Faculty of Sciences University of Porto

2nd Breast Cancer Workshop 7th April 2015

(日) (同) (三) (三)

3

1/21

Overview

- 2 Probabilistic ILP
- ILP applied to Breast Cancer

Section 1

Introduction

< □ > < □ > < □ > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > ○ Q (~ 3/21

Inductive vs Deductive Reasoning

Deductive Reasoning derives new rules or facts from a pre-defined set of rules (and other background knowledge). Inductive Reasoning can learn a rule from examples and a set of facts which describe the example (or background knowledge)

Rock-paper-scissors

Rule	beats(Round, PlayerA, PlayerB) : plays(Round, PlayerA, rock), plays(Round, PlayerB, scissors).	
Facts (BK)	plays (1, ines , rock). plays (1, joana , scissors).	
Example	beats (1, ines, joana).	

Deduction in Rock-paper-scissors

Rule	<pre>beats(Round, PlayerA, PlayerB) :- plays(Round, PlayerA, rock), plays(Round, PlayerB, scissors).</pre>	
+		
Facts (BK)	BK) plays(1,ines,rock). plays(1,joana,scissors).	
=		
Example	beats(1,ines,joana).	

Induction in Rock-paper-scissors

Rule	<pre>beats(Round, PlayerA, PlayerB) :- plays(Round, PlayerA, rock), plays(Round, PlayerB, scissors).</pre>	
=		
Facts (BK)	<pre>http://docs.com/plays(1,ines,rock). plays(1,joana,scissors).</pre>	
+		
Example	beats(1,ines,joana).	

Main characteristics of ILP

Inductive Logic Programming

- induces rules which explain examples and BK
- based on Logic Programming (Prolog)
- machine learning technique
- can be used for prediction and/or description
- also used to interface with experts of other areas of knowledge

Section 2

Probabilistic ILP

Probabilistic Inductive Logic Programming (PILP)

- was introduced by De Raedt and Kersting in 2004.
- is an extension of ILP which can deal with uncertainty.
- BK and examples can be annotated with probabilities.

Motivation

- better models many fields of knowledge produce data with an inherent uncertainty
 - dataset size using probabilities to describe data can greatly reduce the dataset size and useful information can still be extracted
- unknown values in cases where the full data is not known, information can still be used efficiently in the computation of a rule, for instance, by adding values from the literature
 - privacy compressing data this way can be used to protect private sensitive data

Semantics of Probability

Probabilities can be interpreted as

- statistics statistical data such as frequencies, marginal distributions, ...
- confidence or the degree of belief in a statement. This can be used to interface with human experts.
- adaptation from a different type of data such as a numerical attribute.

PILP in Rock-paper-scissors

R	beats(Round, PlayerA, PlayerB) : plays(Round, PlayerA, rock), plays(Round, PlayerB, scissors).		
=			
вк	plays (1, ines , rock). plays (1, joana , scissors).	0.7:: plays(ines,rock); 0.3:: plays(ines,scissors). 0.5:: plays(joana,rock); 0.5:: plays(joana,scissors).	
+			
E	beats(1,ines,joana).	0.35::beats(ines,joana).	

SkILL - a stochastic inductive logic learner

SkILL is a (our) PILP engine. It

- takes as input probabilistic BK and examples and can generate several rules.
- addresses efficiency issues by taking advantage of a probabilistic search space.
- has been used to analyze medical data, among other datasets.

SkILL - results for metabolism

SkILL was applied to a metabolism dataset adapted from ILP and these are the results:

	Search Strategies		
	(RMSE, σ)	(PAcc, σ)	
SkILL	(0.616, 0.063)	(0.661, 0.045)	
SkILL+pruning	(0.581, 0.099)	(0.663, 0.045)	
Aleph	(0.656, 0.047)		

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

13/21

Section 3

PILP applied to Breast Cancer

4回 > 4回 > 4 目 > 4目 > 目 の Q (* 14/21)

ILP applied to breast cancer data

This rule shows that a breast cancer case is malignant IF:

- A is classified as BI-RADS 5 and had a mass present in a patient who was between the ages of 65 and 70 and had two prior mammograms (B, C)
- prior mammogram (B) had no mass shape described and no punctate calcifications
- prior mammogram (C) was classified as BI-RADS 3

```
is_malignant(A):-
    'BIRADS_category'(A, b5),
    'MassPAO'(A, present),
    'Age'(A, age6570),
    previous_finding(A,B),
    'MassesShape'(B, none),
    'Calc_Punctate'(B,
        notPresent),
    previous_finding(A,C),
    'BIRADS_category'(C, b3).
```

PILP and non-definitive biopsies

Non-definitive biopsies:

- are biopsies whose result is not definitive meaning that they are not obviously malignant or benign.
- represent 5% to 15% of all biopsies.
- only a small fraction of non-definite biopsies (10-20%) have in fact a malignant finding confirmed after the procedure.
- cause 35,000 to 105,000 patients to undergo excision in the US.

Preliminary work

- explore medical data about non-definite biopsies
- add medical literature values to the BK representing statistical knowledge - such as the probability that a tumour is malignant given that its margin is spiculated in 90%.
- use experts confidence in malignancy as a class variable so as to analyze their mental models.

Section 4

Conclusion

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summing up

Advantages of PILP:

- uses a language which is easy to interpret for experts from other areas of knowledge
- very concise classifiers
- great representative capacity: can represent relations and uncertainty

イロト 不得下 イヨト イヨト 二日

19/21

BUT:

- presents efficiency issues
- data may not be easy to adapt

Future work

- gather more/better literature values for BK
- use experts' confidence as a feature to build a classifier
- consider other ways to annotate data with probabilities (such as the degree of malignancy)

Thank you

Joana Côrte-Real