Predicting Malignancy from Mammography Findings and Image Guided Core Biopsies

2nd Breast Cancer Workshop 2015 – April 7th 2015 Porto, Portugal

Pedro Ferreira

Nuno A. Fonseca Inês Dutra Ryan Woods Elizabeth Burnside

JPORT(

Outline

- Breast Cancer
- Objectives
- Dataset
- Methodology
- Results and Analysis
- *MammoClass* (online tool)
- Conclusions

Breast Cancer

• USA:

- About 1 in 8 women (≈ 12%) will develop invasive breast cancer during lifetime
- In 2014:
 - 232.670 invasive cancers
 - 40.000 (≈ 17%) expected to die

Source: U. S. Breast Cancer Stats. – accessed April 2015

• Portugal:

- About 1 in 11 women (≈ 9%) will develop invasive breast cancer during lifetime
- Per year:
 - 5600 new cases
 - 1500 deaths (27%)

Source: *Laço Association* – accessed April 2015

Breast Screening Programs

• Reduction of death rate in 30%

• Mammography:

The cheapest and most eficient method to detect cancer in a preclinical stage

Mamography - BI-RADS® Descriptors

Outline

Breast Cancer

• Objectives

- Dataset
- Methodology
- Results and Analysis
- *MammoClass* (online tool)
- Conclusions

• in P. Ferreira, et al., "**Studying the relevance of Breast Imaging Features**", in Proc. International Conference on Health Informatics (HEALTHINF), 2011.

 Build classifiers capable of predicting mass density and malignancy from a reduced set of mammography findings

Reduce the number of unnecessary biopsies

Outline

- Breast Cancer
- Objectives
- Dataset
- Methodology
- Results and Analysis
- *MammoClass* (online tool)
- Conclusions

Dataset

• Source:

- 348 cases
- Each case refers to a breast nodule **retrospectively** classified according to BI-RADS[®] system
- From mammographies results
- Collected between October 2005 and December 2007

Attributes

age_at_mammo

13 attributes

CLOCKFACE_LOCATION_OR_REGION
MASS_SHAPE
MASS_MARGINS
SIDE
DEPTH
MASS_MARGINS_worst
QUADRANT_LOCATION_def
SIZE
OVERALL_BREAST_COMPOSITION
Density_num
retro_density
outcome_num

Masses classification

Prospective

Retrospective

- Classification of feature mass density just by one radiologist:
 - low density;
 - iso-dense;
 - high density;
- **Brief** and superficial medical **report** (at the time of imaging);
- Classification under stress.

- Classification by a group of experienced physicians that re-assess all exams;
- Review of mass density classification made by radiologist (prospective study);
- Classification without stress;
- **Reference standard** for **mass density**.

Masses classification

(**prospectively** classified)

Outline

- Breast Cancer
- Objectives
- Dataset
- Methodology
- Results and Analysis
- *MammoClass* (online tool)
- Conclusions

Methodology

• WEKA

- Paired Corrected T-Tester
 - Significance level: 0.05

Methodology - Experiments

10 x stratified. c. v.

- **E**₁ Predicting malignancy with *retro_density*
- E₂ Predicting malignancy with *density_num*
- E_3 Predicting malignancy without mass density
- E₄ Predicting *retro_density**
- **E**₅ Predicting *density_num**

* in all experiments the *low* and *iso* densities were merged into a single class

Methodology - Algorithms applied

- ZeroR (baseline classifier)
- OneR
- DTNB
- PART

rules

- J48
- DecisionStump
- RandomForest
- SimpleCart
- NBTree

trees

- NaiveBayes
- BayesNet (TAN)

bayes

• SMO functions

internal parameter variation

Results

10 x stratified. c. v.

	Exp.	Algorithm	CCI	K	F	AUROC
D 11 11	E1	SMO	85.6±7.3	0.69±0.16	0.80 ± 0.11	0.84 ± 0.08
Predicting malignancy	E1	DTNB	81.6 ± 8.2	0.60 ± 0.18	0.74 ± 0.13	0.88 ± 0.07
with retro_density	E1	NaiveBayes	81.3±9.5	0.61 ± 0.20	0.76 ± 0.12	0.88 ± 0.08
	E1	J48	80.7±9.3	0.59 ± 0.20	0.75 ± 0.13	0.79 ± 0.11
	E2	SMO	83.9±7.7	0.66±0.17	0.78 ± 0.11	0.82 ± 0.08
	E2	NaiveBayes	80.3±9.3	0.59 ± 0.19	0.75 ± 0.12	0.87 ± 0.09
	E2	DTNB	79.8±9.5	0.56 ± 0.21	0.72 ± 0.15	0.86±0.09
	E2	J48	75.4±9.5	0.47 ± 0.21	0.65 ± 0.15	0.73 ± 0.12
	E3	SMO	83.8±7.7	0.65 ± 0.17	0.78 ± 0.11	0.82 ± 0.09
	E3	J48	76.3±9.9	0.49 ± 0.22	0.67 ± 0.15	0.76 ± 0.13
	E3	NaiveBayes	76.2±9.9	0.51 ± 0.20	0.71 ± 0.13	0.85 ± 0.09
	E3	DTNB	75.7 ± 9.0	0.48 ± 0.19	0.67 ± 0.13	0.81 ± 0.10
[]	E4	SMO	$81.3_{\pm 8.2}$	0.52 ± 0.21	0.64 ± 0.17	0.75 ± 0.11
<i>Predicting</i>	E4	J48	74.4 ± 8.8	0.32 ± 0.24	0.47 ± 0.21	0.67 ± 0.15
retro_density	E4	DTNB	73.5 ± 10.0	0.34 ± 0.24	0.51 ± 0.19	0.76 ± 0.12
	E4	NaiveBayes	72.8±9.9	0.37 ± 0.23	0.56 ± 0.18	0.77 ± 0.11
	E5	NaiveBayes	67.2 ± 12.1	0.33 ± 0.25	0.62 ± 0.15	0.72 ± 0.14
	E5	SMO	66.8±10.7	0.31 ± 0.22	0.55 ± 0.16	0.65 ± 0.11
	E5	J48	63.6±10.1	0.26 ± 0.21	0.56 ± 0.15	0.62 ± 0.13
	E5	DTNB	62.1 ± 11.9	0.22 ± 0.24	0.54 ± 0.16	0.64 ± 0.14

Predicting density

10 x stratified. c. v.

E₄ – Predicting *retro_density*

SVM's

CCI: 81.3% (+/-8.2)

Sens: 0.57 (+/- 0.20)

Spec: 0.92 (+/- 0.07)

F: 0.64 (+/- 0.17)

Radiologist's accuracy = 70 %
Classifier ≈ 81 %

<u>TEST</u>

• E_6 – Predicting *retro_density* (model E_4 applied)

SVM's

CCI: 84.5% Sens: 0.57 Spec: 0.90 F: 0.55

CCI: 81.3% (+/-8.2) Sens: 0.57 (+/- 0.20) Spec: 0.92 (+/- 0.07) F: 0.64 (+/- 0.17)

Predicting malignancy

10 x stratified. c. v.

• E_1 – Predicting malignancy with retro_density

SVM's

CCI: 85.6% (+/-7.3) Sens: 0.78 (+/- 0.15) Spec: 0.91 (+/- 0.07) F: 0.80 (+/- 0.11)

40

5

0.0

0.0

0.2

0.4

Cutofi

0.6

0.8

1.0

TEST

 E₈ – Predicting malignancy with *retro_density* (model E₁ applied)

180 SVM's CCI: 85.6% (+/-7.3)

Sens: 0.78 (+/- 0.15) Spec: 0.91 (+/- 0.07) F: 0.80 (+/- 0.11)

 $\overline{2}4$

MammoClass

• Online tool freely available at:

<u>http://cracs.fc.up.pt/mammoclass/</u>

MammoClass

Classification of a mammogram based in a reduced set of mammography findings

To obtain a prediction in terms of malignancy for a certain mass is only necessary to provide the values of the findings, annotated through the Breast Imaging Reporting and Data System (BIRADS), in the form bellow. It is also possible to get a prediction of the attribute *mass density* in case this feature is not known.

The output will indicate the probability of a certain mass being benign or malignant. In the latter case it is suggested that the patient should perform a biopsy. The probabilities are computed using machine learning models built as described in:

• P.Ferreira, N. A. Fonseca, I. Dutra, R. Woods, and E. Burnside, **Predicting Malignancy from Mammography Findings and Surgical Biopsies**

Enter Data

Patient's age	
Mass size	
Breast Composition	Select a value
Mass shape	Select a value
Mass clockface location	Select a value
Mass margins (1)	Select a value
Mass margins (2)	Select a value

MammoClass

MammoClass

Enter Data	
Patient's age 47	
Mass size 15	
Breast Composition Heterogeneously dense	
Mass shape Round	
Mass clockface location 12.0	
Mass margins (1) Circumscribed 💌	
Mass margins (2)	-
Mass margins worst Mass Margins (1)	
Mass density Iso/Low	
Side Left	
Quadrant Upper Inner	
Depth Middle	
Predict Reset	
Result	
Prediction: mass benign with a probability of 98.8%.	-
Disclaimer: The predictions are made available in the hope that may be useful, but	_

Conclusions

- a) We built **models** (integrated in *MammoClass*) that **predict malignancy and mass density** based on mammography findings;
- b) Machine learning **classifiers** to **predict mass density** may **aid radiologists** during the prospective mass classification;
- c) One of our classifiers can **predict malignancy even in the absence of mass density**, since we can **fill up** this **attribute** using our **mass density predictor**.

Thank you!

http://cracs.fc.up.pt/mammoclass

pedroferreira@dcc.fc.up.pt nunofonseca@acm.org ines@dcc.fc.up.pt rwoods@gmail.com eburnside@uwhealth.org

Appendices

State of the Art

- R. Woods, et al., **"Validation of Results from Knowledge Discovery: Mass Density as a Predictor of Breast Cancer"**, in J Digit Imaging, pp. 418-419, 2009.
- R. Woods, et al., **"The Mammographic Density of a Mass is a Significant Predictor of Breast Cancer"**, in Radiology, 2010.
- P. Ferreira, et al., **"Studying the relevance of Breast Imaging Features"**, in Proc. of the International Conference on Health Informatics (HEALTHINF), 2011.

<u>Conclusions:</u>

mass density can be an **important** attribute when predicting **malignancy**

State of the Art

• 4 datasets

- <u>Main target of study:</u>
 - Breast Cancer

UCIRVINE

State of the Art

- W. H. Wolberg & O. L. Mangasarian, **"Multisurface method of pattern separation for medical diagnosis applied to breast cytology"**, in Proc. of the National Academy of Sciences, 87, pp. 9193-9196, 1990.
- Y. Wu, et al, **"Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer"**, in Radiology 187:81-87, 1993.
- H. A. Abbass, **"An evolutionary artificial neural networks approach for breast cancer diagnosis"**, in Articial Intelligence in Medicine 25:265, 2002.
- W. N. Street, et al, **"An Inductive Learning Approach to Prognostic Prediction"**, in ICML, p. 522, 1995.
- T. Ayer, et al, **"Breast cancer risk estimation with artificial neural networks revisited:** discrimination and calibration", in Cancer 116(14):3310-3321, 2010

Data distribution

34

• 348

348	retro_		
outcome_num	high	iso	Total
malignant	59 (70.2%)	59 (22.3%)	118 (33.9%)
benign	25 (29.8%)	205 (77.7%)	230 (66.1%)
Total	84 (24.1%)	264 (75.9%)	

Data distribution

• 180

180	retro_		
outcome_num	high	iso	Total
malignant	42 (75.0%)	29 (23.4%)	71 (39.4%)
benign	14 (25.0%)	95 (76.6%)	109 (60.6%)
Total	56 (31.1%)	124 (68.9%)	

180	densit		
outcome_num	high	iso	Total
malignant	51 (63.0%)	20 (20.2%)	71 (39.4%)
benign	30 (37.0%)	79 (79.8%)	109 (60.6%)
Total	81 (45.0%)	99 (55.0%)	

Data distribution

• 168

168	retro_		
outcome_num	high	iso	Total
malignant	17 (60.7%)	30 (21.4%)	47 (28.0%)
benign	11 (39.3%)	110 (78.6%)	121 (72.0%)
Total	28 (16.7%)	140 (83.3%)	