

University of Wisconsin SCHOOL OF MEDICINE AND PUBLIC HEALTH

Data-driven Decision Support to Improve Breast Cancer Diagnosis and Outcomes

Elizabeth Burnside, MD, MPH, MS

Departments: Radiology Population Health Biostatistics and Medical Informatics Industrial and Systems Engineering

Informatics & Breast Imaging

- General Overview

 History/Motivation
- Methodological Considerations

 Algorithms & metrics to measure performance
- Projects
 - Improving mammographic predictions
 - Improving image-guided core biopsy

Motivation

- Information overload
 - Medical articles in pubmed-online
 - EHR information
 - Genetic risk factors
- Human decision making involves heuristics that may not scale up alone

History

• Tools first conceived in:

 Leeds Abdominal Pain System went operational in 1971

Barriers

System = 91.8% Physician = 79.6 %

- Not integrated in clinical workflow
- Errors

The Gail Model

Risk Calculator					
(Click a question number for a brief explanation, or read all explanations.)					
 Does the woman have a medical history of any breast cancer or of <u>ductal carcinoma in situ</u> (DCIS) or <u>lobular carcinoma in</u> <u>situ</u> (LCIS)? 	No				
 What is the woman's age? This tool only calculates risk for women 35 years of age or older. 	44 💌				
 What was the woman's age at the time of her first <u>menstrual</u> <u>period</u>? 	12 to 13 💌				
4. What was the woman's age at the time of her first live birth of a child?	> =30 💌				
 How many of the woman's first-degree relatives - mother, sisters, daughters - have had breast cancer? 	1				
<u>6</u> . Has the woman ever had a breast <u>biopsy</u> ?	No				
<u>6a</u> . How many breast biopsies (positive or negative) has the woman had?	Select -				
6b. Has the woman had at least one breast biopsy with atvpical hyperplasia?	Select -				
Z. What is the woman's race/ethnicity? White	•				
۲ <u></u>	Calculate Risk >				

http://www.cancer.gov/bcrisktool/Default.aspx

- Uses data (BCDDP)
- Predicts Breast CA
 - Five year/lifetime risk

Low signal predictors

Predictive Information

Human Computer Interaction COMMUNICATION

Structured or Free Text Report

Risk Score/ Probability

The Mammography Risk Prediction Project

Elizabeth Burnside, MD, MPH, MS C. David Page, PhD Jude Shavlik, PhD Charles Kahn, MD (MCW)

Background-Opportunity

- 200,000 breast cancer diagnosed in US
- 20 million mammograms per year
 - False positives
 - Millions of diagnostic mammograms/US
 - Hundreds of thousands biopsies
 - False negative
 - 10-30% of breast cancers not detected on mammography
- Variability of practice impacts many women
- Evidence-based decision support has the potential to drive substantial improvement

Breast Cancer Probability Based on BI-RADS Category

- **BI-RADS 0:**
- **Needs Additional Imaging**
- BI-RADS 1: Negative
- BI-RADS 2: Benign
- BI-RADS 3:
- BI-RADS 4:
- **BI-RADS 5**:
- Probably Benign
- Suspicious for malignancy
 - Highly suggestive of malignancy

Breast Cancer Predictors

Breast Cancer Predictors

Detection

Characterization

Classification

Bayesian Networks

What do we want to know?

We generally learn P(f|d)

We generally want to know P(d|f)

Bayesian Networks

No

No

P(f-|d-)

89.9%

8.3%

8.3%

Probability Estimates

8.3%

Teaching cases

- 105 cases
- Created ROC curve
- Comparable to

 Neural networks

Az = .953

Training on Data

- Motivation
 - Accurate probabilities are critical
 - Some are not available in literature
 - Modeling the relevant patient population is possible with training

Idea: Data Driven Decisions

Idea: Data Driven Decisions

Patient	Abnormality	Date	Calc	Mass	Mass Size	location	B/M
P1	1	5/08	Ν	Y	3 mm	RUO	В
P1	2	5/10	Y	Y	5 mm	RUO	Μ
P1	3	5/10	Ν	Y	3 mm	LLI	В
P2	4	6/09	Ν	Y	N/A	RLI	В

Our dataset contains

-350 malignancies
-65,630 benign abnormalities

Linked to cancer registry data

Outcomes (benign/malignant)

Training the BN

- Standard Machine learning
 - Use known cases to train
 - Use the tuning set for optimal training
 - Performance based on hold out test set

Performance

AUC 0.960 vs. 0.939
 P < 0.002

```
    Sensitivity

            90.0% vs. 85.3%
            P < 0.001</li>
```

Specificity

 93.9% vs. 88.1%
 P < 0.001

What does that mean?

- At a specificity of 90%
 38 conversions FN →TP
- At a sensitivity of 85%
 4226 conversions FP → TN

Ultimately Decision Support Aids the Physician

Output of the system is

- Advisory
- Utilized in the clinical context
- System performance alone is not the point
- Performance/Physician performance is the key to improvement of care

Collaborative Experiment

Radiologist .916

Bayes Net .919

Combined .948

Results

Results

Results

Precision Recall Curves

Calibration Curves

Predicted Risk

Calibration Curves

Predicted Risk

Calibration

Hosemer-Lemishow
 goodness of fit

Ayer, T., et al., *Breast cancer risk estimation with artificial neural networks revisited: discrimination and calibration.* Cancer, 2010. **116**(14): p. 3310-21.

Idea: Data Driven Decisions

Idea: Data Driven Decisions

Patient	Abnormality	Date	Calc	Mass	Mass Size	location	B/M
P1	1	5/08	Ν	Y	3 mm	RUO	В
P1	2	5/10	Y	Y	5 mm	RUO	Μ
P1	3	5/10	Ν	Y	3 mm	LLI	В
P2	4	6/09	Ν	Y	N/A	RLI	В

Not independent and identically distributed (IID)

Algorithmic Opportunities

- Inductive logic programming (ILP)
- Statistical Relational Learning (SRL)
- Natural Language Processing (NLP)

Algorithmic Opportunities

- Inductive logic programming (ILP)
- Statistical Relational Learning (SRL)
- Natural Language Processing (NLP)

Abnormality A in Mammogram M for Biopsy B in Patient P

Is malignant if:

Malignant (A) IF A has mass present A has stability increasing P has family history of breast cancer B has atypia

How does it work?

- Learn if-then rules that will become features in a predictive model
 - Inductive logic programming (ILP) to learn the rules
 - Integrated search strategy for constructing and selecting rules for classifcation algorithm

Human Computer Interaction COMMUNICATION

The Breast Biopsy Project

Elizabeth Burnside, MD, MPH, MS Heather Neuman, MD, MS Andreas Friedl, MD C. David Page, PhD Jude Shavlik, PhD

Image-guided Breast Biopsy

 Excisional biopsy for diagnosis of findings on mammography is overutilized

Grobmyer, SR et al. Am J Surg. 2011 Feb 2. Utilization of minimally invasive breast biopsy for the evaluation of suspicious breast lesions.

Unnecessary Surgery

A study found that about a third of breast biopsies are surgical, even though medical guidelines say the rate should be 10 percent or less.

Image-guided Breast Biopsy

Core biopsy not perfect 10% of benign core biopsies are non-definitive

 10-15% of these are upgraded to cancer at excisional biopsy

Grobmyer, SR et al. Am J Surg. 2011 Feb 2. Utilization of minimally invasive breast biopsy for the evaluation of suspicious breast lesions.

Unnecessary Surgery

A study found that about a third of breast biopsies are surgical, even though medical guidelines say the rate should be 10 percent or less.

Breast Biopsy

 Biopsy: single most costly component of a breast cancer screening program

 Annual breast biopsy utilization in 2010 62.6/10,000 women ≻700,000 women ~35,000-105,000 non-definitive

Breast Biopsy at UW

• 5 year experience at UW

- 1228 consecutive image-guided core biopsies
 - 890 benign
 - 94 were deemed non-definitive
 - 15 were upgraded to malignancy
- Hypothesis: ILP rules from the data and from physicians could improve the accuracy of upgrade prediction

Biopsy data

- Example rule:
- Upgrade (A) IF concordance (A, d), biopsyProcedure (A, US_core) and pathDx (A, benign_breast_tissue)
- Incorporate physician and machine rules into a Bayesian Network

Evaluate

Incorporate

Physician rules Machine rules \oplus

Evaluate Incorporate

University of Wisconsin SCHOOL OF MEDICINE

Precision Recall Curve

PPV Improvement

	Baseline	BN with rules
Benign biopsy	890	890
Non-definitive biopsy	94	75
Excision avoided	0	19
Malignant excision	15	15*
Benign excision	79	60
PPV	16.0%	20.0%

*No cancers missed

Potential for Translation

- Translate these decision support algorithms to the clinic to improve care
- Improve evidence-based decisions
- Encourage shared decision-making

Questions?

