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Informatics & Breast Imaging 

• General Overview 

– History/Motivation 

• Methodological Considerations 

– Algorithms & metrics to measure performance 

• Projects 

– Improving mammographic predictions 

– Improving image-guided core biopsy 



Motivation 

• Information overload 

– Medical articles in pubmed-online 

– EHR information 

– Genetic risk factors 

• Human decision making involves 

heuristics that may not scale up alone 

 



History 

• Tools first conceived in: 

– Leeds Abdominal Pain System went 

operational in 1971  
System = 91.8%  

Physician = 79.6 % • Barriers 

– Not integrated in clinical workflow 

– Errors 



The Gail Model 

• Uses data (BCDDP) 

• Predicts Breast CA 

– Five year/lifetime risk 

 

  Low signal 

predictors 
 

http://www.cancer.gov/bcrisktool/Default.aspx 
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The Mammography Risk 

Prediction Project 

Elizabeth Burnside, MD, MPH, MS 

C. David Page, PhD 

Jude Shavlik, PhD 

Charles Kahn, MD (MCW) 

 



Background-Opportunity 

• 200,000 breast cancer diagnosed in US 

• 20 million mammograms per year 
– False positives 

• Millions of diagnostic mammograms/US 

• Hundreds of thousands biopsies 

– False negative 
• 10-30% of breast cancers not detected on mammography 

• Variability of practice impacts many women 

• Evidence-based decision support has the 
potential to drive substantial improvement 
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Breast Cancer Probability Based  

on BI-RADS Category 

BI-RADS 0:     Needs Additional Imaging 

BI-RADS 1:     Negative 

BI-RADS 2:     Benign 

BI-RADS 3:     Probably Benign 

BI-RADS 4:     Suspicious for malignancy 

BI-RADS 5:     Highly suggestive of malignancy 
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Breast Cancer Predictors 
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Risk 
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What do we want to know? 

We generally learn P(f|d) 

Breast 

cancer 

We generally want to know P(d|f) 

http://tgmouse.compmed.ucdavis.edu/cmpath/jensen/slide25.jpg


Bayesian Networks 
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Breast CA Symbol Prob 

Yes P(d) 1.0% 

No P(d-) 99.0% 

Breast CA mammo Symbol Prob 

Yes Yes P(f|d) 90% 

Yes No P(f-|d) 10% 

No Yes P(f|d-) 10.1% 

No No P(f-|d-) 89.9% 

P(f)

P(d) d)|P(f
  f)|P(d 
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Probability Estimates 

8.3% 8.3% 
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Pleomorphic microcalcifications 

Clustered microcalcifications 

Case 

Example 

Ductal Carcinoma in situ     .48 

Fibrocystic change                .21 

DC/DCIS                                .16 

Ductal Carcinoma (NOS)          .12 

Malignant              .760 

Benign                    .239 

Atypical         .001 



Teaching cases 

• 105 cases 

• Created ROC curve 

• Comparable to 

– Neural networks 

 

Az = .953 
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Training on Data 

• Motivation 
– Accurate probabilities are critical 

– Some are not available in literature 

– Modeling the relevant patient population is 

possible with training 

Expert &  

Rule Based 

Machine 

Learning 



Mammogram Table 
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Idea: Data Driven Decisions 



Patient Abnormality Date Calc Mass Mass 

Size 

location B/M 

 

P1 1 5/08 N Y 3 mm RUO B 

P1 2 5/10 Y Y 5 mm RUO M 

P1 3 5/10 N Y 3 mm LLI B 

P2 4 6/09 N Y N/A RLI B 

… … 

 

… 

 

… 

 

… 

 

… 

 

… 

 

Idea: Data Driven Decisions 



Data 

• Our dataset contains 

–350 malignancies 

–65,630 benign abnormalities 

• Linked to cancer registry data 

–Outcomes (benign/malignant) 



Training the BN 

• Standard Machine learning 

– Use known cases to train 

– Use the tuning set for optimal training 

– Performance based on hold out test set 
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• AUC 0.960 vs. 0.939 
– P < 0.002 

 

• Sensitivity  
– 90.0% vs. 85.3% 

– P < 0.001 

 

• Specificity  
– 93.9% vs. 88.1% 

– P < 0.001 

Performance 



What does that mean? 

• At a specificity of 90% 

38 conversions FN    TP 

• At a sensitivity of 85%  

4226 conversions FP    TN 



Ultimately Decision Support 

Aids the Physician 

• Output of the system is  

– Advisory 

– Utilized in the clinical context 

– System performance alone is not the point 

– Performance/Physician performance is the 

key to improvement of care 



Collaborative Experiment 
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Results 
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UW Hospital

Same Testset / Different Training
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Precision Recall Curves 



Calibration Curves 
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Calibration 

Ayer, T., et al., Breast cancer risk estimation with artificial neural networks 

revisited: discrimination and calibration. Cancer, 2010. 116(14): p. 3310-21.  

• Hosemer-Lemishow 

goodness of fit 
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Idea: Data Driven Decisions 

Not independent and  identically distributed (IID) 



Algorithmic Opportunities 

• Inductive logic programming (ILP) 

• Statistical Relational Learning (SRL) 

• Natural Language Processing (NLP) 
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ILP 

Abnormality A in 

Mammogram M for    Is malignant if: 

Biopsy B in 

Patient P 

 

Malignant (A) IF 

  A has mass present 

  A has stability increasing 

  P has family history of breast cancer 

  B has atypia 

 



How does it work? 

• Learn if-then rules that will become 

features in a predictive model 

– Inductive logic programming (ILP)  

to learn the rules 

– Integrated search strategy for constructing 

and selecting rules for classifcation algorithm 



Human Computer Interaction 

COMMUNICATION 

Logical Rules 

Logical Rules 



The Breast Biopsy Project 

Elizabeth Burnside, MD, MPH, MS 

Heather Neuman, MD, MS 

Andreas Friedl, MD 

C. David Page, PhD 

Jude Shavlik, PhD 

 



Image-guided Breast Biopsy 

Grobmyer, SR et al. Am J Surg. 2011 Feb 2. 

Utilization of minimally invasive breast biopsy for 

the evaluation of suspicious breast lesions. 

• Excisional biopsy for 

diagnosis of findings on 

mammography is 

overutilized 

 



Image-guided Breast Biopsy 

• Core biopsy not perfect 

– 10% of benign core biopsies 

are non-definitive 

– 10-15% of these are 

upgraded to cancer at 

excisional biopsy 

Grobmyer, SR et al. Am J Surg. 2011 Feb 2. 

Utilization of minimally invasive breast biopsy for 

the evaluation of suspicious breast lesions. 



Breast Biopsy 

• Biopsy: single most costly component of a 

breast cancer screening program 

 

• Annual breast biopsy utilization in 2010 

62.6/10,000 women 

700,000 women 

~35,000-105,000 non-definitive 



Breast Biopsy at UW 

• 5 year experience at UW 

– 1228 consecutive image-guided core biopsies 

• 890 benign 

• 94 were deemed non-definitive 

• 15 were upgraded to malignancy 

• Hypothesis: ILP rules from the data and 

from physicians could improve the 

accuracy of upgrade prediction 



Biopsy data 

• Example rule: 
 

Upgrade (A) IF 

  concordance (A, d), 

  biopsyProcedure (A, US_core) and 

  pathDx (A, benign_breast_tissue) 
 

• Incorporate physician and machine rules 

into a Bayesian Network 
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Machine & human 

 generate 

new ILP rules 

Repeated iterations to optimize performance 
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PPV Improvement 

Baseline BN with rules 

Benign biopsy 890 890 

Non-definitive biopsy 94 75 

Excision avoided 0 19 

Malignant excision 15 15* 

Benign excision 79 60 

PPV 16.0% 20.0% 

*No cancers missed 



Potential for Translation 

• Translate these decision support 

algorithms to the clinic to improve care 

• Improve evidence-based decisions 

• Encourage shared decision-making 

 



Questions? 


