

Probabilistic multi-view detection of mammographic findings

Marina Velikova

Institute for Computing and Information Sciences Radboud University Nijmegen, Netherlands marinav@cs.ru.nl

Screening mammograms

Mediolateral-oblique (MLO)

Craniocaudal (CC)

19 June 2013

Breast Cancer Workshop - University of Porto

Screening mammograms: Diagnosis

Mediolateral-oblique (MLO)

Craniocaudal (CC)

<mark>Malignant</mark> case B

Breast Cancer Workshop - University of Porto

Screening challenges

- Complex image interpretation
- High volume and short viewing time
- Extremely low incidence (3-10/1,000)

Overlooking

- Missed diagnoses (False negatives)
- Misinterpretation (more problematic!): abnormalities are seen but their significance is misinterpreted
 - Excessive follow-ups (False positives)
 - Missed diagnoses (False negatives)

Single-view CAD system

- **Region features**: contrast, size, location, margin, etc.
- Advantage: a good detection rate per image
- Shortcoming: unsatisfactory performance at a patient level views are treated independently

Multi-view image analysis

A_i, B_i – regions detected from a single-view CAD system

 $\begin{array}{c} \textcircled{1} \quad \ell_{ij} \in \{\text{TPTP}, \text{TPFP}, \text{FPTP}, \text{FPFP}\} \\ \hline & \textcircled{2} \quad \ell_{ij} = \begin{cases} true & \text{if } A_i \text{ OR } B_j \text{ are } \text{TP}, \\ false & \text{otherwise.} \end{cases}$ • Class LINK_{ii} = ℓ_{ii} ?

Knowledge & Representation

- Uncertainty -> Probability
- Causal relationships -> Graphical model (Bayesian networks)
- Two representation approaches:
 - Object-feature (descriptive) (as present in the real world)
 - 2 Region-based (discriminative) (as detected by a CAD system)

Bayesian networks

- A compact specification of full joint distributions
- Syntax:
 - a set of nodes, one per variable
 - □ a directed, acyclic graph ($\rightarrow \approx$ "direct influences")
 - a conditional distribution for each node X_i given its parents π :

$$P(X_i \mid \pi(X_i))$$

Discrete case: conditional probability table (CPT)

Joint distribution:

$$P(\mathbf{X}) = \prod_{i=1}^{n} P(X_i | \pi(X_i))$$

CPT of X_3

X_1	X_2	$\mathbf{P}(X_3 = \mathbf{t}/X_1, X_2)$
f	f	0.03
f	t	0.25
t	f	0.48
t	t	0.76

 $P(X_{1}X_{2}X_{3}) =$

Breast Cancer Workshop - University of Porto

 $P(X_3|X_1X_2) \times P(X_1) \times P(X_2)$

1 Object-feature representation

Breast Cancer Workshop - University of Porto

1 Multi-view mammographic model

1 Multi-view mammographic model

Performance: not optimal

- Object (finding) features vs. low-level image features the causal relationship is not clear
- Object features are not observed so their prior probabilities are unknown
- Possible relationships between the image features may not be represented
- <u>Critique</u>: understand and improve knowledge representation by learning from real mammographic data:
 - We discretized the low-level image features
 - Increase in the detected cancers of up to 11.7%
 - Improved interpretation capabilities of the network

- We learned Bayesian network structures
 - More dependencies between the image features were discovered

Results published in:

"On the interplay of machine learning and background knowledge in image interpretation by Bayesian networks" Velikova, Lucas, Samulski and Karssemeijer, Artificial Intelligence In Medicine, 57:1, pp. 73-86, 2013

Region-based representation (\mathbf{Z})

 $\operatorname{Reg} = \{A_i, B_i\}$

- $r \in Reg, r = \{x_1, x_2, ..., x_M\}, M \text{ image features}$
- C(r) / C(View): region / view class = {positive, negative}

"Improved mammographic CAD performance using multi-view information: A Bayesian network framework" Velikova, Samulski, Lucas and Karssemeijer, Physics in Medicine and Biology, 54, pp. 1131-1147, 2009

Summary

- Two types of Bayesian network models object-feature oriented and region-based – for multi-view detection of mammographic findings
- Manual construction of the network structure
- Parameter learning from real mammographic data

Experiments showed improvement in the breast cancer detection rate in comparison with a single-view CAD system

Open questions

- Unified representation language for various levels of image analysis (region, view, breast, patient)
 - Risk factors, e.g., age, (family) history of breast cancer
 - Spatial resoning
 - Temporal reasoning

Temporal reasoning

MVIEW - research mode 🧐

Temporal reasoning

MVIEW - research mode 🧐

Open questions

- Unified representation language for various levels of image analysis (region, view, breast, patient)
 - Risk factors, e.g., age, (family) history of breast cancer
 - Spatial resoning
 - Temporal reasoning
- Personalized models, i.e., Bayesian updating of parameters, based on learning from data per patient