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Screening challenges

Complex image interpretation
High volume and short viewing time
Extremely low incidence (3-10/1,000)

Overlooking

o Missed diagnoses (False negatives)
Misinterpretation (more problematic!): abnormalities are seen but
their significance is misinterpreted

o Excessive follow-ups (False positives)
o Missed diagnoses (False negatives)
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Single-view CAD system

Region features: contrast, size, location, margin, etc.

Advantage: a good detection rate per image

Shortcoming: unsatisfactory performance at a patient level — views
are treated independently
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Multi-view image analysis
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A;, B; — regions detected from a single-view CAD system

Class L|NK — f ’) (@ &; € {TPTP, TPFP,FPTP,FPFP}

. g true 1if A; OR B; are TP,
W= false otherwise.
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Knowledge & Representation

= Uncertainty =» Probability

» Causal relationships =* Graphical model
(Bayesian networks)

= Two representation approaches:
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(1) Object-feature (descriptive) Margin
: Location
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(2) Region-based (discriminative)
(as detected by a CAD system)
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Bayesian networks

A compact specification of full joint distributions

x1 X2
Syntax:
o a set of nodes, one per variable
o adirected, acyclic graph (— = "direct influences") X3
o a conditional distribution for each node Xi given its
parents 7T: CPT of X,
P(X; | #(X3) X, X, PXg=t[X,X,)
| y N fof 0.03
Discrete case: conditional probability table (CPT)
f t 0.25
t f 0.48
Joint distribution: t t 0.76
n
P(X)=1_[P(Xi ”(Xi)) P(X,X,X;) =
-1 P(X[ X2 ) <P (X,) <P (X, )
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‘@ Object-feature representation
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‘@ Multi-view mammographic model
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Multi-view mammographic model

Performance: not optimal

Pixel-based malign

likelihood

o Object (finding) features vs. low-level image features - the
causal relationship is not clear

o Object features are not observed so their prior probabilities
are unknown

o Possible relationships between the image features may not
be represented

Critigue: understand and improve knowledge representation by learning from real
mammographic data:

o We discretized the low-level image features
Increase in the detected cancers of up to 11.7%
Improved interpretation capabilities of the network
o We learned Bayesian network structures
More dependencies between the image features were discovered

Results published in:

“On the interplay of machine learning and background knowledge in image interpretation by Bayesian networks”
Velikova, Lucas, Samulski and Karssemeijer, Atrtificial Intelligence In Medicine, 57:1, pp. 73-86, 2013

19 June 2013 Breast Cancer Workshop - University of Porto

°°°°°°



@ Region-based representation

View—B

Reg = {A;, Bj}
reReq, r = {X;, X,, ..., xy}, M image features
C(r) / C(View): region / view class = {positive, negative}
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“Improved mammographic CAD performance using multi-view information: A Bayesian network framework”
Velikova, Samulski, Lucas and Karssemeijer, Physics in Medicine and Biology, 54, pp. 1131-1147, 2009
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ingle- vs. Multi-view CAD system
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Summary

Two types of Bayesian network models — object-feature oriented

and region-based — for multi-view detection of mammographic
findings

o Manual construction of the network structure

o Parameter learning from real mammographic data

Experiments showed improvement in the breast cancer detection
rate in comparison with a single-view CAD system
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Open questions

Unified representation language for various levels of
Image analysis (region, view, breast, patient)

o Risk factors, e.g., age, (family) history of breast cancer

o Spatial resoning

o Temporal reasoning
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Temporal reasoning

10-1995 (2031216) No Image Available

Link probability: 0.995

| -

02-1997 (2031608) 02-1997 (2031608) 02-1997 (2031608)

No Image Available

02-1997 (2031608)




— - Missed detection
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Open questions

Unified representation language for various levels of
Image analysis (region, view, breast, patient)

o Risk factors, e.g., age, (family) history of breast cancer

o Spatial resoning

o Temporal reasoning

Personalized models, i.e., Bayesian updating of
parameters, based on learning from data per patient
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