Predicting Malignancy from Mammography Findings and Image Guided Core Biopsies

Breast Cancer Workshop 2013 – June 19th 2013 Porto, Portugal

Pedro Miguel Ferreira

Nuno A. Fonseca Inês Dutra Ryan Woods Elizabeth Burnside

Outline

- Breast Cancer
- Objectives
- Dataset
- Methodology
- Results and Analysis
- *MammoClass* (online application)
- Conclusions and Future Work

Outline

Breast Cancer

- Objectives
- Dataset
- Methodology
- Results and Analysis
- *MammoClass* (online application)
- Conclusions and Future Work

Breast Cancer

- USA:
 - 1 woman dies of breast cancer every 13 minutes
 - In 2011:
 - 230.480 invasive cancers
 - 39.520 (≈ 17%) expected to die

Source: *U. S. Breast Cancer Statistics* – accessed June 2013

- Portugal:
 - Per year:
 - 4500 new cases
 - 1500 deaths (33%)

Source: *Liga Portuguesa Contra o Cancro* – accessed June 2013

Breast Screening Programs

• Reduction of death rate in 30%

• Mammography:

The cheapest and most eficient method to detect cancer in a preclinical stage

Mammography

Nodule/Mass:

Solid lesion with more than 1 cm of width and usually well defined.

Also known as tumour.

Mammography

Outline

- Breast Cancer
- Objectives
- Dataset
- Methodology
- Results and Analysis
- *MammoClass* (online application)
- Conclusions and Future Work

• in P. Ferreira, et al., "**Studying the relevance of Breast Imaging Features**", in Proc. International Conference on Health Informatics (HEALTHINF), 2011.

 Build classifiers capable of predicting mass density and malignancy from a reduced set of mammography findings

Reduce the number of unnecessary biopsies

Outline

- Breast Cancer
- Objectives
- Dataset
- Methodology
- Results and Analysis
- *MammoClass* (online application)
- Conclusions and Future Work

Dataset

- Source:
 - Ryan Woods (M.D.)
 - Elizabeth Burnside (M.D.)

- 348 cases
- Each case refers to a breast nodule **retrospectively** classified according to BI-RADS[®] system
- From mammographies results
- Collected between October 2005 and December 2007

Attributes

13 attributes

age_at_mammo CLOCKFACE_LOCATION_OR_REGION

MASS_SHAPE

MASS_MARGINS

SIDE

DEPTH

MASS_MARGINS_worst

QUADRANT_LOCATION_def

SIZE

OVERALL_BREAST_COMPOSITION

Density_num

retro_density

outcome_num

Masses classification

Prospective

Retrospective

- Classification of feature mass density just by one radiologist:
 - low density;
 - iso-dense;
 - high density;
- **Brief** and superficial medical **report** (at the time of imaging);
- Classification under stress.

- Classification by a group of experienced physicians that re-assess all exams;
- Review of mass density classification made by radiologist (prospective study);
- Classification without stress;
- **Reference standard** for **mass density**.

Masses classification

(**prospectively** classified)

Outline

- Breast Cancer
- Objectives
- Dataset
- Methodology
- Results and Analysis
- *MammoClass* (online application)
- Conclusions and Future Work

Methodology

• WEKA

- Paired Corrected T-Tester
 - Significance level: 0.05

Methodology - Experiments

10 x stratified. c. v.

- **E**₁ Predicting malignancy with *retro_density*
- E₂ Predicting malignancy with *density_num*
- $\mathbf{E_3}$ Predicting malignancy without mass density
- E₄ Predicting *retro_density**
- **E**₅ Predicting *density_num**

* in all experiments the *low* and *iso* densities were merged into a single class

Methodology - Algorithms applied

- ZeroR (baseline classifier)
- OneR
- DTNB
- PART

rules

- J48
- DecisionStump
- RandomForest
- SimpleCart
- NBTree

trees

- NaiveBayes
- BayesNet (TAN)

bayes

• SMO functions

internal parameter variation

Results

10 x stratified. c. v.

	Exp.	Algorithm	CCI	K	F	AUROC
D 11 11	E1	SMO	85.6±7.3	0.69±0.16	0.80 ± 0.11	0.84 ± 0.08
Predicting malignancy	E1	DTNB	81.6 ± 8.2	0.60 ± 0.18	0.74 ± 0.13	0.88 ± 0.07
with retro_density	E1	NaiveBayes	81.3±9.5	0.61 ± 0.20	0.76 ± 0.12	0.88 ± 0.08
	E1	J48	80.7±9.3	0.59 ± 0.20	0.75 ± 0.13	0.79 ± 0.11
	E2	SMO	83.9±7.7	0.66±0.17	0.78 ± 0.11	0.82 ± 0.08
	E2	NaiveBayes	80.3±9.3	0.59 ± 0.19	0.75 ± 0.12	0.87 ± 0.09
	E2	DTNB	79.8±9.5	0.56 ± 0.21	0.72 ± 0.15	0.86±0.09
	E2	J48	75.4±9.5	0.47 ± 0.21	0.65 ± 0.15	0.73 ± 0.12
	E3	SMO	83.8±7.7	0.65 ± 0.17	0.78 ± 0.11	0.82 ± 0.09
	E3	J48	76.3±9.9	0.49 ± 0.22	0.67 ± 0.15	0.76 ± 0.13
	E3	NaiveBayes	76.2±9.9	0.51 ± 0.20	0.71 ± 0.13	0.85 ± 0.09
	E3	DTNB	$75.7_{\pm 9.0}$	0.48 ± 0.19	0.67 ± 0.13	0.81 ± 0.10
]	E4	SMO	$81.3_{\pm 8.2}$	0.52 ± 0.21	0.64 ± 0.17	0.75 ± 0.11
Predicting	E4	J48	74.4 ± 8.8	0.32 ± 0.24	0.47 ± 0.21	0.67 ± 0.15
retro_density	E4	DTNB	73.5 ± 10.0	0.34 ± 0.24	0.51 ± 0.19	0.76 ± 0.12
	E4	NaiveBayes	72.8±9.9	0.37 ± 0.23	0.56 ± 0.18	0.77 ± 0.11
	E5	NaiveBayes	67.2 ± 12.1	0.33 ± 0.25	0.62 ± 0.15	0.72 ± 0.14
	E5	SMO	66.8±10.7	0.31 ± 0.22	0.55 ± 0.16	0.65 ± 0.11
	E5	J48	63.6±10.1	0.26 ± 0.21	0.56 ± 0.15	0.62 ± 0.13
	E5	DTNB	62.1 ± 11.9	0.22 ± 0.24	0.54 ± 0.16	0.64 ± 0.14

Predicting density

10 x stratified. c. v.

E₄ – Predicting *retro_density*

SVM's

CCI: 81.3% (+/-8.2)

Sens: 0.57 (+/- 0.20)

Spec: 0.92 (+/- 0.07)

F: 0.64 (+/-0.17)

Radiologist' s accuracy = 70 % Classifier ≈ 81 %

TEST

• E_6 – Predicting *retro_density* (model E_4 applied)

SVM's

CCI: 84.5% Sens: 0.57 Spec: 0.90 F: 0.55

CCI: 81.3% (+/-8.2) Sens: 0.57 (+/- 0.20) Spec: 0.92 (+/- 0.07) F: 0.64 (+/- 0.17)

Predicting malignancy

10 x stratified. c. v.

• **E**₁ – Predicting malignancy with *retro_density*

SVM's

CCI: 85.6% (+/-7.3) Sens: 0.78 (+/- 0.15) Spec: 0.91 (+/- 0.07) F: 0.80 (+/- 0.11)

0.0

0.2

0.4

Cutofi

0.6

0.8

1.0

CCI: 85.6% (+/-7.3) Sens: 0.78 (+/- 0.15)

Spec: 0.91 (+/- 0.07) F: 0.80 (+/- 0.11)

180

SVM's

Results - Experiments

TEST

• **E**₈ – Predicting malignancy with *retro_density* (model E₁ applied)

MammoClass

• Online application freely available at:

<u>http://cracs.fc.up.pt/mammoclass/</u>

MammoClass

Classification of a mammogram based in a reduced set of mammography findings

To obtain a prediction in terms of malignancy for a certain mass is only necessary to provide the values of the findings, annotated through the Breast Imaging Reporting and Data System (BIRADS), in the form bellow. It is also possible to get a prediction of the attribute *mass density* in case this feature is not known.

The output will indicate the probability of a certain mass being benign or malignant. In the latter case it is suggested that the patient should perform a biopsy. The probabilities are computed using machine learning models built as described in:

• P.Ferreira, N. A. Fonseca, I. Dutra, R. Woods, and E. Burnside, **Predicting Malignancy from Mammography Findings and Surgical Biopsies**

Enter Data

Patient's age	
Mass size	
Breast Composition	Select a value
Mass shape	Select a value
Mass clockface location	Select a value
Mass margins (1)	Select a value
Mass margins (2)	Select a value

Conclusions and Future Work

- a) We built **models** that **predict malignancy and mass density** based on mammography findings;
- b) Machine learning **classifiers** to **predict mass density** may **aid radiologists** during the prospective mass classification
- c) One of our classifiers can **predict malignancy even in the absence of mass density**, since we can **fill up** this **attribute** using our **mass density predictor**.

Conclusions and Future Work

a) Apply other machine learning techniques based on statistical relational learning;

b) Investigate how **other features** can affect malignancy or are related to the other attributes.

Future Work - Challenges

Correct **classification of BIRADS** categories:

BIRADS 539 instancesBIRADS 4131 instancesBIRADS 0178 instances

Problems:

- multi-class problem
- classes not balanced

Future Work - Challenges

Correct **classification of BIRADS** categories:

BIRADS 5 39 instances BIRADS 4 3131 instances BIRADS 0 178 instances 348 cases

Approaches:

- oversampling
- undersampling
- nested cross-validation on 348 cases (best results so far)
- cost-sensitive learning (to be applied)

Future Work - Challenges

Correct **classification of BIRADS** categories:

BIRADS 5 \Rightarrow 39 instancesBIRADS 4 \Rightarrow 131 instancesBIRADS 0 \Rightarrow 178 instances

• **nested cross-validation** on 348 cases (best results so far)

- PPV = 0.67 (B5)PPV = 0.06 (B4)PPV = 0.09 (B3)
- in G. Kennedy, et al., "**Predictive value of BI-RADS classification for breast** imaging in women under age 50", in Breast Cancer Res Treat, 2011.

Thank you!

http://cracs.fc.up.pt/mammoclass

pedroferreira@dcc.fc.up.pt nunofonseca@acm.org ines@dcc.fc.up.pt rwoods@gmail.com eburnside@uwhealth.org

Appendices

Data distribution

• 348

348	retro_		
outcome_num	high iso		Total
malignant	59 (70.2%)	59 (22.3%)	118 (33.9%)
benign	25 (29.8%)	205 (77.7%)	230 (66.1%)
Total	84 (24.1%)	264 (75.9%)	

Data distribution

• 180

180	retro_		
outcome_num	high	iso	Total
malignant	42 (75.0%)	29 (23.4%)	71 (39.4%)
benign	14 (25.0%)	95 (76.6%)	109 (60.6%)
Total	56 (31.1%)	124 (68.9%)	

180	densit		
outcome_num	high	iso	Total
malignant	51 (63.0%)	20 (20.2%)	71 (39.4%)
benign	30 (37.0%)	79 (79.8%)	109 (60.6%)
Total	81 (45.0%)	99 (55.0%)	

Data distribution

• 168

168	retro_		
outcome_num	high iso		Total
malignant	17 (60.7%)	30 (21.4%)	47 (28.0%)
benign	11 (39.3%)	110 (78.6%)	121 (72.0%)
Total	28 (16.7%)	140 (83.3%)	