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Abstract

Inductive Logic Programming (ILP) is concerned with the induction of first-order clausal
theories. April is a new ILP system that can be classified as an empirical, non-interactive,
single predicate learning system.

In this report we describe the architecture and implementation details of April together
with a description of its features and an explanation of how to use it. We also propose the use
in ILP systems of two efficient data structures: the Trie, used to represent lists and clauses;
and the RL-Tree, a novel data structure used to represent clauses coverage list. We empirically
evaluate the impact on April’s performance of the proposed data structures, together with
the impact evaluation of the coverage caching technique. April’s development is an on going
work. Although the results obtained are encouraging, there are still areas to improve. Areas
for further research are identified.

1 Introduction

Inductive Logic Programming (ILP) [1, 2] is an established and healthy [3] subfield of Machine
Learning (ML). The main goal of ILP is to investigate the inductive construction of first-order
clausal theories and their justification from a set of examples and prior knowledge. As input an
ILP system receives a set of examples (divided in positive and negative) of the concept to learn,
and sometimes some prior knowledge (or background knowledge). Both examples and background
knowledge are represented as logic programs. An ILP system tries to produce a logic program
where positive examples succeed and the negative examples fail.

There are two major motivations for using ILP. First, ILP provides an excellent framework
for learning in multi-relational domains. Second, the theories learned by general purpose ILP
systems are in an high-level formalism, which is often understandable and meaningful for the
domain experts. The advantages of ILP have been demonstrated through successful applications
in difficult, industrially and scientifically relevant problems. Examples include engineering, natural
language processing, environmental sciences, and the life sciences. For a survey of initial ILP
applications see [4]. A more up-to-date list of applications of ILP systems to real world problems
can be found in [5].

One major criticism of ILP systems is that they often have long running times. Thus, the
need of efficient and scalable ILP systems is a important issue, specially as the number and
complexity of applications domains increases. Several approaches have been proposed to improve
ILP performance, such as several sequential execution efficiency improvements [6, 7, 8, 9, 10,
11], and parallelism [12, 13, 14, 15, 16, 17]. Understanding which techniques, or combination of
techniques, contribute the most is a quite a difficult task.
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2 ILP

April is a new ILP system that tries to combine and use the most number of techniques as
possible. It aims to become an efficient, flexible, and scalable ILP system. Up to now only the
flexibility and efficiency goals have been addressed, and are focused in this report. We plan to
tackle the scalability problem in the near future trough parallelization and by integrating it with
a Relational Database Management System (RDBMS). April combines ideas and features from
several systems, such as Progol [18] et seq. [19, 20], Indlog [7], and CILS [21]. Besides integrating
ideas and features from several ILP systems into a single coherent system, April incorporates novel
data structures that improve efficiency (time and memory consumption).

In a nutshell we describe April as a non-incremental (empirical), non-interactive, single predi-
cate learning system. April generates non-redundant theories, can handle non-ground background
knowledge, can use non-determinate predicates, makes use of a strong typed language, and makes
use of explicit bias declaration such as mode, type, and determination declarations. April, as
several other ILP systems, is implemented in Prolog. The major reason to do so is that the
inference mechanism implemented by the Prolog engine is fundamental to most ILP learning
algorithms. ILP systems can therefore benefit from the extensive performance work that has
taken place for Prolog [22, 23].

In this report we describe the architecture and implementation of April, together with a
description of its features and an explanation of how to use it. We also propose the use in
ILP systems of two efficient data structures: the Trie, used to represent lists and clauses; and the
RL-Tree, a novel data structure used to represent clauses coverage list. We empirically evaluate
the impact on April, in terms of execution time and memory usage, of the use of the RL-Tree and
Trie data structures. We also evaluate the impact of a technique, called coverage caching [8], that
stores previous results (in the prolog database) in order to avoid recomputation.

The remainder of this report is organized as follows. In the Section 2 we briefly introduce
definitions and concepts necessary for the rest of the report. April’s description and usage is given
in Section 3. Section 4 presents some relevant implementation details. The experiments performed
with April and the results obtained are presented in Section 5. Related work is described in
Section 6. Finally, Section 7 concludes pointing future work.

2 ILP

This section briefly presents some basic concepts and terminology of Inductive Logic Programming
but is not meant as an introduction to the field of ILP. For such introduction we refer to [24, 25, 26].

We start by formalizing the ILP problem, and move to the presentation of some relevant
concepts and definitions. Finally, we present Mode-Directed Inverse Entailment (MDIE), the
basis of April’s induction algorithm.

2.1 ILP setting

From a logic perspective, the ILP problem can be defined as follows. Let E+ be the set of positive
examples (instances of the target concept), E− the set of negative examples (non instances of the
target concept) , E = E+ ∪ E−, and B the background knowledge. In general, B, H, and E can
be arbitrary logic programs. However is usual for E to be a set of Prolog atoms. The aim of an
ILP system is to find a set of hypothesis (also referred as a theory) H such that some conditions
holds.

In normal semantics (or normal setting) the following conditions must hold for H:

• Prior Satisfiability [24]: B ∧ E− 2 �

• Prior Necessity [24]: B 2 E+

• Posterior Satisfiability [24]: B ∧ E− ∧H 2 � (Consistency)

• Posterior Sufficiency [24]: B ∧H � E+ (Completeness)
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2 ILP 2.2 ILP as a search problem

• Posterior necessity [7]: B ∧ hi � e+
1 ∨ e+

2 ∨ . . . ∨ e+
n (∀hi ∈ H, ej ∈ E+)

The sufficiency condition is sometimes named completeness with regard to positive evidence,
and the Posterior Satisfiability is also known as consistency with the negative evidence. Posterior
Necessity states that each hypothesis hi should not be vacuous.

The consistency condition is sometimes relaxed to allow the hypothesis to be inconsistent with
a small number of negative examples. This allow ILP systems to deal with noisy data, that is,
data that has inconsistencies.

2.2 ILP as a search problem

ILP can be mapped into a search through a space of hypothesis (designated as hypotheses space).
The states in the search space are concept descriptions (hypotheses) and the goal is to find one or
more states satisfying some quality criterion.

The ILP problem can be solved by the use of general Artificial Intelligence techniques like
generate and test algorithms. However, due to the large and often infinite size of the search
space, this approach is too computational expensive to be of interest. To tackle this problem the
search space is structured by imposing a generality order upon the clauses. Such a partial order
on clauses is usually denoted by �, and the structured search space designated as generalization
lattice. A clause C is said to be a generalization of D (dually: D is a specialization of C) if C � D
holds. There are many generality orders, the most commonly used are subsumption and logical
implication. In both of these orders, the most general clause is the empty clause �.

The subsumption order is the generality order most often used in ILP and is defined as follows:

Definition 1 Let C and D be clauses. A clause C subsumes D, denoted by C � D, if there exists
a substitution θ such that Cθ ⊆ D.

The ordering of the search space imposed by generalization and specialization allows a justifi-
able pruning of the search space. The pruning can be performed when:

• B ∧H 2 e where e is positive evidence, because none of the specializations of H will imply
the evidence.

• B ∧ H ∧ e � � where e is positive evidence, because all generalizations of H will also be
inconsistent with B ∧H.

The search can be done in two directions: specific-to-general [27] (or bottom-up); or general-to-
specific [28, 29, 18] (or top-down). In the generic-to-specific search the initial hypothesis is, usually,
the more general hypothesis (i.e., �). That hypothesis then repeatedly specialized through the
application of rules of deductive inference in order to remove inconsistencies with the negative
examples. In the specific-to-general search the examples, together with the background knowledge,
are repeatedly generalized by applying inductive inference rules.

2.2.1 Inference Rules

The notions of generalization and specialization are incorporated in search algorithms as inductive
and deductive inference rules.

Definition 2 A deductive inference (or specialization) rule r maps a conjunction of clauses G
into a conjunction of clauses S such that G � S.

Definition 3 A inductive inference (or generalization) rule r maps a conjunction of clauses S
into a conjunction of clauses G such that G � S.

Inference rules define what can be inferred from what. Since a “blind” application of inference
rules is very inefficient, inductive logic systems employ operators to control the application of
inference rules. An operator expands a node in the search space into a set of successor nodes.
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2 ILP 2.2 ILP as a search problem

Definition 4 A specialization operator [24] maps a conjunction of clauses G onto a set of
maximal specializations of S. A maximal specialization S of G is a specialization of G such that
G is not a specialization of S, and there is no specialization S ′ of G such that S is a specialization
of S′.

Definition 5 A generalization operator [24] maps a conjunction of clauses S onto a set of
minimal generalizations of G. A minimal generalizations G of S is a generalization of S such
that S is not a generalization of G, and there is no generalization G′ of S such that G is a
generalization of G′.

The Shapiro’s MIS [28] system was the first system to use the concept of specialization
(refinement) operator for clauses. MIS operators were based on the notion of the specialization
rule under subsumption (see Definition 4) with the restriction that G and S contain a single
clause. Refinement operators basically employ two syntactic operations on a clause:

1. apply a substitution θ to the clause;

2. add a literal (or a set of literals) to the clause.

Another type of operator is the generalization operator, that is suited for a a bottom-up
search. A generalization operator maps a clause S onto a set of clauses that are generalizations
of G. Generalization operators perform two basic syntactic operations on a clause:

1. apply an inverse substitution to the clause;

2. remove a literal from the body of the clause.

An ideal refinement operator should be locally finite, complete, and proper [30]. A refinement
operator is locally finite if it generates all successors of an hypothesis in the search space and
the set of successors is finite. A refinement operator is complete is it generates all hypotheses in
the search space by applying the operator repeatedly to the most general clause. A refinement
operator is proper if it does not generate equivalent clauses. The refinement operators for full
clausal languages have to drop one of the properties of idealness and it is usually the properness
property that is sacrificed.

Another concept of an ideal refinement operator is that it should be optimal [24]. An operator is
optimal when it generates an hypothesis exactly once. Non-optimal refinement operators generate
all candidate hypothesis more than once, getting trapped in recomputing the same things several
times.

To restrict the application of inference rules is usual to impose further conditions to the
operators besides completeness. One of those conditions require that the generated hypothesis
satisfy the language bias (described in the Section 2.3).

2.2.2 Justification

During the search through the hypothesis space, an ILP system generates and evaluates candidate
hypotheses. Since, there is more than one candidate hypothesis it is necessary to determine which
is the best candidate. Usually the hypotheses are scored using a statistical approach or information
theory approach. The candidate with best score is then selected.

The score functions evaluate essentially two parameters, the accuracy or coverage of an hy-
pothesis, and its transparency. The accuracy is the percentage of examples correctly classified
by the hypothesis. The coverage of an hypothesis H is the number of positive (positive cover)
and negative examples (negative cover) derivable from B ∧H. The transparency of an hypothesis
denotes is readability to humans. For instance, the readability of an hypothesis can be measured
by taking into account the number of literals it contains.

Example 1 (Score function) Let H be an hypothesis, p the number of positive examples
covered by H, n the number of negative examples wrongly covered by H, and l the number of
literals in H. A example of a score function may be: f(p, n, l) = y − n− l.
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2 ILP 2.3 Bias

2.3 Bias

Bias was initially defined by Michell [31] as “any basis for choosing one generalization over an other,
other than strict consistency with the instances”. Its important to note that ILP is a complex
problem due to the large and potentially infinite size of the search space. Practical ILP systems
attenuate the complexity of the problem by imposing all sorts of restrictions, mostly syntactic, on
candidate hypotheses to reduce the search space. Such restrictions are called bias. Bias defines
the hypothesis space and is central to address efficiency. Even a biased hypothesis space can be
too extensive for a complete search to be performed

The notion of inductive bias can be organized in three different types [32]: language bias; search
bias; preference bias. Language bias determines the hypothesis space of the possible concept
descriptions, defining the target concept language. In ILP, the concept description language is
restricted to Horn clauses. Search bias determines which part of the hypothesis space is searched,
and how it is searched. It can be through a restriction or preference bias. The restriction
bias determines which hypothesis should be ignored, while the preference bias determines which
hypothesis should be considered first. Some examples of search bias are the example selection
criteria and the operator used for induction. Validation bias establishes an acceptance criterion
for the learning system, telling it when the search should stop. This could happen, for instance,
when the hypothesis is complete and consistent with the given set of examples.

A bias is declarative if it is explicitly represented. A declarative representation of the bias
is required so bias setting and shifting can be easily performed. The declarative representation
of bias may be achieved by the use of languages that allow bias specification, or by configurable
generic methods that allow both specification and implementation of bias. Declarative bias may
be used by ILP systems to be more adaptable to particular learning tasks.

The declarative bias used in most ILP systems can be divided [24] in two types: syntactic
bias and semantic bias. Both types can be considered as a particular case of the language bias.
Syntactic bias imposes restrictions on the clauses allowed in the hypothesis at the syntactic level.
Semantic bias imposes restrictions on the meaning, or behavior of the hypothesis.

Two examples of declarative bias are the predicate mode and determinacy, that are introduced
in the next section. The first may be classified in the semantic bias category, and the second in
the syntactic bias.

2.4 Mode-Directed Inverse Entailment

Mode-Directed Inverse Entailment [18] (MDIE) is a technique widely used in ILP that uses inverse
entailment together with mode restrictions to find a hypothesisH. To explain the main idea behind
inverting entailment, let us take the specification of ILP problem: given background knowledge B
and positive examples E+ find the simplest consistent hypothesis H such that

B ∧H � E+

Since the goal is to find the simplest hypothesis, each clause in H should explain at least one
positive example (otherwise there is a simpler H ′ which will do). If we take the case of H and E+

being single Horn clauses, it is possible to rearrange the problem as

B ∧ ¬E+ � ¬H

Let ¬ ⊥ be the (potentially infinite) conjunction of ground literals which are true in all models
of B ∧ ¬E+. Since ¬H must be true in every model of B ∧ ¬E+ it must contain a subset of the
ground literals in ¬ ⊥. Therefore

B ∧ ¬E+ � ¬ ⊥� ¬H

and for all H
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3 APRIL 2.5 ILP systems classification

H �⊥

A subset of the solutions for H can be found by considering the clauses that θ-subsume ⊥.
Since, in general, ⊥ can have infinite cardinality mode declarations are used to constrain the
search for clauses which θ-subsume ⊥.

2.5 ILP systems classification

ILP systems can be classified based on some characteristics like the type of bias employed, the
ability to invent new predicates, and the heuristics employed to handle noisy data.

The classification of ILP systems is done in several dimensions, being the main ones: incremen-
tal/non-incremental; interactive/non-interactive; single/multiple predicate learning/theory revi-
sion.

A ILP system is non-incremental (or empirical) if the examples are given at the start and
do not change afterwards. In incremental systems the examples are provided by the user, one
example at the time. The incremental systems typically perform a search using generalization and
specialization techniques, while non-incremental systems use only one of the techniques.

A system is interactive when it poses questions to an oracle (i.e. the user) about the intended
interpretation. The answers to the queries may be used to prune large parts of the search space.
A system that is not interactive is non-interactive.

In single predicate learning from examples, the evidence E is composed of examples for one
predicate only. In multiple predicate learning the aim is to learn a set of possibly interrelated
predicate definitions. Theory revision is usually a form of incremental multiple predicate learning,
where the system starts with a initial approximation of the theory.

3 April

This section describes the use and features of the April system. April is a non-incremental
(empirical), non-interactive, single predicate learning system. It generates non-redundant theories,
handles non-ground background knowledge, uses non-determinate predicates, and makes use of a
strong typed language and of explicit bias declaration such as mode, type, and determination
declarations.

The system aims at being an efficient, flexible, and scalable ILP system. April aims to be an
efficient system through low memory consumption and by providing low response time. Flexibility
is achieved by a modular implementation (described in the next section) and by providing the user
with a high level of customizations. This customization allows April to emulate other systems
through a change of the configuration settings. However, we should note that April’s emulation
capabilities are no substitute for an exact implementation of the original algorithm.

Up to now only the flexibility and efficiency goals have been addressed. We plan to tackle the
scalability problem in the near future by parallelizing April and by conclude the development of
a RDBMS interface (so learning can be done directly from the database).

April is implemented in Prolog and runs on the YAP [33] Prolog compiler. The latest version
of April is available from http://www.ncc.up.pt/~nf/April in a tarball file containing source
code and example files.

3.1 Setting up April

April constructs logic programs from examples and background knowledge. The syntax for
examples, background knowledge, and hypotheses is YAP Prolog (hence ISO-Prolog standard).
For instance, given various examples of the member(Number,List) predicate, that checks if a
Number is in the List, and some background knowledge, April can construct a definition of the
member predicate. Before using April to induce the member predicate definition (a theory) is
necessary to prepare some input files.
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3 APRIL 3.1 Setting up April

To induce the member predicate definition, or in general to induce a theory, April requires a
number of input files that setup the problem being solved and contain configuration parameters.
The files describing the background knowledge and the positive examples are mandatory, while
all the others are optional.

The background knowledge file encodes information, in the form of Prolog clauses, relevant
to the domain of the concept to be learned. It can also contain directives understood by the
Prolog compiler being used (for example, :- consult(someotherfile).). This file can also
contain language and search restrictions for April (see Section 3.4 for a list and description
of the parameters available). Even though the system has most of its parameters predefined,
each background knowledge file must contain mode, type, and determination declarations. The
background file should have a extension .b. An example of a background file is given in Example 2.

Example 2 (member.b)

:- determination(member/2,member/2).

:- determination(member/2,n/1).

:- modeh(1,member(+int,+list )).

:- modeb(1,n(+int)).

:- modeb(1,member(+int,+list)).

:- modeb(1,+int=+int).

:- modeb(1,+list=+list).

:- typestructure(list,[int|list]).

list([]).

list([Int|List] ) :-

integer(Int),

list(List).

int(Number):- integer(Number).

The positive examples file should contain instances of the concept to be learned encoded
as Prolog ground facts. The filename should have the extension “.f” and the name should be the
same as that used for the background knowledge. Example 3 is an example of a positive examples
file.

Example 3 (member.f)

member(0,[0]).

member(2,[2]).

member(3,[2,3]).

member(3,[4,2,3]).

member(5,[4,2,3,5]).

The negative examples file should contain non instances of the concept to be learned also
encoded as Prolog ground facts. April is capable of learning from positive examples only, so the
negative examples file is not mandatory. The filename should have the extension “.n” and the
filename should be the same as that used for the background knowledge.

Example 4 (member.n)
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3 APRIL 3.2 Running April

member(0,[1,2]).

member(1,[3]).

member(3,[]).

member(3,[1,2]).

member(3,[1,2,4]).

member(0,[1]).

member(0,[4]).

A more compact way of expressing negative information can be encoded through the use of
non-ground constraints. Such constraints (see Section 3.5.4) can be specified in the background
knowledge file.

Another input file is the settings file. This file is optional and it is intended to store
April’ configuration parameters and therefore having them completely separated from background
knowledge. An example of a parameters setting file is given in Example 5.

Example 5 (member.s)

:- set(nodes,10000).

:- set(noise,0).

The weights file is optional and is intended to store initial example weights to be used by
the weighted coverage heuristic (explained in Section 3.5.2). Its name should be the same as
the background file but with the extension “.w”. A different filename can be defined through
the parameter weights file. For each example, its order number, class (pos or neg), miss
classifications, and weight are provided to April through the weight/4 predicate (see Example 6).

Example 6 (member.w)

weight(1,pos,0,0.59375).

weight(2,pos,1,1.1875).

weight(3,pos,1,1.1875).

3.2 Running April

April is executed in the command line through the invocation of the executable sapril.
The syntax of sapril is: sapril datasetname [settings file].

April can be used to induce a predicate definition for the member relation (described previously)
once the background file (member.b), positive (member.f) and negative (member.n) examples
files are saved in a directory. Assuming that the referred files are in the current directory, April
can be executed to generate a theory by typing sapril member on the command line. Note that
it is only necessary to pass the name of the background file without any extensions. April will
automatically look for all files in the current directory.

The output of executing the above command, including the theory found, is presented in the
Appendix A. After inducing a theory, April saves the theory found in a file, together with some
extra information.

3.3 Simplified Algorithm

April’s algorithm is based on the MDIE (presented in Section 2). The main steps in the April’s
algorithm are as follows:

1. Example Selection: Select an uncovered positive example e to be generalised. If none
exists, stop.
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3 APRIL 3.4 Meta-language

2. Saturation step
Construct the most-specific-clause ⊥(e,B,C) that entails the example selected, and is within
language restrictions provided (C). The most-specific-clause is usually a definite clause with
many literals, and is called the “bottom clause” [18].

3. Reduction Step
Find a clause more general than the bottom clause. This is done by performing a general-to-
specific search in the subsumption lattice bounded bellow by ⊥(e,B,C). The clauses’ bodies
generated during the search are subsets of the literals from the bottom clause.

4. Cover Removal
The clause with the best score is added to the current theory and all positive examples made
redundant are removed.

April has several example selection procedures. The choice of the example selection procedure
is done through the parameter sat example (see Section 3.4).

Like other systems based on MDIE (eg. Progol [18, 34] or Indlog [7]) April searchs a bounded
sub-lattice for each example ei relative to background knowledge B and constraints C. The sub-
lattice has a most general element > (the empty clause �) and one least general element ⊥i such
that B∧ ⊥i ∧¬ei ` �.

The top-down search performed by April traverses the generalization lattice starting with the
most general clause (having the same predicate symbol of the target concept). The search then
proceeds by specializing the current clause by adding literals to its body or binding variables.
During this process, the coverage of the generated hypothesis is computed. The goal of the search
is to find the best hypothesis, i.e., the hypothesis that covers the maximum number of positive
examples as possible and is consistent with the negative examples.

Most of the time spent by April, and other ILP systems, is in the reduction step computing
hypothesis coverage. To speed up this step, April uses techniques like lazy evaluation of examples
and coverage caching that will be explained later. These optimizations can be turned on and off
by using the meta-language.

3.4 Meta-language

The meta-language provided by April allows declarative bias specification. The meta-language
features include determination declarations, mode and type declarations, background predicates’
properties, and facilities to change system parameters.

3.4.1 Determination declarations

Determination declarations [35] specify, for each predicate symbol, which other predicate sym-
bols can appear in its definition. They take the form determination(TargetName/Arity1,BackgroundName/Arity2).

The first argument is the name and arity of the target predicate (i.e. the predicate that appears
in the head of hypothesised clauses). The second argument is the name and arity of a predicate
that can appear in the body of such clauses.

Typically there will be many determination declarations for a target predicate, corresponding
to the predicates thought to be relevant to the target predicate. April does not construct any
clauses if there is no determination declarations. Since April is a single predicate learning system,
it can only accept one target predicate at a time. If multiple target determinations are provided
by the user, the first one is chosen. An example of determination declaration can be seen in
Example 2 on page 8.
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3 APRIL 3.4 Meta-language

3.4.2 Mode declarations

Mode declarations specify the mode of call for predicates that can appear in any clause induced
by April. These declarations specify the arguments’ types, and also indicate if they are intended
to be an input or an output argument. There may be more than one mode declaration for each
predicate symbol except to head of the target predicate.

Mode declarations take the form modeh(1,PredicateMode) for the head of the target predi-
cate, and modeb(RecallNumber,PredicateMode) for the literals that may appear in the body of
an hypothesis clause. The number of possible outputs, for each combination of input arguments,
is limited by the RecallNumber . RecallNumber can either be a number specifying the number of
successful calls to the predicate, or * specifying that the predicate has bounded non-determinacy.
It is usually simpler to specify RecallNumber as * with the side effect that the system may become
slower.

PredicateMode specifies the arguments mode of a predicate. It has the form:

predicatename( ModeType , ModeType ...).

Each ModeType is either a simple or structured. A simple ModeType is one of the form:

• +T specifying that when a literal with predicate symbol predicatename appears in an
hypothesised clause, the corresponding argument should be an ”input” variable of type
T

• -T specifying that the argument is an ”output” variable of type T

• #T specifying that it should be a constant of type T

A structured ModeType is of the form f(..) where f is a function symbol and each argument is
either a simple or structured ModeType.

Types have to be specified for every argument of all predicates to be used in constructing an
hypothesis. This specification is done within a mode(...,...) statement. By default April does
not perform type-checking, but it can be activated through the parameter typechecking. An
example of a type structure is given in Example 2.

Here are some examples of mode declarations:

Example 7 (Mode declarations)

:- mode(1,dec(+integer,-integer)).

:- mode(1,mult(+integer,+integer,-integer)).

:- mode(1,plus(+integer,+integer,-integer)).

:- mode(1,(+integer)=(#integer)).

:- mode(*,has_car(+train,-car)).

3.4.3 Background predicate’s properties

April allows the user to indicate some properties (commutative and equivalence) of the pred-
icates, in the background knowledge, that are used in the construction of the bottom clause. By
taking advantage of these properties, April is able to reduce the bottom clause size, and thus the
size of the search space.

Currently available predicate declarations and their syntax are:

• Equivalence: equiv(predicatename1(arguments),predicatename2(arguments))
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3 APRIL 3.5 Altering the search

• Commutativity: commutative(predicatename/arity)

The equivalence declaration may be used to indicate April that two terms are equivalent. For
instance, equiv(’=<’(A,B),’>=’(B,A)) tells April that it does not need to have both terms in
the bottom clause.

The commutativity declaration may be used to inform April that the arguments of a term
are commutative. Consider for example the declaration commutative(’=’/2). This declara-
tion informs April that literals of the equality predicate may have the arguments commuted.
Commutativity declaration can be seen as a special case of the equivalence declaration where
predicatename1=predicatename2 and the arguments variables are switched. For example, the
previous commutative declaration could be rewritten has equiv(’=’(X,Y),’=’(Y,X)). Although
the commutativity declaration can be represented by the equiv declaration it is available in April
for two reasons: first for simplicity, the commutative declaration is more compact and simple than
the equivalence declaration; and secondly, for compatibility with existing systems (e.g. Indlog)
and previous versions of April.

3.4.4 Parameters

We consider the system parameters as part of the declarative bias because some of the param-
eters constraint and change the search performed by April. Hence, by changing the parameters
values the user may change the search bias [32] or the restriction bias [32].

The set/2 predicate is used for setting April’s parameters values.

set(Parameter,Value)

April’s most important parameters are described in Table 1 and Table 2. Table 1 presents the
safe parameters. A parameter is considered “safe” if changing its value does not alter the induced
theory produced by April. However, the safe parameters may have a significant impact on April’s
performance. Table 2 describes other parameters that are, or may be in certain conditions, not
safe.

3.5 Altering the search

The search performed by April may be user specified by setting some appropriate parameters.
This section presents ways to alter the search.

3.5.1 Search strategies

The search for individual clauses is mainly affected by two parameters: search and heuristic. The
search sets the search strategy that will be used to induce clauses and the heuristic parameter
sets the evaluation function used to measure the quality of the hypothesis generated.

The following search strategies are available in April:

• bf : Enumerates shorter clauses before longer ones. At a given clause length, clauses are
re-ordered based on their evaluation. This is the default search strategy;

• best-first: Enumerates clauses in a best-first manner using the heuristic function defined
by parameter heuristic to evaluate the clauses.

12



3 APRIL 3.5 Altering the search

Parameter Possible Values Description
cache true or false (true) If set to true then clauses coverage are cached for

future use.
cache storage list, rl (rl) Selects the structure used to keep clauses’ coverage:

interval lists or RL-Trees (see Section 4.7 for more
information).

optimise clauses true or false (false) If true performs query optimisations as described
in [9].

record true or false (false) If true then April’s execution output (defined by
verbose parameter) is written to a file. The
filename is given by recordfile.

recordfile Prolog atom (record) Sets the filename where the execution output is
going to be written. Only makes sense if record
is set to true.

verbose Integer >= 0 (2) Sets the level of verbosity of April’s output mes-
sages.

trace Integer >=0 (0) Level of information added to the generated trace
file for VisAll [36] (0 disables trace file creation).

use tries yes or no (no) Defines if the Trie data structure [37] is used to
pack/compress data associated to the search space.

clean tries yes or no (yes) Defines if the Tries are cleaned at the end of a
reduction step. This parameter is only used if
use tries is set to yes.

save theory yes or no (yes) If set to yes, April saves the theory found into a file.

Table 1: April’s safe parameters

3.5.2 Heuristic functions

The heuristic function is defined by the parameter heuristic. The value given by the heuristic
function to a clause is used to order the clauses.

Next we enumerate the available heuristic functions in April, where the constants we use have
the following meaning: P is the number of positive examples covered by the clause; N is the
number of negative examples covered by the clause; L is the number of literals in the clause; U
the number of variables in the clause head that are unbound.

• positive: Clause utility is simply P ;

• coverage: Clause utility is P −N ;

• coverage l: Clause utility is P −N +L. The idea with this function is to give greater score
to bigger clauses;

• compression: Clause utility is P −N − L+ 1.

• compression2: Clause utility is P −N−L∗(U+1)+1. This is a variant of the compression
evaluation function;

• progol: Clause utility is P −L−U . This function is based on the Progol evaluation function
described in [18];

• laplace: Clause utility is (P + 1)/(P +N + 2);

• l: Clause utility is L;

• acc: Clause utility is P/TP − N/TN , where TP and TN are, respectively, the number of
positive and negative examples;

13



3 APRIL 3.5 Altering the search

Parameter Possible Values Description
clauselength Positive integer (4) Sets an upper bound on number of literals

acceptable in a clause.
h Positive integer (10) Sets the maximum depth of the proof tree

carried out by the theorem-prover.
i determinancy Positive integer (2) Bounds the number of interactions carried out

in the bottom clause construction.
nodes Positive integer (2000) Sets an upper bound on the nodes to be

explored when searching for an acceptable
clause.

noise Positive integer >= 0 (0) Sets an upper bound on the number of neg-
ative examples allowed to be covered by an
acceptable clause.

search bf, bestfirst (bf) Sets the search strategy.
explore true or false (false) If true then forces search to continue up to

the point where all remaining elements in the
search space are definitely worse than the
current best element. Otherwise, the search
stops when it is certain that all remaining
elements are no better than the current best.

language Integer >= 0 (0) Specifies the maximum number of occurrences
of a predicate symbol in any clause. A value
of 0 disables this parameter. This parameter
is based on Camacho’s ILLS [7].

language init Integer >= 1 or inf (1) Specifies the initial language level.
lazy eval disabled,pos,neg,all (dis-

abled)
Specifies if and what kind of lazy evaluation is
performed when computing clause coverage.
The use of lazy evaluation of negatives does
not alter the theory generated.

minacc Floating point number be-
tween 0 and 1 (1.0)

Sets a lower bound on the minimum accuracy
of an acceptable clause.

targetacc Floating point number be-
tween 0 and 1 (1.0)

Sets a lower bound on the minimum accuracy
of an acceptable theory. April stops once
theory accuracy reaches targetacc.

mincover Positive integer (0) Sets a lower bound on the number of positive
examples to be covered by an acceptable
clause. The value 0 disables the parameter.
This parameter can be used to prevent ground
unit clauses to be added to the theory (by
setting its value to 2).

minpcover Floating point number be-
tween 0 and 1 (0)

Sets a lower bound on the positive examples
covered by an acceptable clause as a fraction
of the positive examples covered by the head
of that clause. If the best clause has a ratio
below this number, then it is not added to
the current theory. Note that the use of
this parameter together with the mincover
parameter may result in unexpected behavior.

samplesize Integer >= 0 (0) Sets the number of examples selected (us-
ing the method defined by the parameter
sat example) to be used in the induction
step. A value of 0 turns off sampling and all
uncovered examples are used.

sat example first, random, weight Example selection strategy for the saturation.

Table 2: April’s parameters14



3 APRIL 3.5 Altering the search

• acc-ul: Clause utility is P/TP −N/TN − L ∗ (U + 1), where TP and TN are, respectively,
the number of positive and negative examples.

• weighted coverage: Clause utility is the same as the coverage function with the difference
that examples have weights [38]. Initial weights can be defined in a weights file (see
Section 3.1).

3.5.3 Pruning

Pruning is used to exclude clauses and their refinements from the search. It is very useful for
stating which kinds of clauses should not be considered in the search. The use of pruning greatly
improves the efficiency of ILP systems since it leads to a reduction of the size of the search space.

Two types of pruning can be distinguished within April, built-in and user-defined pruning.
Built-in, or internal pruning, refers to pruning implemented in April that performs admissible
removal of clauses from a search, and is currently available for all evaluation functions. User-
defined prune statements can be written to specify the conditions under which a user knows that
a clause (and its refinements) could not possibly be an acceptable hypothesis. Such clauses are
pruned from the search. The prune definitions are written in the background knowledge file using
rules of the form prune((ClauseHead:-ClauseBody)) :- Body.

The following example is from a pharmaceutical application that states that every extension
of a clause representing a ”pharmacophore” with six ”pieces” is unacceptable, and that the search
should be pruned at such a clause.

Example 8 (Pruning declaration)

prune((Head:-Body)) :-

violates_constraints(Body).

violates_constraints(Body) :-

has_pieces(Body,Pieces),

violates_constraints(Body,Pieces).

violates_constraints(Body,[_,_,_,_,_,_]).

has_pieces(Body,Pieces):-...

3.5.4 User-defined constraints

April accepts the definition of Integrity Constraints (IC) that should not be violated by a hy-
pothesis. Integrity Constraints can be used to impose syntactic or semantic properties on the
hypothesized clauses. They are are written in the background knowledge file.

The constraints are defined by rules of the form:
is constraint(HypothesisBody):- ConstraintBody.

or
constraint(HypothesysHead,HypothesisBody):- ConstraintBody.

ConstraintBody is a set of literals that specify the condition(s) that should not be violated by
hypotheses found by April.

Note that negative examples are a special case of integrity constrains. If April applies a
constraint successfully to a hypothesis then it will be considered inconsistent and will not be
accepted. Note also that an integrity constraint does not state that the refinement of an hypothesis
that violates one or more constraints will also be unacceptable. To achieve this pruning should be
used.

The following example is from a pharmaceutical application that states that hypotheses are
unacceptable if they have fewer than three ”pieces”.

15
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Example 9 (Constraint declaration)

constraint(Head,Body):-

has_pieces(Body,Pieces),

length(Pieces,N),

N =< 2.

3.5.5 User-defined refinement

April allows the user to redefine the refinement operator by specifying a definition for the predicate
refine/2 that states the transitions in the refinement graph traversed during a search. The refine
definition is written in the background knowledge file in rules of the form:

refine(Clause1,Clause2):- Body.

This specifies that Clause1 is refined to Clause2 . The definition can be nondeterministic,
and the set of refinements for any clause is obtained trough backtracking. Clause2 may have cuts
(“!”) in its body. If the parameter construct bottom is not set to false then, for any refinement,
April ensures that Clause2 implies the current most specific clause.

The parameter refine is used to select the refinement mode. April accepts two refinement
modes: auto and user. If refine is set to auto then is performed an automatic enumeration of
all clauses acceptable by the meta-language. The result is a top-down search starting from the
empty clause. If the parameter refine is set to user then the user must specify a domain-specific
refinement operator with refine/2 statements as described previously.

4 Implementation Details

April is implemented mainly in Prolog and runs in the YAP [33] Prolog compiler. By using a Prolog
compiler like YAP, April takes advantage of its tested and fast deductive engine. YAP implements
some advanced techniques in Logic Programming, such as implicit and explicit parallelism [22],
and tabling [23], that could contribute to improve April’s response time.

The choice of using Prolog, and Prolog engines, also carries some drawbacks. One of such
drawbacks is the inability of efficiently implement complex data structures in Prolog. To cir-
cumvent this limitation, some data structures have been implemented in C to improve response
time and reduce memory consumption. An example of such data structures are the RL-trees and
Tries [37] data structures. RL-Trees are described in Section 4.7.1. The Trie data structure used
in April was implemented by Ricardo Rocha and is available in YAP as an external module. An
essential property of the Trie structure is that common prefixes are represented only once. April
exploits inherently and efficiently the similiarities among the hypotheses by using Tries to store
the hypothesis and related information.

Research in improving the efficiency of ILP systems has been focused in reducing their sequen-
tial execution time, either by reducing the number of hypotheses generated (see, e.g., [32, 11]), or by
efficiently testing candidate hypotheses (see, e.g., [6, 10, 9, 7]). Several techniques to improve the
sequential performance have been implemented, such as coverage caching, incremental language-
level search [7], clause transformation [10, 9], and a strong declarative bias.

Another way of improving the response time of ILP systems, besides improving their sequential
efficiency, is through parallelization. The parallelization strategies used so far in ILP can be divided
in four types: parallel exploration of independent hypothesis [14]; parallel exploration of the search
space [13, 14, 15], parallel coverage test [14, 16, 17]; parallel execution of an ILP system over a
partition of the data [12, 13, 16, 17]. As pointed out by Page [39], and confirmed by research
results [12, 13, 14, 15, 16, 17], parallelization of ILP systems is a research direction that must be
pursued. This line of research will be followed by us in the next phase of April’s development.

In the rest of this section we present April’s module architecture, a simplified description of its
main algorithms, and its refinement operator. We also provide a descrition of two optimization
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Figure 1: Module Architecture

techniques: lazy coverage evaluation and coverage caching.

4.1 April Module Architecture

April is implemented as a set of Prolog modules. This modularity allows developers with knowledge
of the Prolog language to create a ILP system suited to their needs by selecting a subset of modules
or by replacing a module with their own code.

Figure 1 presents April’s module architecture. We divided the modules in two major types:
data modules and functional modules. The data modules are used to store data, while the
functional modules implement an algorithm or some functionality. A third type of modules,
the extension modules, include modules that implement ideas available in other systems, or
described in papers. Currently, there are three extension modules: the language level module, that
implements Camacho’s Incremental Language Level Search [11]; the clause optimisations module,
that implements the optimisations described by Costa et al. [9]; and the ExamplesWeights module,
that provides functionalities to allow examples to have weights [38].

The induction module implements April’s main algorithm. The example selection module aims
to provide the functionalities for selecting an example to be used in the saturation module. The
reduction module performs the search through the hypothesis space to find a clause. The clauses
generated during the search are evaluated to compute their coverage against the given examples.
The coverage computation and the explicit calls to the Prolog interpreter are done in the evaluation
module. The coverage computation algorithm implemented in this module. The theory module
processes the clauses found by the reduction module to generate the final theory that is presented
to the user. The cache module implements the coverage caching scheme. The examples module
stores the examples provided by the user. The examples may be stored in YAP clausal database
or, in the future, in a relational database system. The bias declarations provided by the user
are stored in the bias module and settings module. The UserSpace module stores all background
knowledge provided by the user and the clauses committed by the theory module to the final
theory. The RL-tree and tries data structures are described in Section 4.7.

The main modules are described in more detail in the following subsections.
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4 IMPLEMENTATION DETAILS 4.2 April Induction Algorithm

4.2 April Induction Algorithm

April accepts as input: a training set consisting of positive (E+) and, optionally, some negative
(E−) ground examples; background knowledge (B) in the form of definite clauses; and a set of
constraints C that include determination declarations, mode and type declarations, background
predicates’ properties, and facilities to change system parameters. As output, April generates a
reduced1 theory H that is consistent and complete 2.

Algorithm 1 April’s main algorithm

Input : E− and E+ /* The training set */
B /* Background knowledge */
C /* Set of constraints */
Output: H /* A theory */
H = ∅
E+
cur = E+

SampleSize = C(samplesize) /* Size of the sample */
while notfinish condition ok() do /* Default condition: E+

cur 6= ∅ */
Best = pool best() /* Get best clause in the pool */
j = 1
do /* Clause generation cycle */
e+
i = select example(E+

cur, C, SampleSize, j)
⊥= saturate(B,H,C, e+

i ) /* See Section 4.3 */
hi = reduction(⊥, B,H,C,E+

cur, E
−, Best) /* See Section 4.4 */

if hi better than Best then Best = hi
add2pool(hi)
incrementj

while j < SampleSize and j <| E+
cur |

while Best 6= NULL /* Clause consumption cycle */
E+
cur = E+

cur − covered(Best) /* Remove redundant examples */
H = H ∪Best /* Add best clause to theory */
pool remove(Best) /* Remove Best from pool */
Best = pool next best() /* Select next best clause in the pool */
if End Consumption(C) then break

end while
end while
H = rem redundant clauses(B,H,E+) /* Remove redundant clauses from H */

The main algorithm of April is presented in Algorithm 1. Note that April has many configu-
ration options and several options slightly modify the behavior of the algorithm presented. The
outcome is that April has several algorithms that are “mutations” of the one presented. The outer
cycle contains two inner cycles that we called clause generation cycle and clause consumption
cycle. The idea behind these two cycles is similar to the cautious induction method implemented
in CILS [21]. As in CILS, April first generates a set of candidate clauses (clause generation). April
then selects the hypothesis with higher quality and adds them to the theory. The difference to
CILS is that April performs a more greedy selection, that may result in a slightly worst quality
of the final theory. On the other hand April can learn recursive predicates while CILS does not.
The outer cycle ends when there are no positive examples left or a stopping condition is satisfied.

The clause generation cycle produces a samplesize number of clauses, each clause hi is
generated based in one example e+

i . At each iteration, an example e+
i is selected sequentially

1Let T be set of clauses. T is reduced if and only if T contains no redundant clauses.
2Consistency and completeness conditions may be relaxed by constraints C

18



4 IMPLEMENTATION DETAILS 4.3 Saturation

or randomly from E+
cur (the choice is made by the user). The selected example e+

i is saturated
and flattened (see Section 4.3) using B and C, generating the ⊥ (bottom clause). A clause
(hypothesis) is generated by using the reduction Algorithm 2. The Best clause is used in the
reduction to improve pruning, thus reducing the search space and improving efficiency. The clause
hi found at each iteration is added to a pool of clauses. This pool contains the clauses found
ordered by the number of positive and negative examples covered.

The clause consumption cycle tries to consume the clauses found previously, i.e. add the clauses
to H. The best clause in the pool is added to H. The examples covered by Best are removed from
E+
cur, and Best is removed from the pool. Then, all clauses in the pool will have their coverages

recomputed (by invoking pool next best()). Those clauses in the pool that have a coverage of 1
are immediately removed and the others reordered. The best clause in the pool is then used as
the new Best clause. The cycle ends when all clauses in the pool have been considered or the
constraints C are satisfied.

Finally, the theory found is reduced, i.e., the redundant clauses that may exist in the theory
are removed.

4.3 Saturation

Saturation aims at constructing of the bottom clause ⊥ that corresponds to the bottom of
generalization lattice. This is the first step to remove useless clauses from consideration when
searching for an hypothesis. The task in saturation is to gather all “relevant” ground atoms that
can be derived from B ∧ ¬e+

i and satisfy the constraints C. The bottom clause generated will
contain all literals that may be found in the clauses generated during the search.

April uses a slightly modified version of Progol’s saturation algorithm to construct the bottom
clause [34]. All relevant atoms collected during the construction of the bottom clause are flat-
tened [40] and input or ouput arguments of the literal are transformed into skolemized variables.
Then the new atom (with skolem variables) is recorded, to be used in the refinement, together with
its i-depth and an identifier (auto-number). The skolemization performed by April is the main
difference to the original saturation algorithm and makes unnecessary the use of substitutions
lists for the literals in the reduction step (e.g. as performed by Aleph and Indlog), because the
substitutions are implicit in the skolemized literals. The identifier number is used, in the reduction
step, to impose an ordering to the literals that appear in a clause. Like other ILP systems, April
flattens all function symbols by introducing equalities. The equalities are internally represented
by April as sat eq(Var,Value). Flattening is a method to make a theory function-free and was
introduced in ILP by Rouveirol [41, 40, 42].

Example 10 shows a bottom clause, as seen by the user and how it is internally represented
using literal identifiers.

Example 10 (Bottom Clause)
Example of a bottom clause generated by April (for example member(3,[2,3])):

member(A,B) :-

sat eq(A,3), sat eq(B,[2,3]), sat eq(B,[C|D]), sat eq(D,[A|E]),
member(A,D), sat eq(F,[A|G]), sat eq(G,[E|E]), member(A,F), member(C,B).

Internal representation of the ⊥ clause using literals identifiers:
0 :- 1, 2, 3, 4, 9, 10, 11, 12, 14.

4.4 Reduction

The bottom clause generated in the saturation step is the most specific clause (⊥i) that subsumes
e+
i relative to the background knowledge B. Thus, for the example e+

i , the search for an acceptable
hypothesis is limited to the bounded sub-lattice� ≺ H ≺⊥. The bottom clause is often too specific
to be of interest because it sometimes just subsumes e+

i . For this reason ⊥i must be generalized.
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The search in the subsumption lattice is made using a top-down approach, starting with the more
general clause (that has the same predicate symbol of the target concept).

Algorithm 2 Reduction algorithm

Input :⊥i /* Bottom clause */
B /* Background knowledge */
H /* Current theory */
C /* Set of constraints */
E+
cur and E

− /* Examples */
Best /* Best clause */
Output:hi /* Best clause seeded with e+

i */
MaxLangLevel = C(language level)
CurLevel = C(init level)
searchMethod = C(search) /* Search method used (bestfirst or breadth-first) */
hi = Nothing
Open = {RootNode(⊥i)}
repeat
hi = search(searchMethod,Open,CurLevel, B,H,C,E+

cur, E
−, Best)

if hi! = NULL then break
CurLevel = CurLevel + 1
if CurLevel > C(MaxLevel) then break

end repeat

The Algorithm 2 generates a clause hi given ⊥i, background knowledge B, a set of constraints
C, and the best clause found so far. The search for hi is done using a best-first or breadth-first
strategy. During the search the clauses are generated by the refinement operator described in
Section 4.5. For each clause generated the system computes its coverage, unless the clause violates
some user constraint. The goal of the search is to find the shortest hypothesis that covers the
maximum number of positive examples and is consistent with the negative examples. If a clause
coverage is inferior to the coverage of Best clause found so far, then it is pruned. Other safe
pruning is made to attempt to reduce the search space. For instance, if a clause positive coverage
is lower than the value defined in the parameter minpos then it is pruned.

April implements the Incremental Language Level Search [11] strategy. Currently, this feature
is not efficiently implemented for the reason that we now explain. If a candidate hypothesis hi is
not found on the current language level, all clauses generated in that unsuccessfully search must be
generated again and their coverage recomputed (if caching coverages is disabled) in the following
language levels. The original implementation found in Indlog avoids regenerating the clauses by
keeping a list of clauses that violate the language level. When the search ends in a language level,
Indlog expands the clauses kept in the list instead of recomputing all clauses again.

4.5 Refinement Operator

The refinement operator in April is designed with the primarily concern of maintaining the
relationship � ≺ H ≺⊥ for each clause H. Secondly, the operator avoids the use of siblings
lists (for example, as used by Indlog and Aleph). This is achieved by exploring the ordering of the
bottom clause literals.

April’s refinement operator takes as input a clause (represented as a list of bottom clause literal
identifiers), and all variables found in the clause (bound, unbound, and the clause’s unbound head
variables). The output is a literal that can be added to the clause. Each literal selected must be
mode and language level conform, and its identifier bigger than the latest added identifier in the
clause. By imposing an ordering on the clauses’ literals, based on the order by which the literals
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were added to the bottom clause, the operator eliminates combinations of literals that would lead
to equivalent clauses, although syntactically different.

Example 11 presents some of the clauses generated, by applying repeatedly the refinement
operator to the head literal (0) of the bottom clause in Example 10.

Example 11
Clauses that the refinement operator may generate:

member(A,B):-A=3

member(A,B):-A=3,B=[2,3]

member(A,B):-B=[2,3]

member(A,B):-B=[C|D]

member(A,B):-B=[C|D],member(A,D)

member(A,B):-B=[C|D],member(A,D),member(C,B)

member(A,B):-B=[C|D],member(C,B)

member(A,B):-B=[C|D],D=[A|E]

The ordering imposed on the literals identifiers prevents the operator from generating redun-
dant clauses like:

member(A,B):-B=[2,3],A=3

member(A,B):-B=[C|D],B=[2,3]

member(A,B):-B=[C|D],member(C,B),member(A,D)

4.6 Coverage computation

The coverage of a clause hi is computed by testing the candidate clause against the positive and
negative examples. This is done by verifying for each example e in E if B ∧ hi ` e. The time
needed to compute the coverage of a clause depends, primarily on the cardinality of E+ and E−.

An efficient coverage computation is crucial for the performance of an ILP system. Several
approaches have been proposed to improve coverage computation efficiency. Camacho [7, 43]
proposed a technique called lazy evaluation that consists in avoiding or postponing the evaluation
of each clause against all the examples. Lazy evaluation can be activated on April through the
parameter lazy eval and it is furher described in the next section. Another approach consists
in performing exact transformations in the clauses generated to make them more efficient to be
executed by a Prolog engine [10, 9]. This technique is available on April and can be activated
using the parameter optimise clauses. Another technique used to speedup coverage computation
consists in maintaining a cache with covered examples of each clause. Coverage caching is described
in Section 4.7. A technique called query pack [6] exploits the existent great number of shared
literals between a clause and its refinements. It groups the clauses in sets that are executed as
a pack (single clause). This technique aims at avoiding redundant computation in the coverage
computation. One of those approaches consists in performing the coverage test for each example
in parallel [17, 14].

4.6.1 Lazy evaluation

The lazy evaluation of examples, originally proposed by Camacho [7], is a technique that avoids
or postpones the evaluation of each clause against all the examples. We distinguish three types
of lazy coverage computation: negatives; positives; and all. Algorithm 4.6.1 describes how the
computation is performed in these cases. It is important to note that performing lazy evaluation
limits the use of heuristics and pruning because the coverage computed for a given clause may be
inaccurate.
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Algorithm 3 Lazy Evaluation algorithm

Input : h /* An hypothesis (clause) */
B /* Background knowledge */
H /* Current theory */
C /* Set of constraints */
E+
cur and E

− /* Examples */
LazyType /* Type of lazy evaluation: pos, neg, all */
Output:(Pos,Neg) /* Number of positive and negative examples covered by h*/
Neg = 0
Pos = 0
NOISE = C(noise)
if LazyType == neg then
Pos = compute coverage(h,B,H,E+

cur)
if Pos < C(mincover) then Neg = inf
else Neg = compute lazy coverage(h,B,H,E−, NOISE + 1)
endif

elseif LazyType == pos then
Neg = compute lazycoverage(h,B,H,E

−, NOISE + 1)
if Neg > NOISE then Pos = inf
else Pos = compute coverage(h,B,H,E+

cur)
endif

elseif LazyType == all then
MINCOV ER = C(mincover)
Pos = compute lazy coverage(h,B,H,E+

cur,MINCOV ER)
if POS < MINCOV ER then Neg = inf
else Neg = compute lazy coverage(h,B,H,E−, NOISE)
if Neg > NOISE then Pos = inf,Neg = inf
else Pos = compute coverage(h,B,H,E+)
endif

endif

compute lazy coverage(h,B,H,E, Limit) auxiliary function
Covered = 0
for each e in E do
if h ∧B ∧H ` e then
Covered = Covered+ 1
if Covered == Limit then
break

endif
endif

end for
return Covered
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4.7 Coverage Caching

As said earlier, an efficient coverage computation is crucial for the performance of an ILP system.
In order to reduce the number of examples tested, thus minimizing the coverage computation time,
April has a coverage caching mechanism that stores clause’s coverages.

To reduce the time spent on computing clauses coverage some ILP systems, such as Aleph [20],
Indlog [7], and April, maintain lists of examples covered (coverage lists) for each hypothesis that is
generated during execution. Coverage lists are used in these systems as follows. An hypothesis S
is generated by applying a refinement operator to another hypothesis G. Let Cover(G) = {all e ∈
E such that B ∧ G � e}, B the background knowledge, and E is the set of positive (E+) and
negative examples (E−). Since G is more general than S then Cover(S) ⊆ Cover(G). Taking
this into account, when testing the coverage of S it is only necessary to consider examples in
Cover(G), thus reducing the coverage computation time. Cussens [8] extended this scheme by
proposing what is designated as coverage caching. The coverage lists are permanently stored and
reused whenever necessary, thus reducing the need to compute the coverage of a particular clause
only once. Coverage lists reduce the effort in coverage computation at the cost of significantly
increasing memory consumption. Efficient data structures should be used to represent coverage
lists to minimize memory consumption.

The data structure used to maintain coverage lists in systems like Indlog or Aleph are Prolog
lists. For each clause two lists are kept: a list of positive examples covered and a list of negative
examples covered. A number is used to represent an example in the list. The positive examples are
numbered from 1 to | E+ |, and the negative examples from 1 to | E− |. The systems mentioned
reduce the size of the coverage lists by transforming a list of numbers into a list of intervals. For
instance, consider the coverage list [1, 2, 5, 6, 7, 8, 9, 10] represented as a list of numbers. This list
represented as a list of intervals corresponds to [1− 2, 5− 10]. Using a list of intervals to represent
coverage lists is an improvement to lists of numbers but it still presents some problems. First, the
efficiency of performing basic operations on the interval list is linear on the number of intervals
and can be improved. Secondly, the representation of lists in Prolog is not very efficient regarding
memory usage. The RL-Tree data structure was designed to tackle those problems mentioned:
memory usage and execution time. It can be used to efficiently represent and manipulate coverages
lists.

Even using lists of intervals the memory consumption is high and complexity of the operations,
to access elements in the lists, is linear, i.e. O(n), where n is the number of intervals.

4.7.1 RL-Trees

To tackle the memory consumption problem that results from storing clauses covered examples
we designed and implemented a new data structure - RangeList-tree (RL-Tree).

The RangeList-Tree data structure is an adaptation of a generic data structure called quadtree
[44] that has been used in areas like image processing, computer graphics, and geographic infor-
mation systems. Quadtree is a term used to represent a class of hierarchical data structures whose
common property is that they are based on the principle of recursive decomposition of space.
Quadtree based data structures are differentiated by the type of data that they represent, the
principle guiding the decomposition process, and the number of times the space is decomposed.

The RL-Tree is designed to store integer intervals (e.g. [1− 3] ∪ [10− 200]). The goals in the
design of the RL-Tree data structure were: efficient data storage; fast insertion and removal; and
fast retrieval.

In the design and implementation of the RL-Tree data structure we took the following char-
acteristics into consideration: intervals are disjuncts; intervals are defined by adding or removing
numbers; and, the domain (an integer interval) is known at creation time.

RL-Trees are trees with two distinct type of nodes: list and range nodes. A list node represents
a fixed interval, of size LI, that is implementation dependent. A range node corresponds to an
interval that is subdivided in B subintervals. Each subinterval in a range node can be completely
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4 IMPLEMENTATION DETAILS 4.7 Coverage Caching

contained (represented in Black) or partially contained in an interval (represented in Gray), or
not be within an interval (represented in White).

The basic idea behind RL-Trees is to represent disjunct set of intervals in a domain by
recursively partition the domain interval into equal subintervals. The number of subintervals
B generated in each partition is implementation dependent. The number of partitions performed
depend on B, the size of the domain, and the size of list node interval LI. Since we are using
RL-Trees to represent coverage lists, the domain is [1, NE] where NE is the number of positive
or negative examples. The RL-Tree whose domain corresponds to the integer interval [1, N ] is
denoted as RL-Tree(N).

A RL-Tree(N) has the following properties: LN = ceil(N/LI) is the maximum number of list
nodes in the tree; H = ceil(logB(LN)) is the maximum height of the tree; all list nodes are at
depth H; root node interval range is RI = BH ∗ LI; all range node interval bounds (except the
root node) are inferred from its parent node; every range node is colored with black, white, or
gray; only the root node can be completely black or white.

The RL-Tree data structure was implemented in C as a shared library. Since the ILP system
used in the experiments is implemented in Prolog we developed an interface to RL-Tree as an
external Prolog module.

Like other quadtrees data structures [45], a RL-Tree can be implemented with or without
pointers. We chose to do a pointerless implementation (using an array) to reduce memory
consumption. The LI and B parameters were set to 16 and 4 respectively. The range node
is implemented using 16 bits. Since we divide the intervals by a factor of 4, each range node may
have 4 subintervals. Each subinterval has a color associated (White, Black, and Gray) that is
coded using 2 bits (thus a total of 8 bits are used for the 4 subintervals). The other 8 bits are
used to store the number of subnodes of a node. This information is used to improve efficiency
by reducing the traversal of the tree to determine the position, in the array, of a given node. The
list node uses 16 bits. Each bit represents a number, determined by its position in the tree. The
number interval represented by a list node is inferred from its parent range node.

RL-Tree(65)

[1-65]

[1-64]

[1-16]

[17-32][33-48][49-64]

[65-65]

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2: Interval [1] represented in a RL-Tree(65)

Consider the RL-Tree with domain [1,65], also denoted as RL-Tree(65). The Figures 2, 3,
and 4 show some intervals represented in a RL-Tree(65). Each group of four squares in Figure 2
represents a range node. Each square in a range node corresponds to a subinterval. The sixteen
square group represents a list node. Each square in a list node corresponds to an integer. The top
of the tree contains a range node that is associated to the domain ([1, 65]). Using the properties
of RL-Trees described earlier one knows that the maximum height of the RL-Tree(65) is 2 and the
root node range is [1− 256]. Each subinterval (square) of the root interval represents an interval
of 64 integers. The first square (counting from the left) with range [1 − 64] contains the interval
[1], so it is marked with Gray. The range node corresponding to the range [1− 64] has all squares
painted in White except the first one corresponding to range [1 − 16], because it contains the

24



4 IMPLEMENTATION DETAILS 4.7 Coverage Caching

interval [1]. The list node only has one square marked, the square corresponding to the integer
1. Figure 3 shows the representation of a more complex set of intervals. Note that the number of
nodes is the same as in Figure 2 even though it represents a more complex set of intervals.

RL-Tree(65)

[1-65]

[65-65]

[49-64]

50 51 52 55 59 63

[1-64]

[17-32][33-48][1-16]

49

Figure 3: Intervals [1, 32] ∪ [53, 54] ∪ [56, 58] ∪ [60, 62] ∪ [64, 65] represented in a RL-Tree(65)

RL-Tree(65)

[1-65]

Figure 4: Interval [1,65] represented in a RL-Tree(65)

RL-Tree(65)

[1-65]

Figure 5: Interval ∅ represented in a RL-Tree(65)

The RL-Tree(N) operations implemented and their complexity (regarding the number of subin-
tervals considered) are:

• Create a RL-Tree: O(1);

• Delete a RL-Tree: O(1);

• Check if a number is in a RL-Tree: O(H).

• Add a number to a RL-Tree: O(H)

• Remove a number from a RL-Tree: O(H)

The current implementation of RL-Trees uses, in the worst case, (4H+1 − 1)/3 nodes. The
worst case occurs when the tree requires all LN list nodes. Since each node in the tree requires 2
bytes, a RL-Tree(N) will require, in the worst case, approximately ((4H+1 − 1)/3) ∗ 2 + C bytes,
where C is the memory needed to store tree header information. In our implementation C = 20.

Preliminary results of using RL-trees in April are shown in Section 5.4.
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5 Experiments and Results

The goal of the experiments were to empirically evaluate the effects on execution time and memory
consumption of some techniques that are available in April. In particular, we evaluate coverage
caching, RL-Trees, and Tries.

5.1 Experiment Settings

The experiments were made on an AMD Athlon(tm) MP 2000+ dual-processor PC with 2GB of
memory, running the Linux RedHat (kernel 2.4.20) operating system. We used version 0.5 of the
April ILP system and version 4.3.23 of the YAP Prolog.

The datasets used were downloaded from the Machine Learning repositories of the Universities
of Oxford3 and York4. Table 3 characterizes the datasets in terms of number of positive and
negative examples as well as background knowledge size. Furthermore, it describes the April
settings used for each dataset. The parameter nodes specifies an upper bound on the number of
hypotheses generated during the search of an acceptable hypothesis. The i -depth corresponds to
the maximum depth of a literal with respect to the head literal of the hypothesis [46]. The sample
defines the number of examples used to induce a clause. Lang parameter specifies the maximum
number of occurrences of a predicate symbol in an hypothesis [7]. MinPos specifies the minimum
number of positive examples that an hypothesis must cover in order to be accepted. Finally, the
parameter noise defines the maximum number of negative examples that an hypothesis may cover
in order to be accepted.

Characterization April’s Settings
Dataset | E+ | | E− | | B | nodes i sample lang minpos noise

amine uptake 343 343 32 1000 2 20 - 50 20
carcinogenesis 162 136 44 1000 3 10 3 20 10

choline 663 663 31 1000 2 all - 50 20
krki 342 658 1 no limit 1 all 2 1 0
mesh 2272 223 29 1000 3 20 3 10 5

multiplication 9 15 3 no limit 2 all 2 1 0
pyrimidines 881 881 244 1000 2 10 - 75 20

proteins 848 764 45 1000 2 10 - 100 100
train 5 5 10 no limit 2 all 1 1 0

train128 120 5 10 no limit 2 all 1 1 0

Table 3: Settings used in the experiments

Note that in order to speedup the experiments we limited the search space of some datasets
by setting the parameter nodes to 1000. This reduces the total memory usage needed to process
a dataset. However, since we are comparing the memory consumption and execution time when
using a feature against not using it, the estimate obtained gives a good idea of the impact of
feature.

The theory accuracies obtained by April with the given settings for the several datasets are
presented in Table 13 in the Appendix B.

5.2 Coverage Caching

The impact of activating coverage caching is presented in Table 4. The table shows the total
number of hypotheses generated (| H |), the execution time, the memory usage, and the impact
in performance for execution time and memory usage (given as a ratio between using coverage

3http://www.comlab.ox.ac.uk/oucl/groups/machlearn/
4http://www.cs.york.ac.uk/mlg/index.html
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caching and not using coverage caching). The memory values presented correspond only to the
total memory used by April. The coverage lists were represented as RL-Trees.

Time (sec.) Memory (bytes) on/off(%)
Dataset | H |

off on off on Time Memory
amine uptake 66933 58.37 357.4 3027460 11255228 612.30 371.77
carcinogenesis 142714 616.38 506.65 7541316 13542528 82.19 179.57

choline 803366 1840.25 13596.07 5327052 32537788 738.81 610.80
krki 2579 3.78 1.15 2225176 2318084 30.42 104.17
mesh 283552 637.34 3241.73 7255884 25733376 508.63 354.65

multiplication 478 8.87 8.93 4261768 4422080 100.67 103.76
pyrimidines 372320 915.95 5581.91 5659544 27856496 609.41 492.20

proteins 433271 7837.96 794.4 27075788 27495636 10.13 101.55
train 37 0.02 0.01 1743048 1757620 50.00 100.83

train128 44 0.03 0.05 1806416 1834544 166.66 101.55

Table 4: The impact of coverage caching

As expected, the results indicate a significant increase in memory usage when coverage caching
is activated. However, unexpectedly the use of coverage caching also increased the execution time,
in some cases more than 5 times, for larger datasets (i.e. datasets with larger number of examples
and | H |). On the other hand, the proteins dataset shows a reduction of around 90% in the
execution time which is what one would like to observe when employing a caching mechanism.

The overall poor results of coverage caching do not reflect the relevance of cache as can be seen
in Table 5. It shows, for each dataset, the number of entries (clauses and their coverage) in the
cache, the number of hits and misses 5, and the number of a clause “father”hit (i.e, the number
of times that a father clause coverage was found in cache). Finally, the last column presents the
ratio of the number of entries with | H |, given an idea of the redundancy in the search space. The
values show that there is a lot of redundancy that is being exploited by the cache (as the high
number of cache hits indicate). Hence, we conclude that the poor coverage caching results should
be a consequence of implementation problems.

In order to identify the causes of the poor caching results we decided to activate YAP’s profiling
and then rerun April for all datasets previously considered. One first issue that we would like to
clarify is whether coverage caching reduced the number of goal invocations executed. Table 6 shows

5The number of hits and misses correspond to the number of times that a positive, or negative, coverage of a
clause was found in the cache. Thus, if the positive and negative coverage of a clause is found in the cache then it
would result in two cache hits.

Dataset Entries Hits Misses Father Hits Entries/| H |(%)
amine uptake 7808 90465 11608 11523 11.66
carcinogenesis 6127 242943 9090 8846 4.29

choline 24989 1437532 38424 38289 3.11
krki 123 3098 245 91 4.76
mesh 17091 374344 24144 24046 6.02

multiplication 157 566 294 246 32.84
pyrimidines 18918 639304 29015 28942 5.08

proteins 477 864848 741 530 0.11
train 16 15 26 23 43.24

train128 31 27 62 58 70.45

Table 5: Coverage caching statistics
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the total number of calls and retries performed by YAP with the cache activated and deactivated.
The result values represent the aggregate number of calls and retries for all datasets. Note that
the number of retries shown, with the cache deactivated, is lower than the real value because
in some datasets the YAP counters overflowed. In these cases the maximum value possible was
used instead. The use of cache reduced the number of calls by 90% and reduced the number of
retries by at least 15%. This shows that the use of caching clearly achieves the goal of reducing
computation but surprisingly the execution time increased by 56%. Note that the number of calls
were reduced by 30 billions approximately.

Module cache=yes cache=no yes/no
Calls 3,141,742,379 33,508,263,954 0.09

Retries 26,112,058,881 >30,730,206,551 0.84
Time (sec.) 38731.23 24718.04 1.56

Table 6: Total number of calls and execution time

To identify the causes for the increase in execution time, when using caching, we analyzed the
profile logs in more detail to locate the modules that may be responsible for the overhead. Table 7
presents the distribution of the number of calls among the Prolog modules used by April. For
each module, the table shows the number of calls and their weight within the total of calls when
cache is activated or deactivated, together with the variation in the number of calls when cache
is activated. To simplify the table analysis, we disregard the modules whose weight was less than
1%. We also do not show the number of retries because the values are rather low in most of the
modules. The main exception is the user space module that contains the background knowledge
and is the module where examples coverage is performed.

cache=yes cache=no
Module

Calls Weight Calls Weight
CallsVariation

prolog 1,276,198,146 0.40 8,198,176,038 0.24 -6,921,977,892
utils 135,853,979 0.04 1,513,841,607 0.04 -1,377,987,628

configuration 359,712,522 0.11 7,787,249,741 0.23 -7,427,537,219
reduction 148,255,423 0.04 193,442,229 0.00 -45,186,806
idb cache 365,087,943 0.11 52 0.00 +365,087,891
evaluation 58,306,774 0.01 3,805,843,802 0.11 -3 747,537,028
saturation 222,043,653 0.07 297,438,260 0.00 -75,394,607
user space 257,179,423 0.08 11,406,353,178 0.34 -11,149,173,755

Table 7: Calls distribution among April’s modules

The results in Table 7 show that the use of cache reduced the number of calls in all modules
except for module idb cache that implements the cache itself. The 365 millions operations made
by the cache module appear to be more expensive than the 30 billion operations whose execution
were avoided by the use of coverage caching.

We further analyzed the profiling logs trying to identify the predicates that were causing the
inefficiency problems. Table 8 presents a summary of the number of calls for the predicates
considered more relevant. Since the number of calls for most of the predicates decreased with
the use of cache, we selected those predicates whose number of calls were still very high, or had
increased, or operate the Prolog database.

Table 8 shows that in the prolog module the number of calls increased only for the assert,
recorda, numbervars, copy term, and ground predicates. The increase of calls in the idb cache

module was most felt in the idb keys predicate. All the other predicates in the idb cache make
calls to the predicates in the prolog module, in particular to the recorded predicate that YAP
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could not show in the profile statistics. From the profile results we estimated that the number of
calls to the recorded predicate increased by around 22,456,790 when using coverage caching.

Predicate cache=yes cache=no Variation
prolog:abolish/1 13,304 17,204 -3,900
prolog:assert/1 98,362 5,663 +92,699
prolog:assertz/1 1,592,288 2,049,054 -456,766
prolog:numbervars/3 5,265,269 4,349 +5,260,920
prolog:eraseall/1 5,902,918 7,734,758 -1,831,840
prolog:recordz/3 5,665,526 7,562,647 -1,897,121
prolog:copy term/2 5,677,883 515,905 +5,161,978
prolog:call/1 6,396,015 8,314,571 -1,918,556
prolog:erase/1 20,674,230 24,155,488 -3,481,258
prolog:recorda/3 25,866,551 23,760,276 +2,106,275
prolog:integer/1 33,843,978 1,401,877,319 -1,368,033,341
prolog:set value/2 41,545,320 1,411,971,018 -1,370,425,698
prolog:ground/1 110,305,158 90,361,520 +19,943,638
prolog:get value/2 166,244,097 942,962,169 -776,718,072
idb cache:idb keys 5,166,049 (789,534) 0 +5,166,049

Table 8: Number of calls for some predicates. The idb cache:idb keys predicate is a dynamic
predicate used to store cache keys. The value in parenthesis is the number of recalls.

Since YAP does not provide the cumulative time spent computing each predicate, we did
further experiments to measure the impact of each of those predicates in the execution time. We
observed that the predicates that deal with the internal database and clausal database are the
main source of execution time overhead. The slowdown caused by these predicates appears to be
exponential with the increase of database entries. In particular, the dynamic predicate idb keys

and the database predicate recorded are those with biggest impact. These two heavily used
predicates are the main cause for coverage caching inefficiency. As the reduction or elimination
of Prolog database operations is not possible, a solution to cope with this problem could be to
improve the indexing mechanism of YAP Prolog internal database. Moreover, we find that it
would be very much useful the support of an efficient indexing mechanism using multiple keys.

5.3 Tries

When activated in April, the Trie [47] data structure stores some information about each hypoth-
esis generated. More specifically, it stores the hypothesis (Prolog clause), a list of variables in the
clause, a list of unbound variables in the clause, and a list of free variables in the clause.

Table 9 shows the total number of hypotheses generated (| H |), the execution time, the
memory usage and the impact in performance for execution time and memory usage (given as
a ratio between the values obtained using and not using Tries). The memory values presented
correspond only to the memory used to store information about the hypotheses.

The use of tries resulted in an average reduction of 20% in memory consumption with the
datasets considered. The train dataset was the only exception as it shows a degradation of 25%
in memory consumption. This may indicate that the Tries data structure is not adequate for
datasets with very small hypotheses space. However, memory usage is not a concern for problems
with small hypotheses space.

With Tries, the execution time slightly increased but the overhead is not significant. The krki
and train128 datasets are exceptions, nevertheless unimportant as the difference in execution
time is just a fraction of a second.

In summary, the results suggest that the Trie data structure reduces memory consumption
with a minimal execution time overhead.
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Time (sec.) Memory (bytes) on/off(%)
Dataset | H |

off on off on Time Memory
amine uptake 66933 357.1 362.4 739316 553412 101.48 74.85
carcinogenesis 142714 506.19 517.76 869888 680212 102.28 78.19

choline 803366 13451.21 13573.24 869736 598344 100.90 68.79
krki 2579 1.11 1.30 62436 50000 117.11 80.08
mesh 283552 3241.62 3267.85 607584 506112 100.80 83.29

multiplication 478 8.91 8.98 164304 105348 100.78 64.11
pyrimidines 372320 5581.35 5602.96 914520 580852 100.38 63.51

proteins 433271 794.03 832.83 759440 595928 104.88 78.46
train 37 0.02 0.02 9260 11612 100.00 125.39

train128 44 0.05 0.06 22224 21392 120.00 96.25

Table 9: The impact of Tries

5.4 RL-Trees

Table 10 presents the impact of using RL-Trees in the April system. It shows the total number
of hypotheses generated (| H |), the execution time, the memory usage, and the impact in
performance for execution time and memory usage (given as a ratio between using RL-Trees
and Prolog range lists). The memory values presented correspond only to the memory used to
store coverage lists.

Time (sec.) Memory (bytes) rl/list(%)
Dataset | H |

list rl list rl Time Memory
amine uptake 66933 365.74 357.23 5142784 2181658 97.67 42.42
carcinogenesis 142714 508.41 505.61 2972668 1560180 99.44 52.48

choline 803366 13778.29 13617.49 17644032 7520744 98.83 42.62
krki 2579 1.22 1.13 150264 43822 92.62 29.16
mesh 283552 3394.1 3258.21 8286944 4880746 95.99 58.89

multiplication 478 8.89 8.91 35808 35412 100.22 98.89
pyrimidines 372320 5606.97 5460.22 24291608 6568286 97.38 27.03

proteins 433271 805.97 791.92 693868 146344 98.25 21.09
train 37 0.02 0.02 3676 3692 100.00 100.43

train128 44 0.05 0.05 10228 7284 100.00 71.21

Table 10: The impact of RL-Trees

The use of RL-Trees resulted in an average of 50% reduction in memory usage (when comparing
to Prolog range lists). The only exception to the overall reduction was registered by the train
dataset. This is probably a consequence of the reduced number of examples of the dataset. The
results indicate that more significants reductions in memory usage are obtained with datasets with
greater number of examples.

In general, a great reduction in memory usage is achieved with no execution time overhead
when using RL-Trees. In fact, an average reduction of 2% in the execution time is obtained.

5.5 Tries and RL-Trees

To evaluate the impact of both data structures, we ran April again configured to use both data
structures. The Table 11 shows the total number of hypotheses generated (| H |), the execution
time, the memory usage, and the impact in performance for execution time and memory usage
(given as a ratio between using the proposed data structures and not using them). The memory
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values presented correspond only to the memory used to store coverage lists and information about
the hypotheses (stored in Tries).

Time (sec.) Memory (bytes) on/off(%)
Dataset | H |

off on off on Time Memory
amine uptake 66933 365.74 362.83 5882100 2728174 99.20 46.38
carcinogenesis 142714 508.41 516.51 3842556 2223164 101.59 57.85

choline 803366 13778.29 13651.51 18513768 8090504 99.07 43.69
krki 2579 1.22 1.21 212700 93978 100.82 44.18
mesh 283552 3394.1 3284.33 8894528 5376906 96.76 60.45

multiplication 478 8.91 8.98 200112 140908 100.78 70.41
pyrimidines 372320 5606.97 5501.65 25206128 7132978 98.12 28.29

proteins 433271 805.97 834.76 1453308 740904 103.57 50.98
train 37 0.02 0.02 12936 15264 100.00 117.99

train128 44 0.05 0.05 32452 28564 100.00 88.01

Table 11: The impact of Tries and RL-Trees

The use of both data structures resulted in significant reductions in memory usage. The train
was the only dataset that consumed more memory by using Tries with RL-Trees. This occurred
because the dataset has a very small hypothesis space and the number of examples is also small.
Nevertheless, the values obtained are useful because they give an idea of the initial overhead of
the data structures.

The results indicate that the impact of the data structures tend to be greater in the datasets
with more examples and with bigger search spaces.

Memory Reduction
Dataset

(MB) (%)
amine uptake 11.02 21.64
carcinogenesis 13.14 9.04

choline 31.28 26.57
krki 2.21 4.02
mesh 24.86 23.83

multiplication 4.18 0.44
pyrimidines 26.53 42.15

proteins 26.22 2.01
train 1.68 -1.50

train128 1.75 -1.11

Table 12: April memory consumption using Tries and RL-Trees

Table 12 shows the impact of the data structures proposed in the April system total memory
usage. The table shows the April (total) memory usage when using Tries and RL-Trees simulta-
neously and the reduction ratio when comparing to using Prolog range lists and not using Tries.

The reduction values obtained are good, especially if we take into account that the biggest
reductions (42.15 and 26.57) were obtained in the datasets with greatest memory usage. From
the reduction values presented we conclude that with small datasets the data structures do not
produce major gains, but they also do not introduce significant overheads. On the other hand, the
data structures proposed should be used when processing larger datasets since they can reduce
memory consumption very significantly.
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6 Related Work

Since the initial concept proposal of Inductive Logic Programming [1] many ILP systems have been
developed. A compreensive list of ILP systems and their description is provided in [48]. April is
specialy related to Indlog [7] and Aleph [20] systems. Like in April, the core algorithm used in
these systems is based on Mode Direct Inverse Entailment (MDIE), a technique initially used in
the Progol [18] system. April implements most of the features found in Aleph and Indlog. Due
to this close relation, April maintains compatibility with the parameters and input files format of
Indlog and Aleph.

The main differences between April and Indlog are in the strategy of the reduction algorithm
and in bottom clause construction. Indlog uses an iterative deepening search or best-first while
April can use a breadth-first or best-first search. When constructing the bottom clause, Indlog
constructs a directed-acyclic graph of literals that reduces the search space by not considering
some combinations of literals. The Indlog’s Incremental Language Level Search [11] strategy can
be emulated in April by defining the language level parameter, however its implementation is
still more inefficient than Indlog’s. April differs from those two systems by implementing specific
data structures in C, such as RL-trees and tries, in order to reduce memory consumption and
improve execution time.

April traverses the generalisation lattice as MIS [28], FOIL [29] and Progol. Like GOLEM [27]
and Progol, April generates an initial clause to bound the generalization lattice, thus reducing the
search space. Unlike FOIL and GOLEM, April can handle non-ground background knowledge.
In the line of Indlog, Skillit [49], CILS [21], and Aleph, April is implemented using the Prolog
language and uses YAP [33] compiler.

7 Conclusions and future work

This report described the use and implementation of the April ILP system. Two novel data
structures were introduced in April: Tries and RL-Trees. The Trie data structure inherently and
efficiently exploit the similarities among the candidate hypotheses generated by ILP systems to
reduce memory usage. The RL-Tree is a novel data structure designed to efficiently store and
manipulate coverage lists. The data structures were integrated in the April system. Both data
structures were implemented in C and are available to a Prolog engine as an external Prolog
module.

We have empirically evaluated the use of several features on April, namely the use of coverage
caching, RL-Trees, Tries, RL-Trees and Tries (simultaneously), on well known datasets. Coverage
caching was evaluated and the results indicate that the technique when applied to the majority of
the datasets results in a significant increase of memory usage and execution time. We advocate
that the problem is a consequence of the poor performance of the Prolog internal database, and
we suggest that Prolog implementors should try to improve it. The proposed Tries data structure
reduced memory consumption with a minor overhead (approximately 1%) in the execution time.
The RL-Tree data structure reduced memory usage in coverage lists to half, in average, and slightly
reduced the execution time. The use of both data structures simultaneously resulted in a overall
reduction in memory usage without degrading the execution time. In some datasets, the April
system registered very substantial memory reductions (between 20−42%) by using both Tries and
RL-Trees simultaneously. The results indicated that the benefits from using these data structures
tend to increase for datasets with larger search spaces and larger number of examples. Since the
data structures are system independent, we believe that they can be also applied to other ILP
systems (even to other paradigms of machine learning) with positive impact.

There is still a lot to improve in April. In the near future we plan to improve the implementation
of the language level extension, and continue the development of the RL-Trees by implementing
operations like intersection or subtraction of two RL-Trees in order to compute the coverage
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intersection of two clauses more efficiently. We will also try to identify more data stored during
the search that may take advantage of the Tries data structure.

The search spaces in ILP systems contain many redundancies. We plan to investigate the types
of clause redundancy that ILP systems may have in their search space and try to point solutions
to efficiently decrease the redundancy.

We also plan to parallelize April and complete the integration of an RDBMS interface (so
learning can be done directly from a database). While the Prolog database is not improved, we
will tackle the problem of implementing coverage caching efficiently by designing and implementing
in C an efficient data structure.
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A April output

The ouput of executing April with the input files described in Section 3 follows.

[ Initializing... ]
[ Initialization complete. ]

[ Files found in examples/member/ ]
[ Consulting examples/member/member.f. ]
[ Consulting examples/member/member.n. ]
[ Examples(+,-): (5,7) ]

*******************************************************************
* Settings:
verbose = 2 ([0,1,2,3,4,5,6,7,8,9,10])
trace = 0 ([0,1])
trace_y = event_number ([event_number,time])
record = false ([true,false])
recordfile = record
example_storage = yapcdb ([yapcdb,rdbms])
rdbms_connection = conf(mysql,localhost,0,_3923,_3924,_3925)
pos_examples_table = pos_examples,[]
neg_examples_table = neg_examples,[]
use_tries = no ([yes,no])
clean_tries = yes ([yes,no])
h = 10 (integer)
sat_example = first ([first,random,weight])
pos_only = false ([true,false])
selector = 2 (integer)
typechecking = no ([yes,no])
sampling = 0 (integer)
i_determinancy = 1 (integer)
backtracking_limit = 10 (integer)
construct_bottom = saturation ([saturation,reduction,false])
sat = system ([user,system])
lazy_bottom = false ([false,true])
low_level_refine = false ([false,true])
cache = yes ([yes,no])
cache_storage = rl ([list,rl])
refine = auto ([auto,user])
noise = 0 (integer)
pnoise = 0
minpcover = 0
mincover = 0 (integer)
clause_length = 8 (integer)
min_clause_length = 1 (integer)
nodes = 2000 (integer)
search = bf ([bestfirst,bf])
heuristic = coverage ([pos,coverage,progol,l,acc,acc-ul,compression,compression2,weighted_coverage,laplace,coverage_l])
auto_settings = disabled ([disabled,lazy,lazy_neg,lazy_pos])
bg_file = examples/member/member.b
conf_file =
unseen_neg_file = examples/member/
unseen_pos_file = examples/member/
train_neg_file = examples/member/member.n
train_pos_file = examples/member/member.f
weights_file =
save_theory = yes ([yes,no])
use_best_clause = yes ([yes,no])
greedy_use_best_clause = yes ([yes,no])
lazy_eval = disabled ([disabled,pos,neg,all])
language = 0 (integer)
language_init = 1 (integer)
minacc = 0.0
targetacc = 1.0
explore = false ([true,false])
max_theory_size = 0 (integer)
reduce_theory = no ([yes,no])
optimise_clauses = no ([yes,no])
*******************************************************************
[ >Example Selection: Generating sample with 5 examples... ]
1 2 3 4 5
[ <Example Selection. ]
[ >Starting saturation... ]
[ Example picked (1):member(0,[0]) ]
[ Bottom Clause: ]
member(A,B) :-

sat_eq(A,0),
sat_eq(B,[0]),
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sat_eq(B,[A|C]),
sat_eq(C,[]).

[ Number of Literals: 7]
[ Saturation Time: 0.0 seconds ]
[ <Saturation complete ]

[ >Starting reduction/search... ]
[ member(A,B):-A=0 ]
[ member(A,B):-B=[0] ]
[ member(A,B):-B=[A|C] ]
[ Best clause so far: member(A,B):-B=[A|C] = (s(2,0,2,1,1,0)) ]

[ Clause found:member(A,B):-B=[A|C] ]
[ Clauses: generated= 4 ; Evaluated=3 ; System Pruned=1 ; User Pruned=0; User Constrained: 0 ]
[ <Reduction/search complete. ]

[ >Starting saturation... ]
[ Example picked (3):member(3,[2,3]) ]
[ Bottom Clause: ]
member(A,B) :-

sat_eq(A,3),
sat_eq(B,[2,3]),
sat_eq(B,[C|D]),
sat_eq(D,[A|E]).

[ Number of Literals: 7]
[ Saturation Time: 0.0 seconds ]
[ <Saturation complete ]

[ >Starting reduction/search... ]
[ member(A,B):-A=3 ]
[ member(A,B):-B=[2,3] ]
[ member(A,B):-B=[C|D] ]

[ Clause found:member(A,B):-B=[A|C] ]
[ Clauses: generated= 4 ; Evaluated=3 ; System Pruned=0 ; User Pruned=0; User Constrained: 0 ]
[ <Reduction/search complete. ]

[ >Starting saturation... ]
[ Example picked (4):member(3,[4,2,3]) ]
[ Bottom Clause: ]
member(A,B) :-

sat_eq(A,3),
sat_eq(B,[4,2,3]),
sat_eq(B,[C|D]),
sat_eq(D,[E|F]),
member(A,D).

[ Number of Literals: 9]
[ Saturation Time: 0.0 seconds ]
[ <Saturation complete ]

[ >Starting reduction/search... ]
[ member(A,B):-A=3 ]
[ member(A,B):-B=[4,2,3] ]
[ member(A,B):-B=[C|D] ]

[ Clause found:member(A,B):-B=[A|C] ]
[ Clauses: generated= 4 ; Evaluated=3 ; System Pruned=0 ; User Pruned=0; User Constrained: 0 ]
[ <Reduction/search complete. ]

[ >Starting saturation... ]
[ Example picked (5):member(5,[4,2,3,5]) ]
[ Bottom Clause: ]
member(A,B) :-

sat_eq(A,5),
sat_eq(B,[4,2,3,5]),
sat_eq(B,[C|D]),
sat_eq(D,[E|F]).
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[ Number of Literals: 7]
[ Saturation Time: 0.00999999999999995 seconds ]
[ <Saturation complete ]

[ >Starting reduction/search... ]
[ member(A,B):-A=5 ]
[ member(A,B):-B=[4,2,3,5] ]
[ member(A,B):-B=[C|D] ]
[ member(A,B):-B=[C|D],D=[E|F] ]

[ Clause found:member(A,B):-B=[A|C] ]
[ Clauses: generated= 5 ; Evaluated=4 ; System Pruned=0 ; User Pruned=0; User Constrained: 0 ]
[ <Reduction/search complete. ]

[ Best clause: member(_3963,_3964):-_3964=[_3963|_3969] ]
[ (+,-,v,fv,hfv,time)=(s(2,0,2,1,1,0)) ]
[ >Cover Removal ]
[ Marked 2 examples: member(_3963,_3964):-_3964=[_3963|_3969] ]
[ <done. ]
[ Current theory accuracy: 0.75/1.0 PosCovered: 2/5 NegCovered: 0/7 ]
[ >Example Selection: Generating sample with 3 examples... ]
3 4 5
[ <Example Selection. ]
[ >Starting saturation... ]
[ Example picked (3):member(3,[2,3]) ]
[ Bottom Clause: ]
member(A,B) :-

sat_eq(A,3),
sat_eq(B,[2,3]),
sat_eq(B,[C|D]),
sat_eq(D,[A|E]),
member(A,D),
sat_eq(F,[A|G]),
sat_eq(G,[E|E]),
member(A,F),
member(C,B).

[ Number of Literals: 14]
[ Saturation Time: 0.0 seconds ]
[ <Saturation complete ]

[ >Starting reduction/search... ]
[ member(A,B):-A=3 ]
[ member(A,B):-B=[2,3] ]
[ member(A,B):-B=[C|D] ]
[ member(A,B):-B=[C|D],member(A,D) ]
[ Best clause so far: member(A,B):-B=[C|D],member(A,D) = (s(3,0,3,2,1,0)) ]
[ member(A,B):-B=[C|D],member(C,B) ]
[ member(A,B):-B=[C|D],member(C,B) ]
[ member(A,B):-B=[C|D],D=[A|E] ]
[ member(A,B):-B=[C|D],member(A,D) ]

[ Clause found:member(A,B):-B=[C|D],member(A,D) ]
[ Clauses: generated= 9 ; Evaluated=8 ; System Pruned=0 ; User Pruned=0; User Constrained: 0 ]
[ <Reduction/search complete. ]

[ Best clause: member(_3965,_3966):-_3966=[_3973|_3974],member(_3965,_3974) ]
[ (+,-,v,fv,hfv,time)=(s(3,0,3,2,1,0)) ]
[ >Cover Removal ]
[ Marked 3 examples: member(_3965,_3966):-_3966=[_3973|_3974],member(_3965,_3974) ]
[ <done. ]

[ Theory found... ]
[ Predicate:member/2 ]
[ 2 clause(s) ]

Clause
(PosCovered,NegCovered,Value,ClauseLength,NFreeVars,HeadFreeVars)

[1] member(A,B):-B=[A|C]
s(2,0,2,1,1,0)
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[2] member(A,B):-B=[C|D],member(A,D)
s(3,0,3,2,1,0)

Training set performance

Pred\Actual | + | - |
+ | 5 | 0 | 5
- | 0 | 7 | 7

| 5 | 7 | 12
Accuracy = 100.0

[ Total Time: 0.03 seconds ]
[ Clauses: generated= 21 ; Evaluated=22 ; System Pruned=1 ; User Pruned=0; User Constrained: 0 ]

B April Accuracy

Dataset Theory Size Train Accuracy(%) Test Accuracy(%) Time (sec.)
amine uptake 3 58.37 - 58.37
carcinogenesis 3 64.76 61.53 506.65

choline 3 67.72 - 1840.25
krki 4 99.6 - 1.15
mesh 18 77.43 - 637.34

multiplication 2 100.0 100.0 10.54
pyrimidines 3 72.134 65.789 915.95

proteins 3 52.295 50.962 794.4
train 1 100.0 - 0.02

train128 1 100.0 - 0.05

Table 13: April’s execution time and accuracy
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