
gprof, maps,
TAU & mpiP

Kent Milfeld
February 28, 2008

Login
•  login to Rangeer, using your train<xx> account:

 ssh -X train<xx> ranger.tacc.utexas.edu

•  Untar the file tau.tar file (in ~train00) into your directory:

 tar xvf ~train00/lab_tau_long.tar
 cd tau_long
 source sourceme.csh {c shell}
 or
 . sourceme.sh {Bourne shell}

*Completed runs are available in lab_tau_long_done.tar.

gprof
Gprof is a utility for discovering how much time subroutines, library calls
and intrinsic functions are using. Code must be “instrumented” (compiled)
with “-g” (or some similar option) to provide a symbol table in the
executable. There are two subroutine calls and two intrinsic functions
calls used in the program long.f. Instrument this program and run the
executable to obtain a (binary) trace, gmon.out, with timing information.
On Linux systems the compiler commands are.

Linux: login3% ifort -g -p long.f90 {intel compiler}
Linux: login4% pgif90 -g -p long.f90 {pgi compiler}

 (used “source ./sourceme.csh” (C shell) or “ . /sourceme.sh” (Bourne shell) to access ifort)

Execute a.out to make a report:
 ./a.out
 gprof > gprof_report

 Read the man page on gprof to help make sense of the 2nd part of the listing--
the display information about time spend in parent and children processes.

(The do_gprof will perform all of the operation above: just execute “do_gprof”.
Draw a diagram showing the tree structure of the calling sequence.

Interactive Session }

Memory Maps
Memory maps provide a list of the layout of the TEXT (code),
DATA (initialized variables), and BSS (uninitialized variables) memory
regions. It is often used to discover which libraries have been loaded
by the linker. Compile the long.f program, using an appropriate
linker option to produce a “load map” of the program.

Linux: login3% ifort -Wl,-Map,map_output long.f90

You can use the do_map script to execute the above command(s),
and produce a map. On a Linux machines it will also produce a vector_
report. Where is the cos library function coming from

TAU
First load up the TAU environment.

% cd tau_long (if you are not already there)
% source sourceme.csh or % . sourceme.sh {for C/Bourne shells, respectively}

The PDT is used to instrument your code; but it is necessary to describe all the
component that will be used in the instrumentation (mpi, openmp, profiling, counter
[PAPI], etc. But these come in a limited combination. First determine what you
want to do (profiling, PAPIcounters, tracing, etc.) and the programming paradigm
(mpi, openmp), and the compiler. PDT is a require component:

•  PDT
•  PROFILE
•  MPI
•  PAPI
•  intel
•  pgi
•  …

TAU
You can view the available combination by using the command:

% tauTypes

These are called TAU stubs for makefiles.

Look in the sourceme.csh or sourceme.sh file. Here are some of the
operations done for you:

unload mvapich
swap pgi intel
load mvapich
module load kojak pdtoolkit tau
Set the TAU_MAKEFILE environment to the correct stub (full path)
setenv TAU_MAKEFILE …/Makefile.tau-icpc-mpi-papi-pdt
setenv TAU_OPTIONS ‘-optVerbose …’ {see tau_compiler.sh}

Use Intel Compilers

Sets TAU_MAKEFILE

Loads Tau & Papi

TAU
If you have a single-file program, you can use the Tau compiler wrapper directly:

instead of
 mpif90 foo.f90

use
 tau_f90.sh foo.f90

Look in the Makefile, to see how this is done for the matmult.f90 problem.

Now make the matmult executable and submit the job with the commands (look
over the job script):

 % make
 % qsub job

Analyze performance data:

% pprof (for text based profile display)

% paraprof (for GUI)

TAU: ParaProf Manager

Counters we asked for 

Two windows will appear. This is the manager window, showing the experiment.
Note, it has all the details use in the “trial”.

Tau: Metric View

Informa1on includes 
Mean and Standard 
Devia1on 

Windows‐>Func1on 
Legend 

In a second wind, the default “GET_TIME_OF_DAY” profile information
will appear. You switch between metrics, by double-clicking** on the green
bullets next to the names in the manager window (see previous slide).

**This can be a sensitive operation, try several speeds of double clicking.

Tau: Metric View
Unstack the bars for clarity: Op1ons ‐> Stack Bars Together 

Hoover over bars with mouse to see 1me for each func1on call. 

Tau: Function Data Window
Click on any of the bars corresponding to func1on mul1ply_matrices. This opens the 
Func1on Data Window, which gives a closer look at a single func1on. 

Tau: Float Point OPS
Now, go back and display the PAPI_FP_OPS (double click the PAPI_FP_OPS metric 
in the manager window. Click a bar corresponding to the func1on mul1ply_matrices 
In the ParaProf Metric Window select Op1ons ‐> Select Metric ‐> Exclusive 

Note the disparity and grouping of the FLOPS performance. 

Tau: L1 Cache Data Misses
Now, go back and display the PAPI_FP_OPS (double click this metric 
in the manager window. Select Op1ons ‐> Stack Bars Together to see differences beSer. 

Now, click a bar corresponding to the func1on mul1ply_matrices 
to see just the matmult results.  ‐‐ These look similar to the FP_OPS profiles. 

Derived Metrics
•  ParaProf Manager Window -> Options -> Show Derived Metrics Panel
•  Select Argument 1 (PAPI_L1_DCM) and Argument 2 (PAPI_FP_OPS)
•  Select Operation (Division) & Apply

Derived Metrics (Cont.)
•  Select a Function
•  Function Data Window -> Options -> Select Metric -> Exclusive ->

…

Callgraph
Important, save your present Tau data: mkdir save; cp –R MULTI* save
To trace the function calls within the program, follow the same process
as before, but use the following TAU_MAKEFILE:

Makefile.tau-callpath-mpi-pdt-pgi
Here are the commands:
% source sourceme_callpath.csh
% . sourceme_callpath.sh
% make clean
% make
% qsub job_callpath
cd down to call_path_* and execute paraprof:
In the Metric View Window, two new options will be available under:
Windows  Thread  Call Graph
Windows  Thread  Call Path Relations
Verify the calling structure of the call tree is similar to the gprof tree.

mpiP
Load the mpiP module:
% module load mpiP
% source sourceme_mpip.csh {C shell}
% source sourceme_mpip.sh {Bourne shell}

Link the static library before any others:
% mpif90 -g -L$TACC_MPIP_LIB \
 -lmpiP -lbfd -liberty ./matmultf.f90

Try the compilation above with the map option (-Wl,-Map
mapout), with and without MPIp, and determine which MPI
library is satisfying the code’s MPI calls:

% mpif90 -Wl,-Map map_mpip -g -L$TACC_MPIP_LIB \
 -lmpiP -lbfd –liberty matmultf.f90

% mpif90 -Wl,-Map map_nompip matmultf.f90

mpiP

Set environmental variables controlling the mpiP output in
the job_mpip script (for C shell):
% setenv MPIP ‘-t 10 -k 2’ {See job_mpip script.}

In this case:
-t 10  only callsites with time > 10% MPI time reported
-k 2  set callsite stack traceback depth to 2

Run program through the queue as usual.
% qsub job_mpip

Display results.
% mpipview <app_name><unique number>.mpiP

mpiP

In the slave nodes, which collective and point-2-points MPI
calls take the most time? What does the master spend mode
of its time doing in MPI?

