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Why Hybrid? 

•  Eliminates domain decomposition at node 
•  Automatic coherency at node 
•  Lower memory latency and data 

movement within node 
•  Can synchronize on memory instead of 

barrier 
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Why Hybrid? (cont 1) 

•  Only profitable if on-node aggregation of 
MPI parallel components is faster as a 
single SMP algorithm (or a single SMP 
algorithm on each socket). 
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Hybrid - Motivation 

CPU-bound 

Memory-bound 

•  Load Balancing 
•  Reduce Memory Traffic 
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NUMA Operations 

•  Where do threads/processes and memory allocations go? 
•  If Memory were completely uniform there would be no 

need to worry about these two concerns.  Only for NUMA 
(non-uniform memory access) is (re)placement of 
processes and allocated memory (NUMA Control) of 
importance. 

•  Default Control: Decided by policy when process exec’d or 
thread forked, and when memory allocated. Directed from 
within Kernel. 



NUMA Operations 
•  Ways Process Affinity and Memory Policy can be 

changed: 
–  Dynamically on a running process (knowing process id) 
–  At process execution (with wrapper command) 
–  Within program through F90/C API 

•  Users can alter Kernel Policies 
(setting Process Affinity and Memory Policy == PAMPer) 
–  Users can PAMPer their own processes. 
–  Root can  PAMPer any process. 
–  Careful, libraries may PAMPer, too! 
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NUMA Operations 
•  Process Affinity and Memory Policy can be 

controlled at socket and core level with numactl. 
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Modes of MPI/Thread Operation 
•  SMP Nodes 

•  Single MPI task launched per node 
•  Parallel Threads share all node memory, e.g 16 threads/

node on Ranger. 
•  SMP Sockets 

•  Single MPI task launched on each socket 
•  Parallel Thread set shares socket memory, 

e.g. 4 threads/socket on Ranger 
•  MPI Cores 

•  Each core on a node is assigned an MPI task. 
•  (not really hybrid, but in master/slave paradigm master could 

use threads)  
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Modes of MPI/Thread Operation 

MPI Task on Core 

16 MPI Tasks 

Master Thread of MPI Task 

1 MPI Tasks 
16 Threads/Task 

4 MPI Tasks 
4Threads/Task 

Slave    Thread of MPI Task 
Master Thread of MPI Task 

Pure MPI Node  Pure SMP Node 



11 

SMP Nodes 

   job script (Bourne shell)      job script (C shell) 

...   ...  
#! -pe  1way  192   #! -pe  1way  192  
...   ...  
export OMP_NUM_THREADS=16  setenv OMP_NUM_THREADS 16 
ibrun numactl –i all ./a.out   ibrun numactl –i all ./a.out 

•  Make sure 1 task is created on each node 
•  Set total number of cores (nodes x 16) 
•  Set number of threads for each node 
•  PAMPering at job level 

•  Controls behavior for ALL tasks 
•  No simple/standard way to control thread-core affinity  

Hybrid Batch Script   16 threads/node 
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SMP Sockets 

   job script (Bourne shell)      job script (C shell) 

...   ...  
#! -pe  4way  48   #! -pe  4way  48  
...   ...  
export MY_NSLOTS =36 setenv MY_NSLOTS  36 
export OMP_NUM_THREADS=4  setenv OMP_NUM_THREADS 4 
ibrun numa.csh   ibrun numa.sh 

•  Example script setup for a square (6x6 =  36) processor topology. 
•  Create a task for each socket (4 tasks per node). 
•  Set total number of cores allocated by batch (nodes x 16 cores/node). 
•  Set actual number of cores used with MY_NSLOTS. 
•  Set number of threads for each task 
•  PAMPering at task level 

  Create script to extract rank for numactl options, and a.out execution 
(TACC MPI systems always assign sequential ranks on a node.  

  No simple/standard way to control thread-core affinity  

Hybrid Batch Script   4 tasks/node, 4 threads/task 
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SMP Sockets 

      numa.sh  

#!/bin/bash  
export        MV2_USE_AFFINITY=0  
export MV2_ENABLE_AFFINITY=0  

                                              #TasksPerNode  
TPN=`echo $PE | sed 's/way//'`  
[ ! $TPN ] && echo TPN NOT defined!      
[ ! $TPN ] && exit 1  

socket=$(( $PMI_RANK % $TPN )) 

numactl -N $socket -m $socket ./a.out  

       numa.csh  

 #!/bin/tcsh  
 setenv        MV2_USE_AFFINITY 0  
 setenv MV2_ENABLE_AFFINITY 0  

                                         #TasksPerNode  
 set TPN = `echo $PE | sed 's/way//'`  
 if(! ${%TPN}) echo TPN NOT defined!  
 if(! ${%TPN}) exit 0  

 @ socket = $PMI_RANK % $TPN  

 numactl -N $socket -m $socket ./a.out  

fo
r m

va
pi

ch
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Hybrid Batch Script   4 tasks/node, 4 threads/task 



Hybrid – Program Model 

•  Start with MPI initialization 
•  Create OMP parallel regions  

within MPI task (process). 
•  Serial regions are the  

master thread or MPI task. 
•  MPI rank is known to all threads 

•  Call MPI library in serial  
and parallel regions. 

•  Finalize MPI 
14 

Program 
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MPI with OpenMP -- Messaging 

Single-threaded 
messaging 

Node 

Multi-threaded 
messaging 

Node 

Node Node 

MPI from serial region or a single thread within parallel region 

MPI from multiple threads within parallel region 
Requires thread-safe implementation 

rank to rank 

rank-thread ID to any rank-thread ID 



Threads calling MPI 
•  Use MPI_Init_thread to select/determine MPI’s 

thread level of support (in lieu of MPI_Init). 
MPI_Init_thread is supported in MPI2 

•  Thread safety is controlled by “provided” types: 
single, funneled, serialized and multiple   
•  Single means there is no multi-threading. 
•  Funneled means only the master thread calls MPI 
•  Serialized means multiple threads can call MPI, but 

only 1 call can be in progress at a time (serialized). 
•  Multiple means MPI is thread safe. 
•  Monotonic values are assigned to Parameters: 

MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED < MPI_THREAD_SERIALIZED < 
MPI_THREAD_MULTIPLE 

16 
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MPI2 MPI_Init_thread 
Syntax:     
               call MPI_Init_thread(                                          irequired,       iprovided, ierr) 

  int  MPI_Init_thread(int  *argc, char  ***argv, int required, int *provided) 
  int  MPI::Init_thread(int& argc, char**& argv, int required) 

Support Levels Description 

MPI_THREAD_SINGLE Only one thread will execute. 

MPI_THREAD_FUNNELED Process may be multi-threaded, but only main 
thread will make MPI calls (calls are ’’funneled'' to 
main thread). Default 

MPI_THREAD_SERIALIZE Process may be multi-threaded, any thread can 
make MPI calls, but threads cannot execute MPI 
calls concurrently (MPI calls are ’’serialized''). 

MPI_THREAD_MULTIPLE Multiple threads may call MPI, no restrictions. 

If supported, the call will return provided = required.  
Otherwise, the highest level of support will be provided. 
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Hybrid Coding 
include ‘mpif.h’ 
program hybsimp 

 call MPI_Init(ierr) 
 call MPI_Comm_rank (...,irank,ierr) 
 call MPI_Comm_size (...,isize,ierr) 
! Setup shared mem, comp. & Comm 

!$OMP parallel do 
    do i=1,n 
       <work> 
    enddo 
!  compute & communicate 

 call MPI_Finalize(ierr) 
 end 

#include <mpi.h> 
int main(int argc, char **argv){ 
 int rank, size, ierr, i; 

 ierr= MPI_Init(&argc,&argv[]); 
 ierr= MPI_Comm_rank (...,&rank); 
 ierr= MPI_Comm_size (...,&size); 
//Setup shared mem, compute & Comm 

#pragma omp parallel for 
    for(i=0; i<n; i++){ 
       <work> 
    } 
// compute & communicate 

 ierr= MPI_Finalize(); 

Fortran  C 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MPI Call through Master 

•  MPI_THREAD_FUNNELED 
•  Use OMP_BARRIER since there is no 

implicit barrier in master workshare 
construct (OMP_MASTER). 

•  All other threads will be sleeping. 
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Funneling through Master 
include ‘mpif.h’ 
program hybmas 

!$OMP parallel 

   !$OMP barrier 
   !$OMP master 

     call MPI_<Whatever>(…,ierr) 
   !$OMP end master 

   !$OMP barrier 

!$OMP end parallel 
end 

#include <mpi.h> 
int main(int argc, char **argv){ 
 int rank, size, ierr, i; 

#pragma omp parallel 
{ 
   #pragma omp barrier 
   #pragma omp master 
   { 
     ierr=MPI_<Whatever>(…) 
   } 

   #pragma omp barrier 

} 
} 

Fortran  C 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MPI Call within Single 

•  MPI_THREAD_SERIALIZED 
•  Only OMP_BARRIER at beginning, 

since there is an implicit barrier in 
SINGLE workshare construct 
(OMP_SINGLE). 

•  All other threads will be sleeping. 

•  (The simplest case is for any thread to execute a single mpi call, 
e.g. with the “single” omp construct. See next slide.) 
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Serialize through Single 
include ‘mpif.h’ 
program hybsing 

call mpi_init_thread(MPI_THREAD_SERIALIZED,   
                                                    iprovided,ierr) 
!$OMP parallel 

   !$OMP barrier 
   !$OMP single 

     call MPI_<whatever>(…,ierr) 
   !$OMP end single 

   !!OMP barrier 

!$OMP end parallel 
end 

#include <mpi.h> 
int main(int argc, char **argv){ 
int rank, size, ierr, i; 
mpi_init_thread(MPI_THREAD_SERIALIZED,                                                          

     iprovided) 
#pragma omp parallel 
{ 
   #pragma omp barrier 
   #pragma omp single 
   { 
     ierr=MPI_<Whatever>(…) 
   } 

   //pragma omp barrier 

} 
} 

Fortran  C 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Overlapping Communication and  
Work 

•  One core can saturate the PCI-e 
network bus.  Why use all to 
communicate? 

•  Communicate with one or several cores. 
•  Work with others during communication. 
•  Need at least 

MPI_THREAD_FUNNELED support. 
•  Can be difficult to manage and load 

balance! 
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Overlapping Communication and  
Work 

include ‘mpi.h’ 
program hybover 

!$OMP parallel 

   if (ithread .eq. 0) then 
      call MPI_<whatever>(…,ierr) 
   else 
      <work> 
   endif 

!$OMP end parallel 
end 

#include <mpi.h> 
int main(int argc, char **argv){ 
 int rank, size, ierr, i; 

#pragma omp parallel 
{ 
   if (thread == 0){ 
      ierr=MPI_<Whatever>(…) 
   } 
  if(thread != 0){ 
      work 
  } 

} 

Fortran  C 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Thread-rank Communication 

•  Can use thread id and rank in 
communication 

•  Example illustrates technique in multi-
thread “ping” (send/receive) example. 
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Thread-rank Communication 
… 
call mpi_init_thread( MPI_THREAD_MULTIPLE, iprovided,ierr) 
call mpi_comm_rank(MPI_COMM_WORLD,  irank, ierr) 
call mpi_comm_size( MPI_COMM_WORLD,nranks, ierr) 
… 
!$OMP parallel private(i, ithread, nthreads) 
… 
   nthreads=OMP_GET_NUM_THREADS() 
   ithread   =OMP_GET_THREAD_NUM() 
   call pwork(ithread, irank, nthreads, nranks…) 
   if(irank == 0) then 
      call mpi_send(ithread,1,MPI_INTEGER, 1,   ithread, MPI_COMM_WORLD, ierr) 
   else 
      call mpi_recv(           j,1,MPI_INTEGER, 0,   ithread, MPI_COMM_WORLD, istatus,ierr) 
      print*, "Yep, this is ",irank," thread ", ithread," I received from ", j 
   endif 

!$OMP END PARALLEL 
end 

Communicate between ranks. 

Threads use tags to differentiate. 
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NUMA in Code 

•  Scheduling Affinity and Memory Policy can be 
changed within code through: 
–  sched_get/setaffinity 
–  get/set_memory_policy 

•  Scheduling: Bits in a mask are set for assignments. 

0 100000000000000

0 000000000000001

Assignment to Core 0 

Assignment to Core 15 

Assignment to Core 0 or 15 0 100000000000001



28 

NUMA in Code 

•  Scheduling Affinity 

… 
#include <sched.h> 
… 
int icore=3; 
cpu_set_t cpu_mask; 
… 
CPU_ZERO(      cpu_mask); 
CPU_SET(icore, cpu_mask); 

err = sched_setaffinity(        (pid_t)0 ,  
                         sizeof(cpu_mask),  
                               &cpu_mask); 

Get C  

Set core number 
Allocate mask 

Set mask to zero 
Set mask with core # 

Set the affinity 



Conclusion 
•  Placement and binding of processes, and 

allocation location of memory are important 
performance considerations in pure MPI/
OpenMP and Hybrid codes. 

•  Simple numactl commands and APIs allow 
users to control process and memory 
assignments. 

•  8-core and 16-core socket systems are on the 
way, even more effort will be focused on 
process scheduling and memory location.  

•  Expect to see more multi-threaded libraries. 
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