
Hybrid Computing

Lars Koesterke

University of Porto, Portugal
May 28-29, 2009

2

Why Hybrid?

•  Eliminates domain decomposition at node
•  Automatic coherency at node
•  Lower memory latency and data

movement within node
•  Can synchronize on memory instead of

barrier

3

Why Hybrid? (cont 1)

•  Only profitable if on-node aggregation of
MPI parallel components is faster as a
single SMP algorithm (or a single SMP
algorithm on each socket).

4

Hybrid - Motivation

CPU-bound

Memory-bound

•  Load Balancing
•  Reduce Memory Traffic

Node Views
C

P
U

OpenMP

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

MPI

0 1

2 3
CPU  CPU 

CPU CPU 

CPU  CPU 

CPU CPU 

CPU  CPU 

CPU CPU 

CPU  CPU 

CPU CPU 

Process-
Affinity
Memory-
Allocation

5

6

NUMA Operations

•  Where do threads/processes and memory allocations go?
•  If Memory were completely uniform there would be no

need to worry about these two concerns. Only for NUMA
(non-uniform memory access) is (re)placement of
processes and allocated memory (NUMA Control) of
importance.

•  Default Control: Decided by policy when process exec’d or
thread forked, and when memory allocated. Directed from
within Kernel.

NUMA Operations
•  Ways Process Affinity and Memory Policy can be

changed:
–  Dynamically on a running process (knowing process id)
–  At process execution (with wrapper command)
–  Within program through F90/C API

•  Users can alter Kernel Policies
(setting Process Affinity and Memory Policy == PAMPer)
–  Users can PAMPer their own processes.
–  Root can PAMPer any process.
–  Careful, libraries may PAMPer, too!

7

NUMA Operations
•  Process Affinity and Memory Policy can be

controlled at socket and core level with numactl.

CPU  CPU 

CPU CPU 

CPU  CPU 

CPU CPU 

CPU  CPU 

CPU CPU 

CPU  CPU 

CPU CPU 

CPU  CPU 

CPU CPU 

CPU  CPU 

CPU CPU 

CPU  CPU 

CPU CPU 

CPU  CPU 

CPU CPU 

Process: Socket References 

0 1 

3 2 

0,1,2,3 4,5,6,7 

12,13,14,15 8,9,10,11 

Process: Core References 

CPU  CPU 

CPU CPU 

CPU  CPU 

CPU CPU 

CPU  CPU 

CPU CPU 

CPU  CPU 

CPU CPU 

Memory: Socket References 

0 

3 2 

1 

process assignment 
‐N 

memory allocaFon 
–l  –i  ‐‐peferred –m 

(local, interleaved, pref., mandatory) 

core assignment 
–C 

8

9

Modes of MPI/Thread Operation
•  SMP Nodes

•  Single MPI task launched per node
•  Parallel Threads share all node memory, e.g 16 threads/

node on Ranger.
•  SMP Sockets

•  Single MPI task launched on each socket
•  Parallel Thread set shares socket memory,

e.g. 4 threads/socket on Ranger
•  MPI Cores

•  Each core on a node is assigned an MPI task.
•  (not really hybrid, but in master/slave paradigm master could

use threads)

10

Modes of MPI/Thread Operation

MPI Task on Core 

16 MPI Tasks 

Master Thread of MPI Task 

1 MPI Tasks 
16 Threads/Task 

4 MPI Tasks 
4Threads/Task 

Slave    Thread of MPI Task 
Master Thread of MPI Task 

Pure MPI Node  Pure SMP Node 

11

SMP Nodes

 job script (Bourne shell) job script (C shell)

... ...
#! -pe 1way 192 #! -pe 1way 192
... ...
export OMP_NUM_THREADS=16 setenv OMP_NUM_THREADS 16
ibrun numactl –i all ./a.out ibrun numactl –i all ./a.out

•  Make sure 1 task is created on each node
•  Set total number of cores (nodes x 16)
•  Set number of threads for each node
•  PAMPering at job level

•  Controls behavior for ALL tasks
•  No simple/standard way to control thread-core affinity

Hybrid Batch Script 16 threads/node

12

SMP Sockets

 job script (Bourne shell) job script (C shell)

... ...
#! -pe 4way 48 #! -pe 4way 48
... ...
export MY_NSLOTS =36 setenv MY_NSLOTS 36
export OMP_NUM_THREADS=4 setenv OMP_NUM_THREADS 4
ibrun numa.csh ibrun numa.sh

•  Example script setup for a square (6x6 = 36) processor topology.
•  Create a task for each socket (4 tasks per node).
•  Set total number of cores allocated by batch (nodes x 16 cores/node).
•  Set actual number of cores used with MY_NSLOTS.
•  Set number of threads for each task
•  PAMPering at task level

  Create script to extract rank for numactl options, and a.out execution
(TACC MPI systems always assign sequential ranks on a node.

  No simple/standard way to control thread-core affinity

Hybrid Batch Script 4 tasks/node, 4 threads/task

13

SMP Sockets

 numa.sh

#!/bin/bash
export MV2_USE_AFFINITY=0
export MV2_ENABLE_AFFINITY=0

 #TasksPerNode
TPN=`echo $PE | sed 's/way//'`
[! $TPN] && echo TPN NOT defined!
[! $TPN] && exit 1

socket=$(($PMI_RANK % $TPN))

numactl -N $socket -m $socket ./a.out

 numa.csh

 #!/bin/tcsh
 setenv MV2_USE_AFFINITY 0
 setenv MV2_ENABLE_AFFINITY 0

 #TasksPerNode
 set TPN = `echo $PE | sed 's/way//'`
 if(! ${%TPN}) echo TPN NOT defined!
 if(! ${%TPN}) exit 0

 @ socket = $PMI_RANK % $TPN

 numactl -N $socket -m $socket ./a.out

fo
r m

va
pi

ch
2

Hybrid Batch Script 4 tasks/node, 4 threads/task

Hybrid – Program Model

•  Start with MPI initialization
•  Create OMP parallel regions

within MPI task (process).
•  Serial regions are the

master thread or MPI task.
•  MPI rank is known to all threads

•  Call MPI library in serial
and parallel regions.

•  Finalize MPI
14

Program

15

MPI with OpenMP -- Messaging

Single-threaded
messaging

Node

Multi-threaded
messaging

Node

Node Node

MPI from serial region or a single thread within parallel region

MPI from multiple threads within parallel region
Requires thread-safe implementation

rank to rank

rank-thread ID to any rank-thread ID

Threads calling MPI
•  Use MPI_Init_thread to select/determine MPI’s

thread level of support (in lieu of MPI_Init).
MPI_Init_thread is supported in MPI2

•  Thread safety is controlled by “provided” types:
single, funneled, serialized and multiple
•  Single means there is no multi-threading.
•  Funneled means only the master thread calls MPI
•  Serialized means multiple threads can call MPI, but

only 1 call can be in progress at a time (serialized).
•  Multiple means MPI is thread safe.
•  Monotonic values are assigned to Parameters:

MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED < MPI_THREAD_SERIALIZED <
MPI_THREAD_MULTIPLE

16

17

MPI2 MPI_Init_thread
Syntax:
 call MPI_Init_thread(irequired, iprovided, ierr)

 int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)
 int MPI::Init_thread(int& argc, char**& argv, int required)

Support Levels Description

MPI_THREAD_SINGLE Only one thread will execute.

MPI_THREAD_FUNNELED Process may be multi-threaded, but only main
thread will make MPI calls (calls are ’’funneled'' to
main thread). Default

MPI_THREAD_SERIALIZE Process may be multi-threaded, any thread can
make MPI calls, but threads cannot execute MPI
calls concurrently (MPI calls are ’’serialized'').

MPI_THREAD_MULTIPLE Multiple threads may call MPI, no restrictions.

If supported, the call will return provided = required.
Otherwise, the highest level of support will be provided.

18

Hybrid Coding
include ‘mpif.h’ 
program hybsimp 

 call MPI_Init(ierr) 
 call MPI_Comm_rank (...,irank,ierr) 
 call MPI_Comm_size (...,isize,ierr) 
! Setup shared mem, comp. & Comm 

!$OMP parallel do 
    do i=1,n 
       <work> 
    enddo 
!  compute & communicate 

 call MPI_Finalize(ierr) 
 end 

#include <mpi.h> 
int main(int argc, char **argv){ 
 int rank, size, ierr, i; 

 ierr= MPI_Init(&argc,&argv[]); 
 ierr= MPI_Comm_rank (...,&rank); 
 ierr= MPI_Comm_size (...,&size); 
//Setup shared mem, compute & Comm 

#pragma omp parallel for 
    for(i=0; i<n; i++){ 
       <work> 
    } 
// compute & communicate 

 ierr= MPI_Finalize(); 

Fortran  C 

19

MPI Call through Master

•  MPI_THREAD_FUNNELED
•  Use OMP_BARRIER since there is no

implicit barrier in master workshare
construct (OMP_MASTER).

•  All other threads will be sleeping.

20

Funneling through Master
include ‘mpif.h’ 
program hybmas 

!$OMP parallel 

   !$OMP barrier 
   !$OMP master 

     call MPI_<Whatever>(…,ierr) 
   !$OMP end master 

   !$OMP barrier 

!$OMP end parallel 
end 

#include <mpi.h> 
int main(int argc, char **argv){ 
 int rank, size, ierr, i; 

#pragma omp parallel 
{ 
   #pragma omp barrier 
   #pragma omp master 
   { 
     ierr=MPI_<Whatever>(…) 
   } 

   #pragma omp barrier 

} 
} 

Fortran  C 

21

MPI Call within Single

•  MPI_THREAD_SERIALIZED
•  Only OMP_BARRIER at beginning,

since there is an implicit barrier in
SINGLE workshare construct
(OMP_SINGLE).

•  All other threads will be sleeping.

•  (The simplest case is for any thread to execute a single mpi call,
e.g. with the “single” omp construct. See next slide.)

22

Serialize through Single
include ‘mpif.h’ 
program hybsing 

call mpi_init_thread(MPI_THREAD_SERIALIZED,   
  iprovided,ierr) 
!$OMP parallel 

   !$OMP barrier 
   !$OMP single 

     call MPI_<whatever>(…,ierr) 
   !$OMP end single 

   !!OMP barrier 

!$OMP end parallel 
end 

#include <mpi.h> 
int main(int argc, char **argv){ 
int rank, size, ierr, i; 
mpi_init_thread(MPI_THREAD_SERIALIZED,  

     iprovided) 
#pragma omp parallel 
{ 
   #pragma omp barrier 
   #pragma omp single 
   { 
     ierr=MPI_<Whatever>(…) 
   } 

   //pragma omp barrier 

} 
} 

Fortran  C 

23

Overlapping Communication and
Work

•  One core can saturate the PCI-e
network bus. Why use all to
communicate?

•  Communicate with one or several cores.
•  Work with others during communication.
•  Need at least

MPI_THREAD_FUNNELED support.
•  Can be difficult to manage and load

balance!

24

Overlapping Communication and
Work

include ‘mpi.h’ 
program hybover 

!$OMP parallel 

   if (ithread .eq. 0) then 
      call MPI_<whatever>(…,ierr) 
   else 
      <work> 
   endif 

!$OMP end parallel 
end 

#include <mpi.h> 
int main(int argc, char **argv){ 
 int rank, size, ierr, i; 

#pragma omp parallel 
{ 
   if (thread == 0){ 
      ierr=MPI_<Whatever>(…) 
   } 
  if(thread != 0){ 
      work 
  } 

} 

Fortran  C 

25

Thread-rank Communication

•  Can use thread id and rank in
communication

•  Example illustrates technique in multi-
thread “ping” (send/receive) example.

26

Thread-rank Communication
…
call mpi_init_thread(MPI_THREAD_MULTIPLE, iprovided,ierr)
call mpi_comm_rank(MPI_COMM_WORLD, irank, ierr)
call mpi_comm_size(MPI_COMM_WORLD,nranks, ierr)
…
!$OMP parallel private(i, ithread, nthreads) 
… 
   nthreads=OMP_GET_NUM_THREADS() 
   ithread   =OMP_GET_THREAD_NUM() 
   call pwork(ithread, irank, nthreads, nranks…) 
   if(irank == 0) then 
      call mpi_send(ithread,1,MPI_INTEGER, 1, ithread, MPI_COMM_WORLD, ierr)
   else 
      call mpi_recv(j,1,MPI_INTEGER, 0, ithread, MPI_COMM_WORLD, istatus,ierr)
      print*, "Yep, this is ",irank," thread ", ithread," I received from ", j 
   endif 

!$OMP END PARALLEL 
end 

Communicate between ranks.

Threads use tags to differentiate.

27

NUMA in Code

•  Scheduling Affinity and Memory Policy can be
changed within code through:
–  sched_get/setaffinity
–  get/set_memory_policy

•  Scheduling: Bits in a mask are set for assignments.

0 100000000000000

0 000000000000001

Assignment to Core 0

Assignment to Core 15

Assignment to Core 0 or 15 0 100000000000001

28

NUMA in Code

•  Scheduling Affinity

…
#include <sched.h>
…
int icore=3;
cpu_set_t cpu_mask;
…
CPU_ZERO(cpu_mask);
CPU_SET(icore, cpu_mask);

err = sched_setaffinity((pid_t)0 ,
 sizeof(cpu_mask),
 &cpu_mask);

Get C

Set core number
Allocate mask

Set mask to zero
Set mask with core #

Set the affinity

Conclusion
•  Placement and binding of processes, and

allocation location of memory are important
performance considerations in pure MPI/
OpenMP and Hybrid codes.

•  Simple numactl commands and APIs allow
users to control process and memory
assignments.

•  8-core and 16-core socket systems are on the
way, even more effort will be focused on
process scheduling and memory location.

•  Expect to see more multi-threaded libraries.

29

30

References

•  www.nersc.gov/nusers/services/training/classes/NUG/
Jun04/NUG2004_yhe_hybrid.ppt
Hybrid OpenMP and MPI Programming and Tuning (NUG2004),Yun
(Helen) He and Chris Ding, Lawrence Berkeley National Laboratory, June
24, 2004.

•  www-unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0/
node162.htm#Node162

•  www.tacc.utexas.edu/services/userguides/ranger {See numa section.}

•  www.mpi-forum.org/docs/mpi2-report.pdf

•  http://www.nersc.gov/nusers/services/training/classes/NUG/Jun04/
NUG2004_yhe_hybrid.ppt

•  www.intel.com/software/products/compilers/docs/fmac/doc_files/source/
extfile/optaps_for/common/optaps_openmp_thread_affinity.htm

