
On a paper by Leonard Adleman – k-potency

Working paper

Comments welcome; my email is: armandobcm@yahoo.com

Armando B. Matos

November 4, 2013

Abstract

In [1] the author introduces the related concepts of k-potent numbers
and inflating functions, using as main example the factorization problem.
We analyze that paper and discuss the possibility of generalizing these
concepts to other classes of problems. In particular, we ask if there are
three or more natural “decision” or “result” problem classes, such that one
of the has intermediate k-potency. In terms of the relationship between
classes of problems we have a mathematical pre-order relation, where the
non-symmetry is essential for the theory of public-key cryptography.

A physical interpretation of k-potency based on the Landauer principle
is also discussed.

1 Introduction

In this note we analyze the ideas and concepts presented in the early paper [1].
However, randomized algorithms and randomized classes are not discussed. We
often quote or transcribe parts of [1].

It is interesting to notice that [3], a “reference” in Kolmogorov complexity,
mentions [1] twice, first as a precursor of time bounded Kolmogorov complexity:

Page 596:
“These papers, and [L.A. Levin, Problems Inform. Transmission, 9(1973),
265–266; R.P. Daley, Theoret. Comput. Sci., 4(1977), 301–309; L.M.
Adleman, “Time, space, and randomness,” LCS Report TM-131, 1979,
MIT], are significant early documents of resource-bounded Kolmogorov
complexity.”

and later as the reference that introduces the concept of “potential”:

Page 599:
“Related work on a notion of ‘potential’ is based on L.M. Adleman
[Ibid.] and is not treated in this edition”.

1

1.1 On “decision” and “result” problems

An NP problem Π is characterized by a polynomial time (P-time) function π(x, y)
with codomain {0, 1} (or {false, true}), where x is the instance of the prob-
lem and y is the witness.

To solve the problem in P-time is to find a polynomial time algorithm A(x)
that, given the input x, answers

A(x) =
{

0 if ¬∃y : f(x, y) = 1
1 if ∃y : f(x, y) = 1

Note that no witness y is outputted by the algorithm.

For many NP problems it is possible to use an P-time decision algorithm to
implement a P-time algorithm that outputs an witness if it exists,

A′(x) =
{

false if ¬∃y : f(x, y) = 1
y such that f(x, y) = 1 otherwise

For many NP problems, including SAT, Clique, Hamiltonian cycle, and many
others, eventual P-time decision algorithms can be easily transformed in P-time
algorithms “with result”. However, for the factorization problem, the decision
problem (is the integer composed?) does not seem to help much the “result”
problem (if the integer if not a prime, output a non trivial factor). Quoting the
Wikipedia,

When discussing what complexity classes the integer factorization prob-
lem falls into, it’s necessary to distinguish two slightly different versions
of the problem:
The “function” [or “result”] problem version: given an integer n, find
an integer d with 1 < d < n that divides n (or conclude that n is
prime). This problem is trivially in FNP [function problem extension of
the decision problem class NP] and it’s not known whether it lies in FP
or not. This is the version solved by most practical implementations.
The “decision” problem version: given an integer n and an integer m
with 1 ≤ m ≤ n, does n have a factor d with 1 < d < m? This version
is useful because most well-studied complexity classes are defined as
classes of decision problems, not function problems. This is a natural
decision version of the problem, analogous to those frequently used for
optimization problems, because it can be combined with binary search
to solve the function problem version in a logarithmic number of queries.
It is not known exactly which complexity classes contain the decision
version of the integer factorization problem. It is known to be in both
NP and co-NP. This is because both YES and NO answers can be
verified in polynomial time given the prime factors (we can verify their
primality using the AKS primality test, and that their product is n
by multiplication). The fundamental theorem of arithmetic guarantees

2

that there is only one possible string that will be accepted (providing
the factors are required to be listed in order), which shows that the
problem is in both UP [complexity class of decision problems solvable
in polynomial time on a non-deterministic Turing machine with at most
one accepting path for each input] and co-UP. [. . .] It is [. . .] a
candidate for the NP-intermediate complexity class.
In contrast, the decision problem “is n a composite number?” [. . .]
appears to be much easier than the problem of actually finding the
factors of n. Specifically, the former can be solved in polynomial time
(in the number of digits of n) with the AKS primality test. In addition,
there are a number of probabilistic algorithms that can test primality
very quickly in practice if one is willing to accept the vanishingly small
possibility of error.

1.2 Potential associated with a number

The length of the representation of an integer n is denoted by |n|, thus ||n||
denotes the length of the length of the representation of n. Using basis 2 to rep-
resent integers and as the basis of the logarithms, |n| ≈ log n, ||n|| ≈ log(log n).
Definition in [1]:

Definition 1 For all k ∈ N, for all σ ∈ {0, 1}? (and for all τ ∈ {0, 1}?), σ is
k-potent (with respect to τ) if there is a program p of size less than or equal to
k||σ||, which, with blanks (τ) as input, halts with output σ in less than or equal
to |σ|k steps.

Intuitively, σ is k-potent when there is a very short and efficient (more precisely,
in time |σ|k) program that prints σ. So, k-potent could perhaps be called k-easy.

The definition above can be expressed in terms of the time-bounded Kolmogorov
complexity of σ:

σ is k-potent: K |σ|
k
(σ|τ) ≤ k||σ|| (1)

Definition 2 (Given a string τ ∈ {0, 1}?), a string σ ∈ {0, 1}? is not-k-potent
(with respect to τ) if for every k ∈ N there are infinitely many σ ∈ {0, 1}? such
that σ) is not k-potent (with respect to τ).

1.3 The existence of polynomial algorithms for non k-potent
numbers

Let n = |σ|, |n| = ||σ|| ≈ log n. A k-potent string σ can be generated in
polynomial time (polynomial in n = |σ|). This is immediate from (1) and the
definition of Kt with t = |σ|k.

Also,

3

Theorem 1 For every k the set of strings not longer than σ that can be effi-
ciently generated from σ, more precisely,

fk(σ) = {α : |α| ≤ n and α is k-potent wrt σ}

(where n = |σ|) is computable in polynomial time.

Proof. Notice that, as α is k-potent wrt σ and |α| ≤ |σ| = n, the set fk(σ) is
small, #fk(σ) ≤ 2k||σ|| = nk; there are at most 2k|n| ≈ nk programs with length
at most k|n|. The simulation of all these programs during the time |σ|k = nk

and the construction of the set fk(σ) takes polynomial time. �

1.4 Tuples of integers as integers: elementary codifications

Using an efficient encoding, a tuple of integers or strings can be seen as single
integer with essentially the same potency.

In this way we can talk about the k-potency of a tuple of integers or strings.

For instance, the factorization of an integer (2) can be seen as a function N→ N,
instead of a function N→ N× N.

1.5 Inflating functions

A function f(x) is inflating if, infinitely often, it is inefficient to obtain f(x)
from x. The definition of [1] is

Definition 3 A function f : {0, 1}? → {0, 1}?, f is an inflating function if, for
all k ∈ N there are infinitely many σ ∈ {0, 1}? such that f(σ) is not k-potent
with respect to σ.

It is as if, infinitely often, some difficult to obtain (deep) information about x is
easy to obtain from (is shallow in) f(x). Figure 1 (page 5) represents an inflating
(factorize), deflating (forget) and (almost) “iso-flating” (multiply) functions.

1.6 Inflating theorem

Theorem 2 Let FAC denote the integer factoring function. Then FAC 6∈ P if
and only if FAC is inflating.

Proof. Let n = |α| and m = |FAC(α)|. That is, n = |pq| ≈ log(pq) and
m = |FAC(〈p, q〉|) ≤ 2 log(pq), using a simple pair codification.
1) FAC ∈ P ⇒ FAC is not inflating.
Assume there an algorithm of size S factors in time nk for some k. Let α be any
input of size at least 2S/k, that is, n = |α| ≥ 2S/k. We get S ≤ k log n = k||α||.

4

more informa-
tion available
more informa-
tion available

less informa-
tion available

pq

〈p, q〉pq, 〈p, q〉

fac
tor

ize

multiply

erase 〈p, q〉spend energy

Figure 1: A representation of algorithms for factorization and product. An
algorithm is inflating (FAC in the figure) if the corresponding arrow goes from
bottom to top. A similar diagram would relate all the instances of NP-complete
problems at the bottom, and the corresponding pairs 〈instance, witness〉 the
top.

Thus, FAC is k-potent with respect to α (or “given α).

2) FAC is not inflating ⇒ FAC ∈ P .
There is a k such that for almost all α, FAC(α) is k-potent with respect to α.
But |FAC(α)| ≤ 2|α|. By Theorem 1, fk(α, 12|α|) is computable in polynomial
time. Since all prime factors of α are in fk(α, 12|α|), we can in polynomial time
arrive at FAC(α) by taking GCDs. �

1.7 Inflating theorem for the SAT problem

We now concentrate on the SAT problem. Let φ be an instance of SAT and
let T (φ) be a truth assignment satisfying φ (if the instance is positive). The
following result is from [1].

Theorem 3 Then SAT 6∈ P if and only if for every k ∈ N there is an (a
positive?) instance φ ∈ SAT such that every T (φ) is not k-potent with respect
to φ.

Proof. (i) If SAT ∈ P there is a polynomial-time function (by binary searching
truth assignments)

fSAT =
{

0 if φ 6∈ SAT
the least T (φ) if φ ∈ SAT

Then fSAT is non inflating. So, there is a k such that, for every φ ∈ SAT, there
is a T (φ) that is k-potent with respect to φ.

5

(ii) (∀k) (∀φ ∈ SAT) (∃T (φ) k-potent with respect to φ).
Then SAT ∈ P , since using the technique described in the proof of Theorem 2,
we could enumerate all of the T (φ) which are k-potent in φ and confirm if one
satisfies φ in polynomial time. �

2 Comments

2.1 Inflating theorem for other NP problems

We can apply the concept of k-potency to other classes of problems. The two
levels represented in Figure 1 (page 5) can be generalized for “P/NPC with
witnesses”.

Two strings polynomially reducible to each other are considered to be equally
difficult and placed on the same level (k-potent for some k, or not k-potent for
any k).

The two levels P and NPC (NP-complete) problems are not directly amenable
to k-potency or inflating analysis because in these classes we are dealing with
decision problems, not with outputs of functions that are words or integers.

P and NPC with witnesses. Here we consider result problems (see definition in
Section 1.1, page 2). Also notice that witnesses are often polynomially obtained
with an algorithm with access to an oracle for the decision problem, see page 2.

If the Berman–Hartmanis Conjecture is true, problems in NPC are not only
polynomially reducible to each other but also polynomially isomorphic.

2.2 Kolmogorov complexity in restricted algebras

One possible problem that relates KC with DC is to find (in some fixed logic L)
a shortest proposition that is equivalent to a given proposition φ. The corre-
sponding minimum length could be denoted by KL(φ).
The shortest representations of integers as expressions of some fixed algebras
were studied in [5, 4].

2.3 Why is the factorization problem used to define the “po-
tential” of a number?

The potential of a number is not related to a particular problem. Many other
“result” problems are possible. We could for instance, define the problem

Instance: Integer n.
Answer: {

〈p1, p2〉 such that n = p1 + p2p2

false if there are no such pair 〈p1, p2〉

6

Then, we have the following important problem:

There are several inflating functions, each producing not-k-potent
strings f(σ) relatively to the same input σ; these results, say, f1(σ),
f2(σ),. . . are not necessarily at the same level of k-potency. Can we
relate them in terms of k-potency? Is there a natural and interesting
hierarchy of non k-potent strings?

3 Energy of a computation: the physical point of

view

Instead of the “potential” associated with an integer, we can possibly use the
“energy” it takes to move from one representation to another, say from pq

(product of primes) to 〈p, q〉 (pair of primes). This energy can be defined
precisely as the minimum physical energy dissipated (according to Landauer
principle) by an algorithm that implements the transformation, for instance
that factorizes pq.

It is well know that irreversible computations necessarily dissipate heat, see [2].
Landauer’s principle states that (using the Wikipedia entry) “for a computa-
tional operation in which 1 bit of logical information is lost, the amount of
entropy generated is at least k ln 2, and so, the energy that must eventually
be emitted to the environment is E ≥ kT ln 2”, where k is Boltzman constant,
about 1.38 ·10−23 J/K. Currently, this lower bound is not longer negligible! For
example, take the heavy but realistic computation

300 temperature, about 18 degrees Celsius
1010 elementary operations per second, 10GHz
106 bits destroyed in each “elementary operation”
10000 processors
10000 total computation time in seconds

We get

E ≥ 1.38 · 10−23 × 300× 1010 × 106 × 10 000× 10 000 ≈ 4 140J

So, the idea is that there is a minimum physical energy needed to move from
one representation to another. For instance, the transformation

pq → 〈p, q〉 (2)

necessarily – by the Landauer principle and assuming that P6=NP – dissipates,
infinitely often, a large energy.

7

The situation is asymmetric relatively to the reverse transformation 〈p, q〉 → pq;
common computers are irreversible and do not produce energy.

3.1 Can potential theory and minimum energy be applied to
QM computers?

In terms of factorization algorithms, the answer seems to be no. Because
(i) there is a polynomial time QM algorithm, and (ii) QM is reversible so that
Landauer principle is not interesting here!

References

[1] Leonard M. Adleman. Time, space and randomness. Technical Report
MIT/LCS/TM-131, Massachusetts Institute of Technology. Laboratory,
March 1979.

[2] Ralf Landauer. Irreversibility and heat generation in the computing process.
IBM Journal of Research and Development, 5(3):183–191, 1961.

[3] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and
Its Applications. Springer, third edition, 2008.

[4] Armando B. Matos. Exponentiation: normal forms and properties, 2005
(revised in 2011).

[5] Armando B. Matos. Kolmogorov complexity in multiplicative arithmetic,
2005 (revised in 2011).

8

