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Preliminaries



Complexity

Definition

A decision problem A reduces polynomially to a decision problem B, A <, B, if there
is a function f : X3 — X5 (where 34 and 3z are the alphabets, A C X}, B C X3)
computable in polynomial time such that, for every x € 3*, we have

x € Aif and only if f(x) € B

Definition

A decision problem A is NP - complete if A € NP and B <,, A for every problem
B € NP.
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Communication complexity

Definition

A protocol P over domain X x Y with range Z is a binary tree, where each internal
node v is labeled either by a function a, : X — X or by a function b, : ¥ — 3, and
each leaf is labeled with an element z € {0, 1}.



Communication complexity

(similar to the example in Kushilevitz and Nisan, “Communication Complexity”’)
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Communication complexity

“Random” square — the “functions” we will study. ..




Communication complexity

A monochromatic geometrical rectangle with maximum area:




Communication complexity

A monochromatic combinatorial rectangle with maximum area




Communication complexity

What is the minimum number of monochromatic combinatorial rectangles needed in
this case?




Communication complexity

The answer: 4




Communication complexity

Definition
For a function f : X X Y — Z, the (deterministic) communication complexity of f is:

D(f) = I'Ilpil’l{Dp(f) : P is a protocol for f }



Communication complexity

Protocol
A trivial protocol for communication complexity:

» Alice sends x to Bob;

» Bob computes f(x, y) and sends the result to Alice.

Theorem
For every functionf : X X ¥ — Z,

D(f) < log|X| + 1



Communication complexity

Definition
A square R x R with a function ¢ : R x R — {0, 1} is called by colored square.

Definition
Given a finite set R, a combinatorial rectangle is a set A X B, where A and B are
subsets of R.

Definition

We say that a combinatorial rectangle A X B is z-monochromatic if c(a, b) has the
same value z (O or 1) foralla € Aand b € B.



Communication complexity

Lemma 1
Any protocol P for a function f induces a partition of X X Y into z-monochromatic
rectangles. The number of rectangles is the number of leaves of P.



Communication complexity

Lemma 2
If any partition of X x Y into z-monochromatic rectangles requires at least ¢
rectangles, then D(f) > [log1].

Lemma 3
If all rectangles have size not greater than k, then the number of rectangles is, at least,
LkIY\. Thus

D(f) > log|X| + log |Y| — logk
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NP-completness of the 1-mcr problem



The 1-mcr problem is NP-complete

Result: The 1-mcr problem is NP-complete

We denote the problem of finding the largest 1-monochromatic rectangle of a given
colored square by 1-mcr.

The corresponding decision problem to 1-mcr is:

IMMR, maximum area 1-mcr

INSTANCE: ((Q, ¢), n, k) where (Q, ¢) is a colored square with side n
andk € 7.

QUESTION: Does Q contain a I1-mcr with area at least k?




The 1-mcr problem is NP-complete

Consider the following problems:

3SAT

INSTANCE: (U, C) where U is a finite set of logical variables and C is a
collection of clauses, where each clause has exactly 3 literals, no two of
which are derived from the same variable.

QUESTION: Is there a truth assignment for U that satisfies all the clauses
inC?

MEiB, maximum edge independent biclique

INSTANCE: (Vi U Va2, E), k) where (Vi U V2, E) is a bipartite graph and k
is a positive integer.

QUESTION: Does G contain an i-biclique (A, B) such that |A| - |B| > k?



The 1-mcr problem is NP-complete

It is known that 3SAT <, MEiB; it is not difficult to see that MEiB<,1MMR:

MEB <, IMMR
<(V1 U V27E)7k> - <Q7nakl>

Assume that [Vi| > |Vz| and let Vi = {x1,x2, -+ ,xm}and Vo = {y1,y2," - , o }»
with m > p. The reduction is defined by:

» n=m=|Vi|;

> Q:{172a vn}x{1727“' 7}’[};

Qi =1iff (i,j) € Eand Q;; = 0 forp < j < m;
K =k
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The largest monochromatic rectangles



The largest monochromatic rectangles

Summary
Asymptotic results (not all proved in this presentation):

\4

Both sides > 2logn = : impossible.

» Maximum area: about 12/2

» Corresponding shapes: (1 x n/2), (2 x n/4), (n/2 x 1), (n/4 x 2).
» No “intermediate” large rectangles.

Preferential shapes: (2 x n/4), (n/4 x 2).

v



The largest monochromatic rectangles

Both sides > 2logn = asymptotically impossible!

Consider a random colored square (Q, ¢), where each c(a, b) is a random variable z
such that:
__J 1 with probability p
T 0 with probability 1 — p

Theorem
If a, b are such that

a,b > clogn/log(1/p)
with ¢ > 2, then lim E(a, b) = 0. So, areas greater than 4 log” n/log*(1/p) do not

n— oo

exist in the limit.



The largest monochromatic rectangles

Both sides > 2logn. .. particular case: p = %

Theorem
If ¢ > 2 and a, b are such that a, b > clog n, then the asymptotic probability of
existing a monochromatic rectangle of area a x b is 0.

Proof
E(a,b): expected number of 1mcrs of area a x b. Depends of a, b and n.

E(a, b) _ 2—ah <n> (Z) < 2—ahna+h _ 2—ah+(a+b)10gn
a

Puta =2logn+ a, b =2logn+ (3, witha,8 >0



The largest monochromatic rectangles

1

Both sides > 2logn... Particular case: p = ;5

Proof (Cont.)
The exponent of 2 may be written as:

—ab+ (a+b)logn
= —(2logn+ a)(2logn+ B) + (2logn + a+ 2logn + B) logn
= —4log’n —2(a+ B) logn — af + (4logn + a + 3) logn
— —(a+B)logn - af
< —(a+B)logn
Thus, E(a, b) < 27 (@F8en 56 lim, ., E(a,b) = 0.
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The largest monochromatic rectangles

Asymptotic lower upper bounds of 1-mcr areas
» Maximum area is slightly larger than n/2

» Corresponding asymptotic shapes:
(n/2 x 1), (n/4 x 2), (1 x n/2),(2 x n/4).
» Example, random square 2000 x2000:

> Max. area of geometrical monochromatic rectangles: (about) 24, experimental.

> Max. area of combinatorial monochromatic rectangles: (about) 1000
(1000x 1 and 500x 2)



The largest monochromatic rectangles

Summary; the shape of the largest 1-mcr’s forp = 1/2

height
|
|
|
w32
2x(n/4)
/4|
2log(n)-|
(n/4)x2
24 (/2)x1
1 o
T T T T T - h
1 2 2log) 4 n2 width

@ Greatest area mer's



The largest monochromatic rectangles

a: number of rows, x: number of columns, s: area

‘a:l a=72 a=3

E(x) | n/2 n/4 n/8
E(s) | n/2 n/2 3n/8
p(s) | Vn/2 V3n/2 3Vn/8
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Random “functions”: communication complexity lower bound



A lower bound of the deterministic communication complexity

Idea (for p = 1/2):

Maximum area < n/2
=
Number of mer’s > n°/(n/2) = 2n
=

D(f) = [log(2n)]



A lower bound of the deterministic communication complexity

The random “function”

| 1 with probability p
frx,y) = { 0 with probability 1 — p

Theorem (D(f) lower bound)
The asymptotic deterministic communication complexity of a random “function’
Jo(x,y) satisfies

s

D(f) > {lognJrlog (pln1 +(1 fp)lnl ! ) +loge-‘
p -P



A lower bound of the deterministic communication complexity

Comparison

Let P the trivial protocol previously described. Dp(f) < [logn] + 1.
Then the last theorem shows that for a fix p (0 < p < 1), the protocol P is “almost”

optimal, in the sense that

Dp(f) —D(f) < [logrﬂ—l—l—{logn—i-log(pln%—i-(l—p)lnﬁ)+loge—‘
< Zflogeflog(pln})Jr(lfp)lnﬁ)



A lower bound of the deterministic communication complexity

Comparison

)4 ‘ 01 02 03 04 05 06 07 08 09

Dy(f) —D(f) | 218 156 127 1.3 1.09 1.13 127 156 2.18

Conclusion
‘We conclude that

> in the limit, no protocol for the random “function” is significantly better than
the trivial protocol P.

» in this case, the lower bound of D(f) based on the number of mcr’s is almost
optimal.



Experiments. . .

Conclusion. Small relative error: only for relatively large values of n.

Mor i i ial rectangle; il areas (20 samples)
height=1 height=2 height=3

n MA Dev n MA Dev n MA Dev

1 0.4 -20% 1 0.0 -100% 1 00 -100%

2 13 30% 2 il 10% 2 0.0 -100%

5 37 48% 5 4.8 92% 5 44 132%

10 7.2 43% 10 106 112% 10 121 223%

20 14.2 42% 20 19.7 9% 20 234  212%

50 33.0 32% 50 45.1 80% 50 50.0 166%
100 63.0 26% 100 82.4 65% 100 848 126%
200 118.7 19% 200 150.9 51% 200 147.8 97%
500 2739 10% 500 339.0 36% 500 321.0 71% (1)
1000 548.1 10% 1000 618.0 24% 1000 567.0 51% (2)
2000 1076.5 8% 2000 1192.4 19% 2000 1032.0 38% (2

MA- maximum area (average of 20 samples except [1] and [2])
(1) 5 samples

(2) 1 sample

Dev - percentual deviation to theoretical value



The end.
Thank you!
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