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Complexity

Definition
A decision problem A reduces polynomially to a decision problem B, A ≤p B, if there
is a function f : Σ?A → Σ?B (where ΣA and ΣB are the alphabets, A ⊆ Σ?A, B ⊆ Σ?B)
computable in polynomial time such that, for every x ∈ Σ?, we have

x ∈ A if and only if f (x) ∈ B

Definition
A decision problem A is NP - complete if A ∈ NP and B ≤p A for every problem
B ∈ NP.



Communication complexity
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Communication complexity

Definition
A protocol P over domain X × Y with range Z is a binary tree, where each internal
node v is labeled either by a function av : X → Σ or by a function bv : Y → Σ, and
each leaf is labeled with an element z ∈ {0, 1}.



Communication complexity
(similar to the example in Kushilevitz and Nisan, “Communication Complexity”)



Communication complexity



Communication complexity

“Random” square – the “functions” we will study. . .



Communication complexity

A monochromatic geometrical rectangle with maximum area:



Communication complexity

A monochromatic combinatorial rectangle with maximum area



Communication complexity

What is the minimum number of monochromatic combinatorial rectangles needed in
this case?



Communication complexity

The answer: 4



Communication complexity

Definition
For a function f : X × Y → Z, the (deterministic) communication complexity of f is:

D(f ) = min
P
{DP(f ) : P is a protocol for f}



Communication complexity

Protocol
A trivial protocol for communication complexity:

I Alice sends x to Bob;
I Bob computes f (x, y) and sends the result to Alice.

Theorem
For every function f : X × Y → Z,

D(f ) ≤ log |X|+ 1



Communication complexity

Definition
A square R× R with a function c : R× R→ {0, 1} is called by colored square.

Definition
Given a finite set R, a combinatorial rectangle is a set A× B, where A and B are
subsets of R.

Definition
We say that a combinatorial rectangle A× B is z-monochromatic if c(a, b) has the
same value z (0 or 1) for all a ∈ A and b ∈ B.



Communication complexity

Lemma 1
Any protocol P for a function f induces a partition of X × Y into z-monochromatic
rectangles. The number of rectangles is the number of leaves of P.



Communication complexity

Lemma 2
If any partition of X × Y into z-monochromatic rectangles requires at least t
rectangles, then D(f ) ≥ dlog te.

Lemma 3
If all rectangles have size not greater than k, then the number of rectangles is, at least,
|X||Y|

k . Thus,
D(f ) ≥ log |X|+ log |Y| − log k
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The 1-mcr problem is NP-complete

Result: The 1-mcr problem is NP-complete

We denote the problem of finding the largest 1-monochromatic rectangle of a given
colored square by 1-mcr.
The corresponding decision problem to 1-mcr is:

1MMR, maximum area 1-mcr
INSTANCE: 〈(Q, c), n, k〉 where (Q, c) is a colored square with side n
and k ∈ Z+.
QUESTION: Does Q contain a 1-mcr with area at least k?



The 1-mcr problem is NP-complete

Consider the following problems:

3SAT
INSTANCE: 〈U,C〉 where U is a finite set of logical variables and C is a
collection of clauses, where each clause has exactly 3 literals, no two of
which are derived from the same variable.
QUESTION: Is there a truth assignment for U that satisfies all the clauses
in C?

MEiB, maximum edge independent biclique
INSTANCE: 〈(V1 ∪ V2,E), k〉 where (V1 ∪ V2,E) is a bipartite graph and k
is a positive integer.
QUESTION: Does G contain an i-biclique (A,B) such that |A| · |B| ≥ k?



The 1-mcr problem is NP-complete

It is known that 3SAT ≤p MEiB; it is not difficult to see that MEiB≤p1MMR:

MEiB ≤p 1MMR
〈(V1 ∪ V2,E), k〉 → 〈Q, n, k′〉

Assume that |V1| ≥ |V2| and let V1 = {x1, x2, · · · , xm} and V2 = {y1, y2, · · · , yp},
with m ≥ p. The reduction is defined by:

I n = m = |V1|;
I Q = {1, 2, · · · , n} × {1, 2, · · · , n};
I Qi,j = 1 iff (i, j) ∈ E and Qi,j = 0 for p < j ≤ n;
I k′ = k
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The largest monochromatic rectangles

Summary
Asymptotic results (not all proved in this presentation):

I Both sides > 2 log n ⇒ : impossible.
I Maximum area: about n/2
I Corresponding shapes: (1× n/2), (2× n/4), (n/2× 1), (n/4× 2).
I No “intermediate” large rectangles.
I Preferential shapes: (2× n/4), (n/4× 2).



The largest monochromatic rectangles

Both sides > 2 log n ⇒ asymptotically impossible!

Consider a random colored square (Q, c), where each c(a, b) is a random variable z
such that:

z =


1 with probability p
0 with probability 1− p

Theorem
If a, b are such that

a, b > c log n/ log(1/p)

with c > 2, then lim
n→∞

E(a, b) = 0. So, areas greater than 4 log2 n/ log2(1/p) do not

exist in the limit.



The largest monochromatic rectangles

Both sides > 2 log n. . . particular case: p = 1
2

Theorem
If c > 2 and a, b are such that a, b > c log n, then the asymptotic probability of
existing a monochromatic rectangle of area a× b is 0.

Proof
E(a, b): expected number of 1mcrs of area a× b. Depends of a, b and n.

E(a, b) = 2−ab

 
n
a

! 
n
b

!
≤ 2−abna+b = 2−ab+(a+b) log n

Put a = 2 log n + α, b = 2 log n + β, with α, β > 0



The largest monochromatic rectangles

Both sides > 2 log n. . . Particular case: p = 1
2

Proof (Cont.)
The exponent of 2 may be written as:

− ab + (a + b) log n (1)

= −(2 log n + α)(2 log n + β) + (2 log n + α+ 2 log n + β) log n (2)

= −4 log2 n− 2(α+ β) log n− αβ + (4 log n + α+ β) log n (3)

= −(α+ β) log n− αβ (4)

≤ −(α+ β) log n (5)

Thus, E(a, b) ≤ 2−(α+β) log n, so limn→∞ E(a, b) = 0.



The largest monochromatic rectangles

Asymptotic lower upper bounds of 1-mcr areas

I Maximum area is slightly larger than n/2

I Corresponding asymptotic shapes:
(n/2 × 1), (n/4 × 2), (1 × n/2), (2 × n/4).

I Example, random square 2000×2000:

I Max. area of geometrical monochromatic rectangles: (about) 24, experimental.

I Max. area of combinatorial monochromatic rectangles: (about) 1000
(1000× 1 and 500× 2)



The largest monochromatic rectangles

Summary; the shape of the largest 1-mcr’s for p = 1/2

height

1 2

2

2log(n) n/4 n/2

......

(n/4)x2

2x(n/4)

(n/2)x1

Greatest area mcr’s

1x(n/2)

no mcr’s

n

1

2log(n)

n/4

n/2

n

width



The largest monochromatic rectangles

a: number of rows, x: number of columns, s: area

a = 1 a = 2 a = 3
E(x) n/2 n/4 n/8
E(s) n/2 n/2 3n/8
ρ(s)

p
n/2

√
3n/2 3

√
7n/8



Outline

Preliminaries

NP-completness of the 1-mcr problem

The largest monochromatic rectangles

Random “functions”: communication complexity lower bound



A lower bound of the deterministic communication complexity

Idea (for p = 1/2):

Maximum area ≤ n/2

⇒

Number of mcr’s ≥ n2/(n/2) = 2n

⇒

D(f ) ≥ dlog(2n)e



A lower bound of the deterministic communication complexity

The random “function”

fp(x, y) =


1 with probability p
0 with probability 1− p

Theorem (D(f ) lower bound)
The asymptotic deterministic communication complexity of a random “function”
fp(x, y) satisfies

D(f ) ≥
‰

log n + log
„

p ln
1
p

+ (1− p) ln
1

1− p

«
+ log e

ı



A lower bound of the deterministic communication complexity

Comparison
Let P the trivial protocol previously described. DP(f ) ≤ dlog ne+ 1.
Then the last theorem shows that for a fix p (0 < p < 1), the protocol P is “almost”
optimal, in the sense that

DP(f )− D(f ) ≤ dlog ne+ 1−
l

log n + log
“

p ln 1
p + (1− p) ln 1

1−p

”
+ log e

m
< 2− log e− log

“
p ln 1

p + (1− p) ln 1
1−p

”



A lower bound of the deterministic communication complexity

Comparison

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DP(f )− D(f ) 2.18 1.56 1.27 1.13 1.09 1.13 1.27 1.56 2.18

Conclusion
We conclude that

I in the limit, no protocol for the random “function” is significantly better than
the trivial protocol P.

I in this case, the lower bound of D(f ) based on the number of mcr’s is almost
optimal.



Experiments. . .

Conclusion. Small relative error: only for relatively large values of n.

Monochromatic combinatorial rectangle; maximum areas (20 samples)

height=1 height=2 height=3
n MA Dev n MA Dev n MA Dev

1 0.4 -20% 1 0.0 -100% 1 0.0 -100%
2 1.3 30% 2 1.1 10% 2 0.0 -100%
5 3.7 48% 5 4.8 92% 5 4.4 132%

10 7.2 43% 10 10.6 112% 10 12.1 223%
20 14.2 42% 20 19.7 97% 20 23.4 212%
50 33.0 32% 50 45.1 80% 50 50.0 166%

100 63.0 26% 100 82.4 65% 100 84.8 126%
200 118.7 19% 200 150.9 51% 200 147.8 97%
500 273.9 10% 500 339.0 36% 500 321.0 71% (1)

1000 548.1 10% 1000 618.0 24% 1000 567.0 51% (2)
2000 1076.5 8% 2000 1192.4 19% 2000 1032.0 38% (2)

MA- maximum area (average of 20 samples except [1] and [2])
(1) 5 samples
(2) 1 sample
Dev - percentual deviation to theoretical value



The end.
Thank you!
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