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Goals. . .

Main result: For any algorithm, if data is distributed according to
the universal distribution m:

average case time = worst case time (1)

? SHow why worst case instances have short descriptions. /
Present definitions and results needed to explain (1) / Prove
(1) / Reflect about (1)

? Present/review some optimality results:
I Minimality of K
I Maximality of m
I Existence of optimal algorithms for NP
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. . . an example . . .

x is the input, n = |x |, 2n possible inputs with length n.
Uniform distribution, pr(x |n) = 2−n

An algorithm behaves as follows:

I For 1% of the possible inputs (0.01× 2n):
execution time is 2n

I For 99% of the possible inputs (0.99× 2n):
execution time is n

What is the average case running time?
Answer: tav(n) = (0.01× 2n) + (0.99× n) = Θ(2n)
- For 99% of the inputs, the execution time is O(n). . .
- . . . yet the average time is exponential!



. . . an example . . .

x is the input, n = |x |, 2n possible inputs with length n.
Uniform distribution, pr(x |n) = 2−n

An algorithm behaves as follows:

I For 1% of the possible inputs (0.01× 2n):
execution time is 2n

I For 99% of the possible inputs (0.99× 2n):
execution time is n

What is the average case running time?
Answer: tav(n) = (0.01× 2n) + (0.99× n) = Θ(2n)
- For 99% of the inputs, the execution time is O(n). . .
- . . . yet the average time is exponential!



. . . an example . . .

x is the input, n = |x |, 2n possible inputs with length n.
Uniform distribution, pr(x |n) = 2−n

An algorithm behaves as follows:

I For 1% of the possible inputs (0.01× 2n):
execution time is 2n

I For 99% of the possible inputs (0.99× 2n):
execution time is n

What is the average case running time?
Answer: tav(n) = (0.01× 2n) + (0.99× n) = Θ(2n)
- For 99% of the inputs, the execution time is O(n). . .
- . . . yet the average time is exponential!



. . . an example . . .

x is the input, n = |x |, 2n possible inputs with length n.
Uniform distribution, pr(x |n) = 2−n

An algorithm behaves as follows:

I For 1% of the possible inputs (0.01× 2n):
execution time is 2n

I For 99% of the possible inputs (0.99× 2n):
execution time is n

What is the average case running time?
Answer: tav(n) = (0.01× 2n) + (0.99× n) = Θ(2n)
- For 99% of the inputs, the execution time is O(n). . .
- . . . yet the average time is exponential!



. . . an example . . .

x is the input, n = |x |, 2n possible inputs with length n.
Uniform distribution, pr(x |n) = 2−n

An algorithm behaves as follows:

I For 1% of the possible inputs (0.01× 2n):
execution time is 2n

I For 99% of the possible inputs (0.99× 2n):
execution time is n

What is the average case running time?

Answer: tav(n) = (0.01× 2n) + (0.99× n) = Θ(2n)
- For 99% of the inputs, the execution time is O(n). . .
- . . . yet the average time is exponential!



. . . an example . . .

x is the input, n = |x |, 2n possible inputs with length n.
Uniform distribution, pr(x |n) = 2−n

An algorithm behaves as follows:

I For 1% of the possible inputs (0.01× 2n):
execution time is 2n

I For 99% of the possible inputs (0.99× 2n):
execution time is n

What is the average case running time?
Answer: tav(n) = (0.01× 2n) + (0.99× n)

= Θ(2n)
- For 99% of the inputs, the execution time is O(n). . .
- . . . yet the average time is exponential!



. . . an example . . .

x is the input, n = |x |, 2n possible inputs with length n.
Uniform distribution, pr(x |n) = 2−n

An algorithm behaves as follows:

I For 1% of the possible inputs (0.01× 2n):
execution time is 2n

I For 99% of the possible inputs (0.99× 2n):
execution time is n

What is the average case running time?
Answer: tav(n) = (0.01× 2n) + (0.99× n) = Θ(2n)

- For 99% of the inputs, the execution time is O(n). . .
- . . . yet the average time is exponential!



. . . an example . . .

x is the input, n = |x |, 2n possible inputs with length n.
Uniform distribution, pr(x |n) = 2−n

An algorithm behaves as follows:

I For 1% of the possible inputs (0.01× 2n):
execution time is 2n

I For 99% of the possible inputs (0.99× 2n):
execution time is n

What is the average case running time?
Answer: tav(n) = (0.01× 2n) + (0.99× n) = Θ(2n)
- For 99% of the inputs, the execution time is O(n). . .

- . . . yet the average time is exponential!



. . . an example . . .

x is the input, n = |x |, 2n possible inputs with length n.
Uniform distribution, pr(x |n) = 2−n

An algorithm behaves as follows:

I For 1% of the possible inputs (0.01× 2n):
execution time is 2n

I For 99% of the possible inputs (0.99× 2n):
execution time is n

What is the average case running time?
Answer: tav(n) = (0.01× 2n) + (0.99× n) = Θ(2n)
- For 99% of the inputs, the execution time is O(n). . .
- . . . yet the average time is exponential!



On the number of “bad” inputs

How can tav(n) be Θ(n)? Only if the number “bad” inputs
decreases fast enough when n increases.
We have

tav(n) = b(n)× 2n + (1− b(n))× n

where b(n) be the fraction of “bad” inputs – those corresponding
to worst case time behavior.
If the contribution of bad inputs to tav(n) is O(n), we must have

b(n) ≤ c × n

2n

(in this presentation c will always denote a constant.)
Thus there can only exist b(n)× 2n = O(n) bad inputs with
length n.
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On the Kolmogorov complexity of bad inputs

Let x be a bad input. There are ≤ c(n/2n)× 2n = cn bad inputs.
We can describe x by the following 2 parts:

(1) n: from n we get the set of B bad inputs.

(2) the index i of x in B

K (x) ≤
(1)︷︸︸︷

log n +

(2)︷︸︸︷
log n +O(log(logn)) = O(log n)

Bad inputs have short descriptions!
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Average complexity under the universal distribution

Now assume that the probability distribution (apart from a
normalizing constant) is m(x) = 2−K(x)

⇒ Bad inputs x have short descriptions; K (x) is very small

⇒ They occur with high probability, ≥ c × 2−2 log n ∼ 1/n2, while
“good” inputs have probability ≈ 2−n

⇒ the average execution time is exponential: ≥ (1/n2)× 2n

This analysis was approximate.
Exercise. What are the inaccuracies?
In fact: the average case and the worst case execution times have
exactly the same order of magnitude!
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Functions computable from above and below

Definition

f : N→ R is computable from above if the set

{(x , y) : y ≥ f (x)}

is recursively enumerable.

Similarly for computable from below.
Given a value x we can obtain values y ≤ f (x) but we may never
know when y = f (x) or how far we are from f (x).

Example. K (x) is computable from above.
Example. m(x) = 2−K(x) is computable from below.
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The universal distribution m(x)

The universal distribution:

m(x) = 2−K(x)

Simplest objects have highest probability, while random objects x
have probability ≈ 2−|x |.
Notes:

◦ m is not a distribution because
∑

x m(x) 6= 1. A normalizing
constant is needed. . .

◦ m is computable from below.
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m(x) maximizes every computable distribution

Definition A probability distributions is “enumerable” if it is
computable from below.

Theorem (Existence of optimal (maximum) enumerable
probability distributions)

For every enumerable probability distribution µ(x), there is a
constant cµ ∈ R+ such that

∀x : µ(x) ≤ cµm(x)

m(x) is called an universal distribution

Solomonoff, Kolmogorov, Chaitin (1964–1975)
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K (x) minimizes every algorithmic description method

Theorem (Existence of optimal (minimum) recursive
descriptions)

There exists a partial recursive function φu(x) such that, for every
partial recursive function φi

∃ci ∈ R+, ∀x : Cφi
(x) ≥ Cφu (x) + ci

where Cf (x) is the (plain) Kolmogorov complexity of x relatively
to partial recursive function f .
φu is an universal distribution

Compare with the result in previous slide!

Solomonoff (1964), Levin (197?)
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Solomonoff (1964), Levin (197?)
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For every NP problem there is a fastest algorithm!

About NP problems

I NP problem: characterized by a binary relation r(x , y)
computable in time polynomial in |x |+ |y |); x is the input, y
is the “solution” or “witness”.

I Language associated with r : L(r) = {x : ∃y , r(x , y)}
I Algorithm A solves r(x , y): The input is x .

If x ∈ L(r), outputs some y such that r(x , y) holds.
(If x 6∈ L(r), the behavior of A is unspecified)
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For every NP problem there is a fastest algorithm!

Theorem (Existence of an optimal (fastest) algorithm for NP
problems)

For every NP relation r(x , y) there is an algorithm A that
solves r(x , y) and a polynomial p(·) so that, if A′ is any algorithm
that solves r(x , y)

∃c , ∀x : timeA(x) ≤ c × timeA′(x) + p(|x |)

In words: A is optimal up to a fixed constant and an additive
polynomial!

Example: some A′ is polynomial ⇒ A is polynomial.

Compare with previous results!

This result is in a 2 page paper by Levin (1973) where he also proves the

existence of NP-complete problems (Cook’s theorem)!
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Levin I – On the existence of maximal (or minimal)
elements in algorithmic theories

Levin in “Randomness conservation inequalities” (1984):

BEGIN LEVIN . . . the general Theory of Algorithms is very similar
to descriptive set theory. There is, however, an important exception
in the existence of universal algorithms. The set of all (countable)
sets of integers is uncountable while the set of r.e. sets is r.e..
This rather abstract difference opens, however, new analytical
possibilities having no analogies in “non-algorithmic” analysis.
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Levin II

Let us illustrate this with a simple but important example. Let
l1 ⊆ RN be the space of absolutely summable real sequences.
Its recursive analogue l1 ⊆ l1 consists of elements of l1 whose
sub-graph {(r , x) : p(x) > r ∈ Q} is r.e.
It is known in calculus that no element is maximal in l1 within a
constant factor. In contrast to this, l1 has an “absorbing”
element m (a universal measure) such that

∀q ∈ l1 : sup{q(x)/m(x)} <∞

where m(x) =. . .
END LEVIN
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Optimal objects I

Sumary of optimality results:

I There is an optimal (minimum) algorithmic description
method

I There is an optimal (greatest) algorithmic probability
distribution

I For every NP problem there is an optimal (fastest) algorithm
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Optimal objects II

Why are there optimal objects in the “recursive world”?

Because there are machines (=algorithms) capable of simulating
any other machine!

END OF DIGRESSION!
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The main theorem

Theorem (Input distribution m ⇒ worst=average)

Assume that the inputs of an algorithm A (which terminates for all
inputs) are distributed according to m. Then, the average case and
the worst case time complexity of A have the same order of
magnitude.
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The proof (I)

Proof. Let tw (n) be the worst case complexity of A. Define a
particular probability distribution µ by

I Let an =
∑
|x |=n m(x)

I For each n ∈ N define for each x with |x | = n:
I µ(x) = an if t(x) = tw (n) (x is a bad input) and x is the

lexicographically least such input.
I µ(x) = 0 otherwise

Thus, for each n ∈ N there is exactly one x with |x | = n
and µ(x) > 0.

m is enumerable ⇒ µ(x) is enumerable
Notice that

∑
|x |=n µ(x) =

∑
|x |=n m(x).

(to be continued)
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The proof (II)

tw (n): worst case time of A (which is the same any distribution!)
tm
av(n): average case time under m

tm
av(n) =

∑
|x |=n m(x)t(x)∑
|x |=n m(x)

≥ 1

cµ

∑
|x |=n

µ(x)∑
|x |=n m(x)

tw (n)

≥ 1

cµ

∑
|x |=n

µ(x)∑
|x |=n µ(x)

tw (n)

≥ 1

cµ
tw (n)

and, as tw (n) ≥ tm
av(n): tw (n) = Θ(tm

av(n)) •
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Raising a few questions
about the average case behavior



Comments and reflections I

I What about best case behavior?

I What about space complexity?

I Are “real life” data distribution more “enumerable” than
“random”? →
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Comments and reflections II

I Most real life data distributions are far from random.

I With high probability, enumerable distributions are close to m:
for every k > 0∑{

µ(x) : µ(x) ∈
[
m(x)

k
, 2K(µ)+O(1)m(x)

]}
≥ 1− 1/k

“In absence of any a priory knowledge of the actual
distribution, apart from the fact that it is enumerable,
studying the average behavior under m is considerably more
meaningful than studying the average behavior under any
other particular enumerable distribution” (Li, Vitanyi)
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Comments and reflections III

How to test quicksort with computer generated data?

I Data used for tests is usually enumerable.
How can quicksort (say) behave well in such tests?

I In particular, how can the “algorithmic shuffling” (using
pseudo-random generators) be effective for generating well
behaved data for quicksort?
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The reader can attack himself these questions. . .
. . . or look (in vain?) for the answers in the

literature.



Bibliographic notes

• The universal distribution m was discovered by Ray Solomonoff in 1964.

• For any algorithm, if the inputs are distributed according to m, the
average time equals the worst time. This property is applied to some
particular problems in T. Jiang, M. Li, and P. Vitanyi, “Average-case
analysis of algorithms using Kolmogorov complexity”, Journal of
Computer Science and Technology, 15:5(2000), pp 402–408,
url=http://www.cwi.nl/∼paulv/papers/jcst00.ps.

• A paper by where the existence of fastest algorithms for NP problems is
discussed: Levin, “Randomness conservation inequalities”, Information
and Control 61:1(1984), pp 15-37,
url=http://www.cs.bu.edu/fac/lnd/research/dvi/inf.dvi.

• . . . and, of course, the (current) bible on Kolmogorov complexity is always
useful: M. Li and P.M.B. Vitanyi, An Introduction to Kolmogorov
Complexity and its Applications, Springer-Verlag, New York, Second
Edition, 1997.



The end. . .
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