Versions of Goédel’s incompleteness Theorem
Ron Maimon, obtained from

http://mathoverflow.net/questions/72062

Includes parts of the Wikipedia article “Undecidable problems”

Edited and augmented by Armando Matos

January 15, 2014

Contents

1 TYPEI1 4
1.1 GODEL-1o 4
1.2 GODEL-2 5
1.3 ROSSER o 5
1.4 PROOF-LENGTH 6
15 LOB . .o oo 7
1.6 TWEEDLEDEE and TWEEDEDUM 7
1.7 TWEEDLE-N 8

2 TYPE I1 10
2.1 FASTER-GROWTH 10

3 TYPE III 12
3.1 BOOLOS 12
3.2 CHAITIN, 12

4 From Wikipedia article “Undecidable num-
bers” 15

5 Some comments to the post 17

[...] The construction in Gédel’s theorem is often obscured by the heavy coding
involved. Since today, coding is standardized in computer science, I prefer to
state the construction explicitly as a computer program, instead of as a coded
statement of first-order logic. Two proofs are the same when they construct the
same computer program.

There are exactly three types of unpacked proofs of Godel’s theorem and related
results, as far as I know. To save typing, a program P “runs” iff it does not
halt.

Chapter 1

TYPE 1

Self referential TI9 statements (statements about the non-halting of a certain com-
puter program)

1.1 GODEL-1

To prove Godel’s theorem Godel’s way (as clarified by Turing and Kleene), given
an axiomatic system S whose deduction system is computable, you construct
the program GODEL which does the following;:

GODEL:
1. Print its own code into a variable R. (This is possible since you can write
quines, and make quining into a subroutine)

2. Deduces all consequences of S, looking for a proof in S of the state-
ment “R does not halt” (“R runs"); (this is a statement of arithmetic
of the form “VnF™(R) is non-halting”, where F' is a primitive recursive
instruction set for any computer you care to code up).

3. If such statement is found, halt.

The statement G — “GODEL runs” — is true precisely when S does not prove
it. So G states “S does not prove G”. The self reference is obvious in the first
step of the program. This is equivalent to Godel’s original construction.

From the construction, you can read off the requirements on the axiom system.
In order to be sure that GODEL halting leads a contradiction, the axiom system
has to be able to prove every statement of the form “program P leads to memory
state M after time t” for all integer times t, and for all programs P. Each of
these statements is a finite computation, a X{ statement, so the axiom system
must be able to prove all true ¥¢ statements (or even just a subset of these rich

enough to allow a computer to be embedded in the language).

1.2 GODEL-2

Note that if S is inconsistent, it proves every statement, including “GODEL
runs”, so “S is inconsistent” implies “GODEL halts”. “GODEL halts” also im-
plies “S is consistent”, if S can prove that it is ¢ complete. So the unprovability
of “GODEL halts” is tantamount to the unprovability of consis(S).

But S can (falsely) prove “GODEL halts”, without any contradiction, so long
as GODEL never actually halts. This is saying that it is possible for an axiom
system to prove its own inconsistency without actually being inconsistent, just
by telling lies about computer programs. The assumption that S is omega
consistent (or even just XY sound), means that it does not prove “P halts”
unless P actually halts. So the same construction of GODEL proves the second
incompleteness theorem as stated by GODEL, an omega-consistent system (or
a ¥¢ sound system) cannot prove its own consistency.

The proofs of Godel’s theorem which go through the halting problem all give
this construction.

1.3 ROSSER

The program ROSSER is just a slight modification of GODEL. ROSSER does
this:

ROSSER:
Print its code into a variable R

Look in S for a proof of
(1) "R prints to the screen” or of
(2) “R does not print to the screen”.

If (1) is found, halt without printing, if (2) is found, print “hello” and halt.

Now note that a consistent S cannot prove 1. nor 2., because either way, there
is a halting computation that contradicts the statement. So a consistent S is
incomplete. If we call the statement “ROSSER prints to the screen” by the
name R, and its negation 2. by the name “notR”, then “ROSSER does not
print” is iff equivalent to “S proves R before notR”, which is the standard gloss
for ROSSER’s construction.

ROSSER’s statement is different than GODEL statement, because the state-
ment “ROSSER does not print” is not equivalent to the statement “S is con-

sistent”. But since the slightly different statement “ROSSER does not halt”
actually is equivalent to “S is consistent”, ROSSER’s construction includes
GODEL’s construction in a simple way.

Here are some simple modifications which also prove Godel’s theorem:

1.4 PROOF-LENGTH

Given a provable statement of length L bytes in an axiomatic system .S, there is
no computable function of L, f(L), which bounds the length of the proof of L
(relatively short theorems can have enormously long proofs).

Construct PROOF-LENGTH to do the following:

PROOF-LENGTH:
— Print its own code into a variable R.

— Look through all deductions of S of length up to f(|R|) bytes for a proof
of “R prints ok .

— If such a deduction is found, halt.

— If not, print “ok” and halt.

In this case, the construction is clarified with a gloss: suppose f(L) exists, then
you can decide the halting problem by running through all proofs of length
f(|“P halts”|) for a proof of “P halts”. If you don’t find it, then P doesn’t halt.

This is also a proof of Gédel’s theorem, since if S is complete, then it will decide
all statements of the form “P halts”, and then you can compute the function f
which is the length of the proof of the statement. But the program constructed
is essentially the same as GODEL (actually ROSSER, in the version I gave
here).

But the explicit construction does give you an important corollary: if you as-
sume S is consistent, then just by the form of PROOF-LENGTH, you can see
that PROOF-LENGTH has to print “ok” independent of the function f, since
if it does not, this means it has found a proof that it didn’t. So the assumption
of consis(S) will collapse this f dependent enormously long proof to a short f-
independent proof of the same statement.

This construction is just a finitary version of the original GODEL program,
and this theorem is called the GODEL speedup theorem. The assumption of
consis(.S) reduces the length of proofs of certain statements by an amount greater
than any computable function of the length.

1.5 LOB

Given an axiomatic system S, consider the program LOB which, given state-
ment A, does the following:
LOB:

Input A
— Print its code into R.

— Deduce consequences of S, looking for “R halts implies A".

— If found, halt.

Let the symbols “+”, “|”, “|”, “=”, and “ <= 7 denote “proves”, “halts”,
“diverges” (does not halt), “implies”, and “if and only if”, respectively.
“LOBJ” only if S proves “LOB|= A”, and then S also proves “LOB|”, so it
proves A by modus ponens, so LOB| iff A. But “LOB|” is equivalent to
(SFLOB|)= A
and therefore to
(SE(SEHA) = A).
Therefore, S proves
SE({(SFA) = A)=(SFA).
This theorem can be repackaged into an infinite sequence of ever more obscure
statements, by replacing “LOB halts” with its different equivalent forms (some
of which contain itself), and eventually closing the recursion. The full set of
Lob statements is generated by a simple recursive grammar.

LOB’s theorem does not prove Gédel’s theorem, but it extends it. The proof is
of a similar kind.

1.6 TWEEDLEDEE and TWEEDEDUM

Consider the programs TWEEDLEDEE (“DEE” for short) and TWEEDLE-
DUM (“DUM?” for short):

DEE:
— Print DEE’s code into ME, and DUM's code into HE.

— Look for (proofs of) “ME]|" and “HE|".
— If found “ME]", halt.

— If found “HE|", print “tweedle-dee-dee!” and go into an infinite loop.

DUM:
— Prints DUM's code into ME, and DEE'’s code into HE.

— Looks for (proofs of) “ME|" and “HE|".

— If it finds “ME]" it halts, if it finds "HE]" it prints “tweedle-dee-dum!”
and goes into an infinite loop.

These give a kind of splitting theorem for axiomatic systems which satisfy the
hypotheses of GODEL'’s theorem. “DEE1” and “DUM?1” are both unprovable
in S, since proving either one leads to a contradiction. “consis(S)” implies
“DEE] & DUM|”, and conversely “DEE]| & DUM|” implies consis(.S).

So if S is inconsistent, then one of DEE or DUM has to halt. But which one?
This is not decidable in S. That is, S+“DEE|” is a theory which is strictly
stronger than S, since it proves “DEE|”, but is weaker than S-+consis(S)”
because it cannot prove “DUM|”.

To prove this, note that S proves “DEE| or DUM|”, i.e. “(DEE|) = (DUM
1)”. So if S also proved “DEE| = DUM|”, it would prove plain old “DUM|”,
which is impossible.

The reason for the spurious print statement is just to make absolutely sure
that the programs DEE and DUM, which are so similar, don’t end up identical,
which would wreck the proof (this subtlety is hard to see if you don’t unpack
the construction into an explicit program, but it is also easy to avoid by using
different variable names, or extra spaces, or whatever).

This construction is strictly stronger than GODEL’s. It shows that for any
sound system S, the implication “DEET implies DUM1” is unprovable. The con-
struction provides a proof of Gédel’s theorem, although it is similar to ROSSER
(The statement “DEE]” is provably NOT the negation of “DUM]|”, that’s the
whole point)

I wondered if this construction was in the literature for a long time. I recently ran
across it in “The Realm of Ordinal Analysis” by Michael Rathjen (proposition
2.17 on page 14). He couldn’t find it in the rest of the literature, but the
methods are sufficiently well known (and sufficiently close to Rosser’s) to make
it folklore. But, as emphasized by Rathjen, the result is significantly stronger
than the usual theorems.

1.7 TWEEDLE-N

To push this further into uncharted territory, consider the infinite sequence of
programs TWEEDLE-N (where N is an integer)

TWEEDLE-N:
1. Loop over M, printing the code of TWEEDLE-M into a variable R(M).

2. Deduce the consequences of S, looking for a theorem of the form
“TWEEDLE-M]" for some M.

3. If found, and M = N, it halts;
4. If found, and M # N, go into an infinite loop.

It is easy to see that either all TWEEDLE-N’s run, or exactly one of them
halts, something which S can prove, because steps 142 (which must be run
simultaneously in two threads) are the same for all the programs. But S cannot
prove that any single one of them runs.

To prove this, note that if there is an effective list of programs Ay (like the
TWEEDLE’s), you can make a program MERGE(A) which generates and runs
all of the programs on parallel threads and halts exactly when any one of them
does. Then S proves that either (TWEEDLE-k) | or MERGE(A,.)| (with r # k).
That is, TWEEDLE-k and MERGE(all the others) form a DEE/DUM pair.
This means that it cannot prove that one runs implies the other runs.

The result is that for any computable partition of the TWEEDLE’s into two
disjoint subsets A and B, S cannot prove that the TWEEDLE-A’s run implies
the TWEEDLE-B’s run, although consis(S) proves that all the TWEEDLE’s
run. The theories “S+all the TWEEDLE-A’s|” are sound theories, strictly
between S and S+consis(S) in terms of II{ content — they prove new correct
theorems about the non-halting of computer programs, but they are weaker than
S+-consis(S) (and weaker than each other in a way described by the partial order
of set containment).

I like this theorem, because it is a proof which is very dastardly to translate to
more traditional logic language. I think that computational language is more
natural for these results.

I could go on making more complicated self-referential proofs (and I think this is
an interesting thing to do, they all prove somewhat different things), but I will
stop here to consider non self-referential proofs, which work at a higher level of
the arithmetic hierarchy.

Chapter 2

TYPE II

These prove that there exist total functions which are not provably total. The
statements in this case are 119, statements about the totality of some computable
function.

2.1 FASTER-GROWTH

Given axiomatic system S, consider all computable functions f from the integers
to the integers that are proven to be total (that is, which halt for all arguments).
Now construct the program FASTER-GROWTH(n) which does the following:

— Lists the first n functions which are provably total, and computes their
value at position n.

— Returns the biggest value at n, plus 1.

If S is sound for I1J statements, then there are infinitely many provably total
functions, and FASTER-GROWTH halts at every input. Further, FASTER-
GROWTH is eventually bigger than any function provably total in S. So
“FASTER-GROWTH is total” is an unprovable true theorem.

The function FASTER-GROWTH is constructed entirely from other functions
which are not equal to itself. The requirement on the theory is that when it
proves a function is total, it is telling the truth, otherwise FASTER-GROWTH
will get stuck in an infinite loop at some point. This is the IT soundness. The I19
soundness proofs generally construct this type of thing, when unpacked.

The most common abbreviated form of this argument runs as follows: given an
axiomatic system S, diagonalizing against all provably total recursive functions
in the theory gives a total recursive function which the theory cannot prove is
total. This argument is folklore.

10

Type II Goédel theorems provide a different way to strengthen the axiom system,
by adding the statement of the totality of FASTER-GROWTH. This statement
implies consistency of S, but is strictly stronger, since consistency is not enough
to ensure FASTER-GROWTH is total (you need some soundness).

[About the same thing. .. {rom my annotations

Fix some formal system F. A total function is specified by the
description of some TM M.

For some Turing machines M there is a proof in F that M (x) is
total, that is, that the computation M () halts for every x!. In F
the (infinite) list of correct proofs of totality can be effectively enu-
merated as follows.

Turing machine E:
— For every string x = ¢, 0, 1, 00, 01 .. .:
— If 2 is a correct proof that some TM M defines a total

function?®, then list M; to avoid repetitions, add "“if
not already listed”.

%This includes: (i) the checking of the candidate proof (checking
proofs is recursive), (ii) the analysis of the last line of the proof (it
should have the form “Vz : M(z) halts”), and (iii) the extraction of M
from the last line.

Thus, the following total Turing machine M’ exists

Turing machine M’, input n:
1. Run E and get the n'th TM enumerated by E, call it M.

2. Run M(n), which is total (if F is sound), and out-
puts M(n) + 1.

It is assumed that F is sound, that is, that only true propositions are
proved. Of course as (usually) there are true and false propositions,
a sound formal system is necessarily consistent.

The conclusion is that, for every sound formal system F there are
total functions whose totality can not be proved in F'.

A similar argument is used to prove that the set of total (recur-
sive) functions is not recursively enumerable. But here we are using
Turing machines to enumerate formal proofs and prove the existence
of unprovable true statements.]

1The number of such proofs is infinite, and in fact if there is a proof for the totality of M,
there are infinitely many such proofs.

11

Chapter 3

TYPE II1

Nonconstructive theorem about a large class of statements, which do not provide
an explicit unprovable statement, and so cannot be used to step up the hierarchy
of systems.

3.1 BOOLOS

There is no computer program which will output the true answer to statements
of the form “Integer N can be named using k bytes or less worth of symbols of
Peano Arithmetic”

Write program BOOLOS:

1. Loop over all integers N, looking for the first N which requires more
than M symbols to name, where M is the length of the symbols describing
the output of BOOLOS, translated to arithmetic.

2. Print N.

The contradiction means that BOOLOS does not work. Boolos is not so great,
because it isn’t focused on a particular system, but it’s the same basic idea as
“Chaitin”, see below.

3.2 CHAITIN

Which replaces the notion of definability with Kolmogorov complexity, which is
definability by an algorithm. Write the program CHAITIN to do the following:

1. List all proofs of .S, looking for “the Kolmogorov complexity of string @
is greater than N” (where N is the length of CHAITIN).

12

2. Print string Q.

Now if S ever proves that the Kolmogorov complexity of any string is greater
than the length of CHAITIN, then CHAITIN will make S into a 3 liar (incon-
sistent). This proves that there is a completely effective bound on the maximum
provable Kolmogorov complexity of any string (this was given previously as an
answer).

There is an infinite list of true sentences of the form “The Kolmogorov complex-
ity of @ is N7, since there are infinitely many strings and only finitely many
programs of length less than N. But only a finite number of these theorems
get decided by any given axiom system .S. This is a less explicit proof, because
you can’t be sure which strings are unprovably complex, so there isn’t a natural
axiom to add on to strengthen the system.

The statement “the Kolmogorov complexity of @ is N”, translated to Arith-
metic, is

VP3N : ((FN(P) is a halted state with output Q) = |P| > n)

so that it’s T19.

Now to identify which proofs is what type:

— Self-referential sentence proofs — type I (Godel, Rosser, Kleene, Post,
Church, Turing, Smullyan, popular works).

— go induction proofs — these are type II, but specific to Peano Arithmetic.
The general version is the one presented above (Kripke’s proof, and Paris-
Harrington, Goodstein, Hydra). The version they give is that the limit
ordinal of all recursive provable ordinals is recursive but not provably
recursive, but this is a type Il argument.

— Jech/Woodin Set theory model proof — despite all its elegance and general-
ity, the proof is type 1 when formulated computationally. I will elaborate
below.

— Chaitin/Boolos — type IIL. I don’t know any other type IIIs.

By the way, I agree with Sergei that finite axiomatizability (although empha-
sized by Putnam for some reason) is not so important. That property depends
on exactly how you choose your axioms. The completeness theorem is strong
enough to get a general computation from only finitely many axioms. The
proof of impossibility of finite axiomatization (when it holds) is that the theory
is self-reflecting, it can prove the consistency of any finite fragment (this is true
in PA, because PA proves the consistency of induction restricted to level N in

13

the Arithmetic Hierarchy), and the axiomatization is weak, in that finitely many
axioms are stuck in some finite fragment no matter how many times you use
them. Self-reflection is interesting, but not that relevant for the incompleteness
theorem.

To see that the Jech/Woodin proof is really a type I proof in disguise, it is
important for the purpose of unpacking the construction to supplement the set
theory with an effective procedure to give computational meaning to the models.
This is just first order logic and the completeness theorem, as Andreas Caicedo
States in the introduction.

14

Chapter 4

From Wikipedia article “Undecidable numbers”

Relationship with Godel’s incompleteness theorem

The concepts raised by Godel’s incompleteness theorems are very similar to
those raised by the halting problem, and the proofs are quite similar. In fact,
a weaker form of the First Incompleteness Theorem is an easy consequence of
the undecidability of the halting problem. This weaker form differs from the
standard statement of the incompleteness theorem by asserting that a complete,
consistent and sound axiomatization of all statements about natural numbers
is unachievable. The “sound” part is the weakening: it means that we require
the axiomatic system in question to prove only true statements about natural
numbers.

It is important to observe that the statement of the standard form of Godel’s
First Incompleteness Theorem is completely unconcerned with the question of
truth, but only concerns the issue of whether it can be proven.

Theorem 1 (Incompleteness from undecidability) A complete, consistent,
and sound axiomatization of all statements about natural numbers does not exist.

Proof. Assume that we have a consistent and complete axiomatization of all
true first-order logic statements about natural numbers. Then we can build a
Turing machine that enumerates all these statements. This means that there
is an Turing machine N(n) that, given a natural number n, computes a true
first-order logic statement about natural numbers such that, for all the true
statements, there is at least one n such that N(n) yields that statement.

With that assumption, we can decide if the Turing machine with representa-
tion @ halts on input i as follows. This statement can be expressed with a
first-order logic statement, say H(a,¢). Since the axiomatization is complete, it
follows that either there is an n such that N(n) = H(a,1) or there is an n’ such
that N(n') = —=H(a,i). Thus, a Turing machine that iterates over all n until

15

finding either H(a,i) or =H(a,1), always halts. This means that this Turing
machine decides the halting problem. Since we know that there cannot be such
a Turing machine, it follows that the assumption that there is a consistent and
complete axiomatization of all true first-order logic statements about natural
numbers must be false. (]

16

Chapter 5

Some comments to the post

I still am having some trouble with the full computational interpretation of
Jech/Woodin. The simpler consequences are easy enough to interpret as stan-
dard type I arguments, but there is one theorem which is completely different:
there is no descending infinite sequence of models of set theory. I had a similar
proof for the well-foundedness of the collection of theories stronger than PA
under the ordering A is stronger than B when A proves the consistency of B.
But this theorem has a more involved proof than type I arguments.

The Jech/Woodin proof has an important ancestor, due to Kreisel, who came
up with the first model-theoretic proof of the second incompleteness theorem in
the 1960’s (see, e.g., logika.umk.pl/11p/06/du.pdf

There are a couple well known proofs of incompleteness based on properties of
PA degrees. PA degrees have been studied extensively in recursion theory.

A PA degree is a Turing degree that can compute a complete extension of PA.
Obviously, to prove the incompleteness theorem, it’s enough to show that no PA
degree can be recursive. If we had a consistent r.e. theory T extending PA that
was not incomplete, then its completion would be recursive — to decide whether
T &= ¢ or T = ¢, simply look for a proof of ¢ or of —¢ from T, and because T is
assumed to be complete, this process always terminates and is hence recursive.

One way to see that there are no recursive PA degrees is to observe that any PA
degree can compute a nonstandard models of PA via compactness and a Henkin
construction. Now apply Tennenbaum’s theorem that there are no recursive
nonstandard models of PA.

Another way to see that there are no recursive PA degrees is with piOne classes.
Every PA degree can compute a path through each I class (this is one direction
of the Scott basis theorem). To finish, note that one can construct I1{ classes
that do not contain any recursive elements. For instance, there are II{ classes

17

that contain only diagonally nonrecursive elements.

Besides the proofs already listed, one essentially different treatment which comes
to mind is Gentzen’s consistency proof of PA, which established that PA can
prove the well-ordering of ordinal notations less than ey but could not prove
the well-ordering of a notation for €y, and that, in turn, the well-ordering of ¢
would suffice to prove the consistency of PA. Characterizing the proof-theoretic
ordinal of a theory yields incompleteness results by an essentially different (and
arguably far deeper / more general) route to that of Gédel. answer

answered Oct 5 at 0:31

Does Gentzen’s proof actually establish incompleteness, though? My under-
standing is that Gentzen proves (i) that PA proves induction along (notations
for) well-orderings of all order types < €¢, and (ii) that T+Ind(eg) proves the
consistency of PA, where T is a small sub-theory of PA. From this, we can
conclude that PA does not prove Ind(gg), but to do so we need Gédel’s second
incompleteness theorem. That is, Gentzen proved a new instance of incomplete-
ness, but relies on already knowing some other incompleteness. Is this correct?
If so, this isn’t what I was asking. — Noah S Oct 5 at 19:57

I think it would depend on whether there was any non-Godelian route of es-
tablishing that successive powers w* require increasing levels of quantification
in PA. If so it’s straightforward that you couldn’t get to 9 without infinitely
long formulas. Unfortunately I do not know the answer to this — I'm still strug-
gling to understand Gentzen on a truly intuitive level. (Vide my question here:
mathoverflow.net/questions/138875/...) But it “feels” like such a proof ought
to exist.

18

